OpenSceneGraph/examples/osgvolume/osgvolume.cpp
2006-07-18 15:11:41 +00:00

1669 lines
65 KiB
C++

#include <osg/Node>
#include <osg/Geometry>
#include <osg/Notify>
#include <osg/Texture3D>
#include <osg/TexGen>
#include <osg/Geode>
#include <osg/Billboard>
#include <osg/PositionAttitudeTransform>
#include <osg/ClipNode>
#include <osg/AlphaFunc>
#include <osg/TexGenNode>
#include <osg/TexEnv>
#include <osg/TexEnvCombine>
#include <osg/Material>
#include <osg/PrimitiveSet>
#include <osg/Endian>
#include <osgDB/Registry>
#include <osgDB/ReadFile>
#include <osgDB/WriteFile>
#include <osgDB/FileUtils>
#include <osgDB/FileNameUtils>
#include <osgGA/EventVisitor>
#include <osgUtil/CullVisitor>
#include <osgProducer/Viewer>
typedef std::vector< osg::ref_ptr<osg::Image> > ImageList;
// example ReadOperator
// struct ReadOperator
// {
// inline void luminance(float l) const { rgba(l,l,l,1.0f); }
// inline void alpha(float a) const { rgba(1.0f,1.0f,1.0f,a); }
// inline void luminance_alpha(float l,float a) const { rgba(l,l,l,a); }
// inline void rgb(float r,float g,float b) const { rgba(r,g,b,1.0f); }
// inline void rgba(float r,float g,float b,float a) const { std::cout<<"pixel("<<r<<", "<<g<<", "<<b<<", "<<a<<")"<<std::endl; }
// };
template <typename T, class O>
void _readRow(unsigned int num, GLenum pixelFormat, T* data,float scale, const O& operation)
{
switch(pixelFormat)
{
case(GL_LUMINANCE): { for(unsigned int i=0;i<num;++i) { float l = float(*data++)*scale; operation.luminance(l); } } break;
case(GL_ALPHA): { for(unsigned int i=0;i<num;++i) { float a = float(*data++)*scale; operation.alpha(a); } } break;
case(GL_LUMINANCE_ALPHA): { for(unsigned int i=0;i<num;++i) { float l = float(*data++)*scale; float a = float(*data++)*scale; operation.luminance_alpha(l,a); } } break;
case(GL_RGB): { for(unsigned int i=0;i<num;++i) { float r = float(*data++)*scale; float g = float(*data++)*scale; float b = float(*data++)*scale; operation.rgb(r,g,b); } } break;
case(GL_RGBA): { for(unsigned int i=0;i<num;++i) { float r = float(*data++)*scale; float g = float(*data++)*scale; float b = float(*data++)*scale; float a = float(*data++)*scale; operation.rgba(r,g,b,a); } } break;
case(GL_BGR): { for(unsigned int i=0;i<num;++i) { float b = float(*data++)*scale; float g = float(*data++)*scale; float r = float(*data++)*scale; operation.rgb(r,g,b); } } break;
case(GL_BGRA): { for(unsigned int i=0;i<num;++i) { float b = float(*data++)*scale; float g = float(*data++)*scale; float r = float(*data++)*scale; float a = float(*data++)*scale; operation.rgba(r,g,b,a); } } break;
}
}
template <class O>
void readRow(unsigned int num, GLenum pixelFormat, GLenum dataType, unsigned char* data, const O& operation)
{
switch(dataType)
{
case(GL_BYTE): _readRow(num,pixelFormat, (char*)data, 1.0f/128.0f, operation); break;
case(GL_UNSIGNED_BYTE): _readRow(num,pixelFormat, (unsigned char*)data, 1.0f/255.0f, operation); break;
case(GL_SHORT): _readRow(num,pixelFormat, (short*) data, 1.0f/32768.0f, operation); break;
case(GL_UNSIGNED_SHORT): _readRow(num,pixelFormat, (unsigned short*)data, 1.0f/65535.0f, operation); break;
case(GL_INT): _readRow(num,pixelFormat, (int*) data, 1.0f/2147483648.0f, operation); break;
case(GL_UNSIGNED_INT): _readRow(num,pixelFormat, (unsigned int*) data, 1.0f/4294967295.0f, operation); break;
case(GL_FLOAT): _readRow(num,pixelFormat, (float*) data, 1.0f, operation); break;
}
}
template <class O>
void readImage(osg::Image* image, const O& operation)
{
if (!image) return;
for(int r=0;r<image->r();++r)
{
for(int t=0;t<image->t();++t)
{
readRow(image->s(), image->getPixelFormat(), image->getDataType(), image->data(0,t,r), operation);
}
}
}
// example ModifyOperator
// struct ModifyOperator
// {
// inline void luminance(float& l) const {}
// inline void alpha(float& a) const {}
// inline void luminance_alpha(float& l,float& a) const {}
// inline void rgb(float& r,float& g,float& b) const {}
// inline void rgba(float& r,float& g,float& b,float& a) const {}
// };
template <typename T, class M>
void _modifyRow(unsigned int num, GLenum pixelFormat, T* data,float scale, const M& operation)
{
float inv_scale = 1.0f/scale;
switch(pixelFormat)
{
case(GL_LUMINANCE): { for(unsigned int i=0;i<num;++i) { float l = float(*data)*scale; operation.luminance(l); *data++ = T(l*inv_scale); } } break;
case(GL_ALPHA): { for(unsigned int i=0;i<num;++i) { float a = float(*data)*scale; operation.alpha(a); *data++ = T(a*inv_scale); } } break;
case(GL_LUMINANCE_ALPHA): { for(unsigned int i=0;i<num;++i) { float l = float(*data)*scale; float a = float(*(data+1))*scale; operation.luminance_alpha(l,a); *data++ = T(l*inv_scale); *data++ = T(a*inv_scale); } } break;
case(GL_RGB): { for(unsigned int i=0;i<num;++i) { float r = float(*data)*scale; float g = float(*(data+1))*scale; float b = float(*(data+2))*scale; operation.rgb(r,g,b); *data++ = T(r*inv_scale); *data++ = T(g*inv_scale); *data++ = T(b*inv_scale); } } break;
case(GL_RGBA): { for(unsigned int i=0;i<num;++i) { float r = float(*data)*scale; float g = float(*(data+1))*scale; float b = float(*(data+2))*scale; float a = float(*(data+3))*scale; operation.rgba(r,g,b,a); *data++ = T(r*inv_scale); *data++ = T(g*inv_scale); *data++ = T(g*inv_scale); *data++ = T(a*inv_scale); } } break;
case(GL_BGR): { for(unsigned int i=0;i<num;++i) { float b = float(*data)*scale; float g = float(*(data+1))*scale; float r = float(*(data+2))*scale; operation.rgb(r,g,b); *data++ = T(b*inv_scale); *data++ = T(g*inv_scale); *data++ = T(r*inv_scale); } } break;
case(GL_BGRA): { for(unsigned int i=0;i<num;++i) { float b = float(*data)*scale; float g = float(*(data+1))*scale; float r = float(*(data+2))*scale; float a = float(*(data+3))*scale; operation.rgba(r,g,b,a); *data++ = T(g*inv_scale); *data++ = T(b*inv_scale); *data++ = T(r*inv_scale); *data++ = T(a*inv_scale); } } break;
}
}
template <class M>
void modifyRow(unsigned int num, GLenum pixelFormat, GLenum dataType, unsigned char* data, const M& operation)
{
switch(dataType)
{
case(GL_BYTE): _modifyRow(num,pixelFormat, (char*)data, 1.0f/128.0f, operation); break;
case(GL_UNSIGNED_BYTE): _modifyRow(num,pixelFormat, (unsigned char*)data, 1.0f/255.0f, operation); break;
case(GL_SHORT): _modifyRow(num,pixelFormat, (short*) data, 1.0f/32768.0f, operation); break;
case(GL_UNSIGNED_SHORT): _modifyRow(num,pixelFormat, (unsigned short*)data, 1.0f/65535.0f, operation); break;
case(GL_INT): _modifyRow(num,pixelFormat, (int*) data, 1.0f/2147483648.0f, operation); break;
case(GL_UNSIGNED_INT): _modifyRow(num,pixelFormat, (unsigned int*) data, 1.0f/4294967295.0f, operation); break;
case(GL_FLOAT): _modifyRow(num,pixelFormat, (float*) data, 1.0f, operation); break;
}
}
template <class M>
void modifyImage(osg::Image* image, const M& operation)
{
if (!image) return;
for(int r=0;r<image->r();++r)
{
for(int t=0;t<image->t();++t)
{
modifyRow(image->s(), image->getPixelFormat(), image->getDataType(), image->data(0,t,r), operation);
}
}
}
struct PassThroughTransformFunction
{
unsigned char operator() (unsigned char c) const { return c; }
};
struct ProcessRow
{
virtual ~ProcessRow() {}
virtual void operator() (unsigned int num,
GLenum source_pixelFormat, unsigned char* source,
GLenum dest_pixelFormat, unsigned char* dest) const
{
switch(source_pixelFormat)
{
case(GL_LUMINANCE):
case(GL_ALPHA):
switch(dest_pixelFormat)
{
case(GL_LUMINANCE):
case(GL_ALPHA): A_to_A(num, source, dest); break;
case(GL_LUMINANCE_ALPHA): A_to_LA(num, source, dest); break;
case(GL_RGB): A_to_RGB(num, source, dest); break;
case(GL_RGBA): A_to_RGBA(num, source, dest); break;
}
break;
case(GL_LUMINANCE_ALPHA):
switch(dest_pixelFormat)
{
case(GL_LUMINANCE):
case(GL_ALPHA): LA_to_A(num, source, dest); break;
case(GL_LUMINANCE_ALPHA): LA_to_LA(num, source, dest); break;
case(GL_RGB): LA_to_RGB(num, source, dest); break;
case(GL_RGBA): LA_to_RGBA(num, source, dest); break;
}
break;
case(GL_RGB):
switch(dest_pixelFormat)
{
case(GL_LUMINANCE):
case(GL_ALPHA): RGB_to_A(num, source, dest); break;
case(GL_LUMINANCE_ALPHA): RGB_to_LA(num, source, dest); break;
case(GL_RGB): RGB_to_RGB(num, source, dest); break;
case(GL_RGBA): RGB_to_RGBA(num, source, dest); break;
}
break;
case(GL_RGBA):
switch(dest_pixelFormat)
{
case(GL_LUMINANCE):
case(GL_ALPHA): RGBA_to_A(num, source, dest); break;
case(GL_LUMINANCE_ALPHA): RGBA_to_LA(num, source, dest); break;
case(GL_RGB): RGBA_to_RGB(num, source, dest); break;
case(GL_RGBA): RGBA_to_RGBA(num, source, dest); break;
}
break;
}
}
///////////////////////////////////////////////////////////////////////////////
// alpha sources..
virtual void A_to_A(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source++;
}
}
virtual void A_to_LA(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source;
*dest++ = *source++;
}
}
virtual void A_to_RGB(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source;
*dest++ = *source;
*dest++ = *source++;
}
}
virtual void A_to_RGBA(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source;
*dest++ = *source;
*dest++ = *source;
*dest++ = *source++;
}
}
///////////////////////////////////////////////////////////////////////////////
// alpha luminiance sources..
virtual void LA_to_A(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
++source;
*dest++ = *source++;
}
}
virtual void LA_to_LA(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source++;
*dest++ = *source++;
}
}
virtual void LA_to_RGB(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source;
*dest++ = *source;
*dest++ = *source;
source+=2;
}
}
virtual void LA_to_RGBA(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source;
*dest++ = *source;
*dest++ = *source++;
*dest++ = *source++;
}
}
///////////////////////////////////////////////////////////////////////////////
// RGB sources..
virtual void RGB_to_A(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
unsigned char val = *source;
*dest++ = val;
source += 3;
}
}
virtual void RGB_to_LA(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
unsigned char val = *source;
*dest++ = val;
*dest++ = val;
source += 3;
}
}
virtual void RGB_to_RGB(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source++;
*dest++ = *source++;
*dest++ = *source++;
}
}
virtual void RGB_to_RGBA(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
unsigned char val = *source;
*dest++ = *source++;
*dest++ = *source++;
*dest++ = *source++;
*dest++ = val;
}
}
///////////////////////////////////////////////////////////////////////////////
// RGBA sources..
virtual void RGBA_to_A(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
source += 3;
*dest++ = *source++;
}
}
virtual void RGBA_to_LA(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
unsigned char val = *source;
source += 3;
*dest++ = val;
*dest++ = *source++;
}
}
virtual void RGBA_to_RGB(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source++;
*dest++ = *source++;
*dest++ = *source++;
++source;
}
}
virtual void RGBA_to_RGBA(unsigned int num, unsigned char* source, unsigned char* dest) const
{
for(unsigned int i=0;i<num;++i)
{
*dest++ = *source++;
*dest++ = *source++;
*dest++ = *source++;
*dest++ = *source++;
}
}
};
void clampToNearestValidPowerOfTwo(int& sizeX, int& sizeY, int& sizeZ, int s_maximumTextureSize, int t_maximumTextureSize, int r_maximumTextureSize)
{
// compute nearest powers of two for each axis.
int s_nearestPowerOfTwo = 1;
while(s_nearestPowerOfTwo<sizeX && s_nearestPowerOfTwo<s_maximumTextureSize) s_nearestPowerOfTwo*=2;
int t_nearestPowerOfTwo = 1;
while(t_nearestPowerOfTwo<sizeY && t_nearestPowerOfTwo<t_maximumTextureSize) t_nearestPowerOfTwo*=2;
int r_nearestPowerOfTwo = 1;
while(r_nearestPowerOfTwo<sizeZ && r_nearestPowerOfTwo<r_maximumTextureSize) r_nearestPowerOfTwo*=2;
sizeX = s_nearestPowerOfTwo;
sizeY = t_nearestPowerOfTwo;
sizeZ = r_nearestPowerOfTwo;
}
osg::Image* createTexture3D(ImageList& imageList, ProcessRow& processRow,
unsigned int numComponentsDesired,
int s_maximumTextureSize,
int t_maximumTextureSize,
int r_maximumTextureSize )
{
int max_s = 0;
int max_t = 0;
unsigned int max_components = 0;
int total_r = 0;
ImageList::iterator itr;
for(itr=imageList.begin();
itr!=imageList.end();
++itr)
{
osg::Image* image = itr->get();
GLenum pixelFormat = image->getPixelFormat();
if (pixelFormat==GL_ALPHA ||
pixelFormat==GL_LUMINANCE ||
pixelFormat==GL_LUMINANCE_ALPHA ||
pixelFormat==GL_RGB ||
pixelFormat==GL_RGBA)
{
max_s = osg::maximum(image->s(), max_s);
max_t = osg::maximum(image->t(), max_t);
max_components = osg::maximum(osg::Image::computeNumComponents(pixelFormat), max_components);
total_r += image->r();
}
else
{
osg::notify(osg::NOTICE)<<"Image "<<image->getFileName()<<" has unsuitable pixel format"<< std::hex<< pixelFormat << std::dec << std::endl;
}
}
if (numComponentsDesired!=0) max_components = numComponentsDesired;
GLenum desiredPixelFormat = 0;
switch(max_components)
{
case(1):
osg::notify(osg::NOTICE)<<"desiredPixelFormat = GL_LUMINANCE" << std::endl;
desiredPixelFormat = GL_LUMINANCE;
break;
case(2):
osg::notify(osg::NOTICE)<<"desiredPixelFormat = GL_LUMINANCE_ALPHA" << std::endl;
desiredPixelFormat = GL_LUMINANCE_ALPHA;
break;
case(3):
osg::notify(osg::NOTICE)<<"desiredPixelFormat = GL_RGB" << std::endl;
desiredPixelFormat = GL_RGB;
break;
case(4):
osg::notify(osg::NOTICE)<<"desiredPixelFormat = GL_RGBA" << std::endl;
desiredPixelFormat = GL_RGBA;
break;
}
if (desiredPixelFormat==0) return 0;
// compute nearest powers of two for each axis.
int s_nearestPowerOfTwo = 1;
while(s_nearestPowerOfTwo<max_s && s_nearestPowerOfTwo<s_maximumTextureSize) s_nearestPowerOfTwo*=2;
int t_nearestPowerOfTwo = 1;
while(t_nearestPowerOfTwo<max_t && t_nearestPowerOfTwo<t_maximumTextureSize) t_nearestPowerOfTwo*=2;
int r_nearestPowerOfTwo = 1;
while(r_nearestPowerOfTwo<total_r && r_nearestPowerOfTwo<r_maximumTextureSize) r_nearestPowerOfTwo*=2;
osg::notify(osg::NOTICE)<<"max image width = "<<max_s<<" nearest power of two = "<<s_nearestPowerOfTwo<<std::endl;
osg::notify(osg::NOTICE)<<"max image height = "<<max_t<<" nearest power of two = "<<t_nearestPowerOfTwo<<std::endl;
osg::notify(osg::NOTICE)<<"max image depth = "<<total_r<<" nearest power of two = "<<r_nearestPowerOfTwo<<std::endl;
// now allocate the 3d texture;
osg::ref_ptr<osg::Image> image_3d = new osg::Image;
image_3d->allocateImage(s_nearestPowerOfTwo,t_nearestPowerOfTwo,r_nearestPowerOfTwo,
desiredPixelFormat,GL_UNSIGNED_BYTE);
unsigned int r_offset = (total_r<r_nearestPowerOfTwo) ? r_nearestPowerOfTwo/2 - total_r/2 : 0;
int curr_dest_r = r_offset;
// copy across the values from the source images into the image_3d.
for(itr=imageList.begin();
itr!=imageList.end();
++itr)
{
osg::Image* image = itr->get();
GLenum pixelFormat = image->getPixelFormat();
if (pixelFormat==GL_ALPHA ||
pixelFormat==GL_LUMINANCE ||
pixelFormat==GL_LUMINANCE_ALPHA ||
pixelFormat==GL_RGB ||
pixelFormat==GL_RGBA)
{
int num_r = osg::minimum(image->r(), (image_3d->r() - curr_dest_r));
int num_t = osg::minimum(image->t(), image_3d->t());
int num_s = osg::minimum(image->s(), image_3d->s());
unsigned int s_offset_dest = (image->s()<s_nearestPowerOfTwo) ? s_nearestPowerOfTwo/2 - image->s()/2 : 0;
unsigned int t_offset_dest = (image->t()<t_nearestPowerOfTwo) ? t_nearestPowerOfTwo/2 - image->t()/2 : 0;
for(int r=0;r<num_r;++r, ++curr_dest_r)
{
for(int t=0;t<num_t;++t)
{
unsigned char* dest = image_3d->data(s_offset_dest,t+t_offset_dest,curr_dest_r);
unsigned char* source = image->data(0,t,r);
processRow(num_s, image->getPixelFormat(), source, image_3d->getPixelFormat(), dest);
}
}
}
}
return image_3d.release();
}
osg::Image* createNormalMapTexture(osg::Image* image_3d)
{
unsigned int sourcePixelIncrement = 1;
unsigned int alphaOffset = 0;
switch(image_3d->getPixelFormat())
{
case(GL_ALPHA):
case(GL_LUMINANCE):
sourcePixelIncrement = 1;
alphaOffset = 0;
break;
case(GL_LUMINANCE_ALPHA):
sourcePixelIncrement = 2;
alphaOffset = 1;
break;
case(GL_RGB):
sourcePixelIncrement = 3;
alphaOffset = 0;
break;
case(GL_RGBA):
sourcePixelIncrement = 4;
alphaOffset = 3;
break;
default:
osg::notify(osg::NOTICE)<<"Source pixel format not support for normal map generation."<<std::endl;
return 0;
}
osg::ref_ptr<osg::Image> normalmap_3d = new osg::Image;
normalmap_3d->allocateImage(image_3d->s(),image_3d->t(),image_3d->r(),
GL_RGBA,GL_UNSIGNED_BYTE);
if (osg::getCpuByteOrder()==osg::LittleEndian) alphaOffset = sourcePixelIncrement-alphaOffset-1;
for(int r=1;r<image_3d->r()-1;++r)
{
for(int t=1;t<image_3d->t()-1;++t)
{
unsigned char* ptr = image_3d->data(1,t,r)+alphaOffset;
unsigned char* left = image_3d->data(0,t,r)+alphaOffset;
unsigned char* right = image_3d->data(2,t,r)+alphaOffset;
unsigned char* above = image_3d->data(1,t+1,r)+alphaOffset;
unsigned char* below = image_3d->data(1,t-1,r)+alphaOffset;
unsigned char* in = image_3d->data(1,t,r+1)+alphaOffset;
unsigned char* out = image_3d->data(1,t,r-1)+alphaOffset;
unsigned char* destination = (unsigned char*) normalmap_3d->data(1,t,r);
for(int s=1;s<image_3d->s()-1;++s)
{
osg::Vec3 grad((float)(*left)-(float)(*right),
(float)(*below)-(float)(*above),
(float)(*out) -(float)(*in));
grad.normalize();
if (grad.x()==0.0f && grad.y()==0.0f && grad.z()==0.0f)
{
grad.set(128.0f,128.0f,128.0f);
}
else
{
grad.x() = osg::clampBetween((grad.x()+1.0f)*128.0f,0.0f,255.0f);
grad.y() = osg::clampBetween((grad.y()+1.0f)*128.0f,0.0f,255.0f);
grad.z() = osg::clampBetween((grad.z()+1.0f)*128.0f,0.0f,255.0f);
}
*(destination++) = (unsigned char)(grad.x()); // scale and bias X.
*(destination++) = (unsigned char)(grad.y()); // scale and bias Y.
*(destination++) = (unsigned char)(grad.z()); // scale and bias Z.
*destination++ = *ptr;
ptr += sourcePixelIncrement;
left += sourcePixelIncrement;
right += sourcePixelIncrement;
above += sourcePixelIncrement;
below += sourcePixelIncrement;
in += sourcePixelIncrement;
out += sourcePixelIncrement;
}
}
}
return normalmap_3d.release();
}
osg::Node* createCube(float size,float alpha, unsigned int numSlices, float sliceEnd=1.0f)
{
// set up the Geometry.
osg::Geometry* geom = new osg::Geometry;
float halfSize = size*0.5f;
float y = halfSize;
float dy =-size*1.4/(float)(numSlices-1)*sliceEnd;
//y = -halfSize;
//dy *= 0.5;
osg::Vec3Array* coords = new osg::Vec3Array(4*numSlices);
geom->setVertexArray(coords);
for(unsigned int i=0;i<numSlices;++i, y+=dy)
{
(*coords)[i*4+0].set(-halfSize,y,halfSize);
(*coords)[i*4+1].set(-halfSize,y,-halfSize);
(*coords)[i*4+2].set(halfSize,y,-halfSize);
(*coords)[i*4+3].set(halfSize,y,halfSize);
}
osg::Vec3Array* normals = new osg::Vec3Array(1);
(*normals)[0].set(0.0f,-1.0f,0.0f);
geom->setNormalArray(normals);
geom->setNormalBinding(osg::Geometry::BIND_OVERALL);
osg::Vec4Array* colors = new osg::Vec4Array(1);
(*colors)[0].set(1.0f,1.0f,1.0f,alpha);
geom->setColorArray(colors);
geom->setColorBinding(osg::Geometry::BIND_OVERALL);
geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,coords->size()));
osg::Billboard* billboard = new osg::Billboard;
billboard->setMode(osg::Billboard::POINT_ROT_WORLD);
billboard->addDrawable(geom);
billboard->setPosition(0,osg::Vec3(0.0f,0.0f,0.0f));
return billboard;
}
class FollowMouseCallback : public osgGA::GUIEventHandler, public osg::StateSet::Callback
{
public:
FollowMouseCallback()
{
_updateTransparency = false;
_updateAlphaCutOff = false;
_updateSampleDensity = false;
}
FollowMouseCallback(const FollowMouseCallback&,const osg::CopyOp&) {}
META_Object(osg,FollowMouseCallback);
virtual void operator() (osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (nv->getVisitorType()==osg::NodeVisitor::EVENT_VISITOR)
{
osgGA::EventVisitor* ev = dynamic_cast<osgGA::EventVisitor*>(nv);
if (ev)
{
osgGA::GUIActionAdapter* aa = ev->getActionAdapter();
osgGA::EventQueue::Events& events = ev->getEvents();
for(osgGA::EventQueue::Events::iterator itr=events.begin();
itr!=events.end();
++itr)
{
handle(*(*itr), *aa, stateset, ev);
}
}
}
}
virtual bool handle(const osgGA::GUIEventAdapter& ea,osgGA::GUIActionAdapter&, osg::Object* object, osg::NodeVisitor*)
{
osg::StateSet* stateset = dynamic_cast<osg::StateSet*>(object);
if (!stateset) return false;
switch(ea.getEventType())
{
case(osgGA::GUIEventAdapter::MOVE):
case(osgGA::GUIEventAdapter::DRAG):
{
float v = ea.getY()*0.5f+0.5f;
osg::Uniform* uniform = 0;
if (_updateTransparency && (uniform = stateset->getUniform("transparency"))) uniform->set(v);
if (_updateAlphaCutOff && (uniform = stateset->getUniform("alphaCutOff"))) uniform->set(v);
if (_updateSampleDensity && (uniform = stateset->getUniform("sampleDensity"))) uniform->set(powf(v,5));
break;
}
case(osgGA::GUIEventAdapter::KEYDOWN):
{
if (ea.getKey()=='t') _updateTransparency = true;
if (ea.getKey()=='a') _updateAlphaCutOff = true;
if (ea.getKey()=='d') _updateSampleDensity = true;
break;
}
case(osgGA::GUIEventAdapter::KEYUP):
{
if (ea.getKey()=='t') _updateTransparency = false;
if (ea.getKey()=='a') _updateAlphaCutOff = false;
if (ea.getKey()=='d') _updateSampleDensity = false;
break;
}
default:
break;
}
return false;
}
virtual void accept(osgGA::GUIEventHandlerVisitor& v)
{
v.visit(*this);
}
bool _updateTransparency;
bool _updateAlphaCutOff;
bool _updateSampleDensity;
};
osg::Node* createShaderModel(osg::ref_ptr<osg::Image>& image_3d, osg::ref_ptr<osg::Image>& /*normalmap_3d*/,
osg::Texture::InternalFormatMode internalFormatMode,
float /*xSize*/, float /*ySize*/, float /*zSize*/,
float /*xMultiplier*/, float /*yMultiplier*/, float /*zMultiplier*/,
unsigned int /*numSlices*/=500, float /*sliceEnd*/=1.0f, float alphaFuncValue=0.02f)
{
osg::Geode* geode = new osg::Geode;
osg::StateSet* stateset = geode->getOrCreateStateSet();
stateset->setEventCallback(new FollowMouseCallback);
// set up the 3d texture itself,
// note, well set the filtering up so that mip mapping is disabled,
// gluBuild3DMipsmaps doesn't do a very good job of handled the
// inbalanced dimensions of the 256x256x4 texture.
osg::Texture3D* texture3D = new osg::Texture3D;
texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR);
texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR);
texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP);
texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP);
texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP);
if (image_3d->getPixelFormat()==GL_ALPHA ||
image_3d->getPixelFormat()==GL_LUMINANCE)
{
texture3D->setInternalFormatMode(osg::Texture3D::USE_USER_DEFINED_FORMAT);
texture3D->setInternalFormat(GL_INTENSITY);
}
else
{
texture3D->setInternalFormatMode(internalFormatMode);
}
texture3D->setImage(image_3d.get());
stateset->setTextureAttributeAndModes(0,texture3D,osg::StateAttribute::ON);
osg::Program* program = new osg::Program;
stateset->setAttribute(program);
// get shaders from source
std::string vertexShaderFile = osgDB::findDataFile("volume.vert");
if (!vertexShaderFile.empty())
{
program->addShader(osg::Shader::readShaderFile(osg::Shader::VERTEX, vertexShaderFile));
}
else
{
char vertexShaderSource[] =
"varying vec3 texcoord;\n"
"varying vec3 deltaTexCoord;\n"
"\n"
"void main(void)\n"
"{\n"
" texcoord = gl_MultiTexCoord0.xyz;\n"
" gl_Position = ftransform(); \n"
" deltaTexCoord = normalize(gl_ModelViewMatrixInverse * vec4(0,0,0,1) - gl_Vertex);\n"
"}\n";
osg::Shader* vertex_shader = new osg::Shader(osg::Shader::VERTEX, vertexShaderSource);
program->addShader(vertex_shader);
}
std::string fragmentShaderFile = osgDB::findDataFile("volume.frag");
if (!fragmentShaderFile.empty())
{
program->addShader(osg::Shader::readShaderFile(osg::Shader::FRAGMENT, fragmentShaderFile));
}
else
{
//////////////////////////////////////////////////////////////////
// fragment shader
//
char fragmentShaderSource[] =
"uniform sampler3D baseTexture;\n"
"uniform float sampleDensity;\n"
"uniform float transparency;\n"
"uniform float alphaCutOff;\n"
"\n"
"varying vec3 deltaTexCoord;\n"
"varying vec3 texcoord;\n"
"void main(void) \n"
"{ \n"
" vec3 deltaTexCoord2 = normalize(deltaTexCoord)*sampleDensity; \n"
"\n"
" gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0); \n"
" \n"
" while (texcoord.x>=0.0 && texcoord.x<=1.0 &&\n"
" texcoord.y>=0.0 && texcoord.y<=1.0 &&\n"
" texcoord.z>=0.0 && texcoord.z<=1.0)\n"
" {\n"
" vec4 color = texture3D( baseTexture, texcoord);\n"
" float r = color[3]*transparency;\n"
" if (r>alphaCutOff)\n"
" {\n"
" gl_FragColor.xyz = gl_FragColor.xyz*(1.0-r)+color.xyz*r;\n"
" gl_FragColor.w += r;\n"
" }\n"
" texcoord += deltaTexCoord2; \n"
" }\n"
" if (gl_FragColor.w>1.0) gl_FragColor.w = 1.0; \n"
"}\n";
osg::Shader* fragment_shader = new osg::Shader(osg::Shader::FRAGMENT, fragmentShaderSource);
program->addShader(fragment_shader);
}
osg::Uniform* baseTextureSampler = new osg::Uniform("baseTexture",0);
stateset->addUniform(baseTextureSampler);
osg::Uniform* sampleDensity = new osg::Uniform("sampleDensity", 0.01f);
stateset->addUniform(sampleDensity);
osg::Uniform* transpancy = new osg::Uniform("transparency",0.5f);
stateset->addUniform(transpancy);
osg::Uniform* alphaCutOff = new osg::Uniform("alphaCutOff",alphaFuncValue);
stateset->addUniform(alphaCutOff);
stateset->setMode(GL_CULL_FACE, osg::StateAttribute::ON);
{
osg::Geometry* geom = new osg::Geometry;
osg::Vec3Array* coords = new osg::Vec3Array(8);
(*coords)[0].set(0,0,0);
(*coords)[1].set(1,0,0);
(*coords)[2].set(1,1,0);
(*coords)[3].set(0,1,0);
(*coords)[4].set(0,0,1);
(*coords)[5].set(1,0,1);
(*coords)[6].set(1,1,1);
(*coords)[7].set(0,1,1);
geom->setVertexArray(coords);
osg::Vec3Array* tcoords = new osg::Vec3Array(8);
(*tcoords)[0].set(0,0,0);
(*tcoords)[1].set(1,0,0);
(*tcoords)[2].set(1,1,0);
(*tcoords)[3].set(0,1,0);
(*tcoords)[4].set(0,0,1);
(*tcoords)[5].set(1,0,1);
(*tcoords)[6].set(1,1,1);
(*tcoords)[7].set(0,1,1);
geom->setTexCoordArray(0,tcoords);
osg::Vec4Array* colours = new osg::Vec4Array(1);
(*colours)[0].set(1.0f,1.0f,1.0,1.0f);
geom->setColorArray(colours);
geom->setColorBinding(osg::Geometry::BIND_OVERALL);
osg::DrawElementsUShort* drawElements = new osg::DrawElementsUShort(GL_QUADS);
// bottom
drawElements->push_back(0);
drawElements->push_back(1);
drawElements->push_back(2);
drawElements->push_back(3);
// bottom
drawElements->push_back(3);
drawElements->push_back(2);
drawElements->push_back(6);
drawElements->push_back(7);
// left
drawElements->push_back(0);
drawElements->push_back(3);
drawElements->push_back(7);
drawElements->push_back(4);
// right
drawElements->push_back(5);
drawElements->push_back(6);
drawElements->push_back(2);
drawElements->push_back(1);
// front
drawElements->push_back(1);
drawElements->push_back(0);
drawElements->push_back(4);
drawElements->push_back(5);
// top
drawElements->push_back(7);
drawElements->push_back(6);
drawElements->push_back(5);
drawElements->push_back(4);
geom->addPrimitiveSet(drawElements);
geode->addDrawable(geom);
}
return geode;
}
osg::Node* createModel(osg::ref_ptr<osg::Image>& image_3d, osg::ref_ptr<osg::Image>& normalmap_3d,
osg::Texture::InternalFormatMode internalFormatMode,
float xSize, float ySize, float zSize,
float xMultiplier, float yMultiplier, float zMultiplier,
unsigned int numSlices=500, float sliceEnd=1.0f, float alphaFuncValue=0.02f)
{
bool two_pass = normalmap_3d.valid() && (image_3d->getPixelFormat()==GL_RGB || image_3d->getPixelFormat()==GL_RGBA);
osg::Group* group = new osg::Group;
osg::TexGenNode* texgenNode_0 = new osg::TexGenNode;
texgenNode_0->setTextureUnit(0);
texgenNode_0->getTexGen()->setMode(osg::TexGen::EYE_LINEAR);
texgenNode_0->getTexGen()->setPlane(osg::TexGen::S, osg::Vec4(xMultiplier,0.0f,0.0f,0.5f));
texgenNode_0->getTexGen()->setPlane(osg::TexGen::T, osg::Vec4(0.0f,yMultiplier,0.0f,0.5f));
texgenNode_0->getTexGen()->setPlane(osg::TexGen::R, osg::Vec4(0.0f,0.0f,zMultiplier,0.5f));
if (two_pass)
{
osg::TexGenNode* texgenNode_1 = new osg::TexGenNode;
texgenNode_1->setTextureUnit(1);
texgenNode_1->getTexGen()->setMode(osg::TexGen::EYE_LINEAR);
texgenNode_1->getTexGen()->setPlane(osg::TexGen::S, texgenNode_0->getTexGen()->getPlane(osg::TexGen::S));
texgenNode_1->getTexGen()->setPlane(osg::TexGen::T, texgenNode_0->getTexGen()->getPlane(osg::TexGen::T));
texgenNode_1->getTexGen()->setPlane(osg::TexGen::R, texgenNode_0->getTexGen()->getPlane(osg::TexGen::R));
texgenNode_1->addChild(texgenNode_0);
group->addChild(texgenNode_1);
}
else
{
group->addChild(texgenNode_0);
}
osg::BoundingBox bb(-xSize*0.5f,-ySize*0.5f,-zSize*0.5f,xSize*0.5f,ySize*0.5f,zSize*0.5f);
osg::ClipNode* clipnode = new osg::ClipNode;
clipnode->addChild(createCube(1.0f,1.0f, numSlices,sliceEnd));
clipnode->createClipBox(bb);
{
// set up the Geometry to enclose the clip volume to prevent near/far clipping from affecting billboard
osg::Geometry* geom = new osg::Geometry;
osg::Vec3Array* coords = new osg::Vec3Array();
coords->push_back(bb.corner(0));
coords->push_back(bb.corner(1));
coords->push_back(bb.corner(2));
coords->push_back(bb.corner(3));
coords->push_back(bb.corner(4));
coords->push_back(bb.corner(5));
coords->push_back(bb.corner(6));
coords->push_back(bb.corner(7));
geom->setVertexArray(coords);
osg::Vec4Array* colors = new osg::Vec4Array(1);
(*colors)[0].set(1.0f,1.0f,1.0f,1.0f);
geom->setColorArray(colors);
geom->setColorBinding(osg::Geometry::BIND_OVERALL);
geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::POINTS,0,coords->size()));
osg::Geode* geode = new osg::Geode;
geode->addDrawable(geom);
clipnode->addChild(geode);
}
texgenNode_0->addChild(clipnode);
osg::StateSet* stateset = texgenNode_0->getOrCreateStateSet();
stateset->setMode(GL_LIGHTING,osg::StateAttribute::ON);
stateset->setMode(GL_BLEND,osg::StateAttribute::ON);
stateset->setAttribute(new osg::AlphaFunc(osg::AlphaFunc::GREATER,alphaFuncValue));
osg::Material* material = new osg::Material;
material->setDiffuse(osg::Material::FRONT_AND_BACK,osg::Vec4(1.0f,1.0f,1.0f,1.0f));
stateset->setAttributeAndModes(material);
osg::Vec3 lightDirection(1.0f,-1.0f,1.0f);
lightDirection.normalize();
if (normalmap_3d.valid())
{
if (two_pass)
{
// set up normal texture
osg::Texture3D* bump_texture3D = new osg::Texture3D;
bump_texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR);
bump_texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR);
bump_texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP);
bump_texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP);
bump_texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP);
bump_texture3D->setImage(normalmap_3d.get());
bump_texture3D->setInternalFormatMode(internalFormatMode);
stateset->setTextureAttributeAndModes(0,bump_texture3D,osg::StateAttribute::ON);
osg::TexEnvCombine* tec = new osg::TexEnvCombine;
tec->setConstantColorAsLightDirection(lightDirection);
tec->setCombine_RGB(osg::TexEnvCombine::DOT3_RGB);
tec->setSource0_RGB(osg::TexEnvCombine::CONSTANT);
tec->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
tec->setSource1_RGB(osg::TexEnvCombine::TEXTURE);
tec->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
tec->setCombine_Alpha(osg::TexEnvCombine::REPLACE);
tec->setSource0_Alpha(osg::TexEnvCombine::PRIMARY_COLOR);
tec->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA);
tec->setSource1_Alpha(osg::TexEnvCombine::TEXTURE);
tec->setOperand1_Alpha(osg::TexEnvCombine::SRC_ALPHA);
stateset->setTextureAttributeAndModes(0, tec, osg::StateAttribute::OVERRIDE|osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_S,osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_T,osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_R,osg::StateAttribute::ON);
// set up color texture
osg::Texture3D* texture3D = new osg::Texture3D;
texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR);
texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR);
texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP);
texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP);
texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP);
if (image_3d->getPixelFormat()==GL_ALPHA ||
image_3d->getPixelFormat()==GL_LUMINANCE)
{
texture3D->setInternalFormatMode(osg::Texture3D::USE_USER_DEFINED_FORMAT);
texture3D->setInternalFormat(GL_INTENSITY);
}
else
{
texture3D->setInternalFormatMode(internalFormatMode);
}
texture3D->setImage(image_3d.get());
stateset->setTextureAttributeAndModes(1,texture3D,osg::StateAttribute::ON);
stateset->setTextureMode(1,GL_TEXTURE_GEN_S,osg::StateAttribute::ON);
stateset->setTextureMode(1,GL_TEXTURE_GEN_T,osg::StateAttribute::ON);
stateset->setTextureMode(1,GL_TEXTURE_GEN_R,osg::StateAttribute::ON);
stateset->setTextureAttributeAndModes(1,new osg::TexEnv(),osg::StateAttribute::ON);
}
else
{
osg::ref_ptr<osg::Image> normalmap_3d = createNormalMapTexture(image_3d.get());
osg::Texture3D* bump_texture3D = new osg::Texture3D;
bump_texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR);
bump_texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR);
bump_texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP);
bump_texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP);
bump_texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP);
bump_texture3D->setImage(normalmap_3d.get());
bump_texture3D->setInternalFormatMode(internalFormatMode);
stateset->setTextureAttributeAndModes(0,bump_texture3D,osg::StateAttribute::ON);
osg::TexEnvCombine* tec = new osg::TexEnvCombine;
tec->setConstantColorAsLightDirection(lightDirection);
tec->setCombine_RGB(osg::TexEnvCombine::DOT3_RGB);
tec->setSource0_RGB(osg::TexEnvCombine::CONSTANT);
tec->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
tec->setSource1_RGB(osg::TexEnvCombine::TEXTURE);
tec->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
tec->setCombine_Alpha(osg::TexEnvCombine::MODULATE);
tec->setSource0_Alpha(osg::TexEnvCombine::PRIMARY_COLOR);
tec->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA);
tec->setSource1_Alpha(osg::TexEnvCombine::TEXTURE);
tec->setOperand1_Alpha(osg::TexEnvCombine::SRC_ALPHA);
stateset->setTextureAttributeAndModes(0, tec, osg::StateAttribute::OVERRIDE|osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_S,osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_T,osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_R,osg::StateAttribute::ON);
image_3d = normalmap_3d;
}
}
else
{
// set up the 3d texture itself,
// note, well set the filtering up so that mip mapping is disabled,
// gluBuild3DMipsmaps doesn't do a very good job of handled the
// inbalanced dimensions of the 256x256x4 texture.
osg::Texture3D* texture3D = new osg::Texture3D;
texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR);
texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR);
texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP);
texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP);
texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP);
if (image_3d->getPixelFormat()==GL_ALPHA ||
image_3d->getPixelFormat()==GL_LUMINANCE)
{
texture3D->setInternalFormatMode(osg::Texture3D::USE_USER_DEFINED_FORMAT);
texture3D->setInternalFormat(GL_INTENSITY);
}
else
{
texture3D->setInternalFormatMode(internalFormatMode);
}
texture3D->setImage(image_3d.get());
stateset->setTextureAttributeAndModes(0,texture3D,osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_S,osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_T,osg::StateAttribute::ON);
stateset->setTextureMode(0,GL_TEXTURE_GEN_R,osg::StateAttribute::ON);
stateset->setTextureAttributeAndModes(0,new osg::TexEnv(),osg::StateAttribute::ON);
}
return group;
}
struct FindRangeOperator
{
FindRangeOperator():
_rmin(FLT_MAX),
_rmax(-FLT_MAX),
_gmin(FLT_MAX),
_gmax(-FLT_MAX),
_bmin(FLT_MAX),
_bmax(-FLT_MAX),
_amin(FLT_MAX),
_amax(-FLT_MAX) {}
mutable float _rmin, _rmax, _gmin, _gmax, _bmin, _bmax, _amin, _amax;
inline void luminance(float l) const { rgb(l,l,l); }
inline void alpha(float a) const { _amin = osg::minimum(a,_amin); _amax = osg::maximum(a,_amax); }
inline void luminance_alpha(float l,float a) const { rgb(l,l,l); alpha(a); }
inline void rgb(float r,float g,float b) const { _rmin = osg::minimum(r,_rmin); _rmax = osg::maximum(r,_rmax); _gmin = osg::minimum(g,_gmin); _gmax = osg::maximum(g,_gmax); _bmin = osg::minimum(b,_bmin); _bmax = osg::maximum(b,_bmax); }
inline void rgba(float r,float g,float b,float a) const { rgb(r,g,b); alpha(a); }
};
struct ScaleOperator
{
ScaleOperator():_scale(1.0f) {}
ScaleOperator(float scale):_scale(scale) {}
ScaleOperator(const ScaleOperator& so):_scale(so._scale) {}
ScaleOperator& operator = (const ScaleOperator& so) { _scale = so._scale; return *this; }
float _scale;
inline void luminance(float& l) const { l*= _scale; }
inline void alpha(float& a) const { a*= _scale; }
inline void luminance_alpha(float& l,float& a) const { l*= _scale; a*= _scale; }
inline void rgb(float& r,float& g,float& b) const { r*= _scale; g*=_scale; b*=_scale; }
inline void rgba(float& r,float& g,float& b,float& a) const { r*= _scale; g*=_scale; b*=_scale; a*=_scale; }
};
struct RecordRowOperator
{
RecordRowOperator(unsigned int num):_colours(num),_pos(0) {}
mutable std::vector<osg::Vec4> _colours;
mutable unsigned int _pos;
inline void luminance(float l) const { rgba(l,l,l,1.0f); }
inline void alpha(float a) const { rgba(1.0f,1.0f,1.0f,a); }
inline void luminance_alpha(float l,float a) const { rgba(l,l,l,a); }
inline void rgb(float r,float g,float b) const { rgba(r,g,b,1.0f); }
inline void rgba(float r,float g,float b,float a) const { _colours[_pos++].set(r,g,b,a); }
};
struct WriteRowOperator
{
WriteRowOperator():_pos(0) {}
WriteRowOperator(unsigned int num):_colours(num),_pos(0) {}
std::vector<osg::Vec4> _colours;
mutable unsigned int _pos;
inline void luminance(float& l) const { l = _colours[_pos++].r(); }
inline void alpha(float& a) const { a = _colours[_pos++].a(); }
inline void luminance_alpha(float& l,float& a) const { l = _colours[_pos].r(); a = _colours[_pos++].a(); }
inline void rgb(float& r,float& g,float& b) const { r = _colours[_pos].r(); g = _colours[_pos].g(); b = _colours[_pos].b(); }
inline void rgba(float& r,float& g,float& b,float& a) const { r = _colours[_pos].r(); g = _colours[_pos].g(); b = _colours[_pos].b(); a = _colours[_pos++].a(); }
};
osg::Image* readRaw(int sizeX, int sizeY, int sizeZ, int numberBytesPerComponent, int numberOfComponents, const std::string& endian, const std::string& raw_filename)
{
std::ifstream fin(raw_filename.c_str(), std::ifstream::binary);
if (!fin) return 0;
GLenum pixelFormat;
switch(numberOfComponents)
{
case 1 : pixelFormat = GL_LUMINANCE; break;
case 2 : pixelFormat = GL_LUMINANCE_ALPHA; break;
case 3 : pixelFormat = GL_RGB; break;
case 4 : pixelFormat = GL_RGBA; break;
default :
osg::notify(osg::NOTICE)<<"Error: numberOfComponents="<<numberOfComponents<<" not supported, only 1,2,3 or 4 are supported."<<std::endl;
return 0;
}
GLenum dataType;
switch(numberBytesPerComponent)
{
case 1 : dataType = GL_UNSIGNED_BYTE; break;
case 2 : dataType = GL_UNSIGNED_SHORT; break;
case 4 : dataType = GL_UNSIGNED_INT; break;
default :
osg::notify(osg::NOTICE)<<"Error: numberBytesPerComponent="<<numberBytesPerComponent<<" not supported, only 1,2 or 4 are supported."<<std::endl;
return 0;
}
int s_maximumTextureSize=256, t_maximumTextureSize=256, r_maximumTextureSize=256;
int sizeS = sizeX;
int sizeT = sizeY;
int sizeR = sizeZ;
clampToNearestValidPowerOfTwo(sizeS, sizeT, sizeR, s_maximumTextureSize, t_maximumTextureSize, r_maximumTextureSize);
osg::ref_ptr<osg::Image> image = new osg::Image;
image->allocateImage(sizeS, sizeT, sizeR, pixelFormat, dataType);
bool endianSwap = (osg::getCpuByteOrder()==osg::BigEndian) ? (endian!="big") : (endian=="big");
unsigned int r_offset = (sizeZ<sizeR) ? sizeR/2 - sizeZ/2 : 0;
int offset = endianSwap ? numberBytesPerComponent : 0;
int delta = endianSwap ? -1 : 1;
for(int r=0;r<sizeZ;++r)
{
for(int t=0;t<sizeY;++t)
{
char* data = (char*) image->data(0,t,r+r_offset);
for(int s=0;s<sizeX;++s)
{
if (!fin) return 0;
for(int c=0;c<numberOfComponents;++c)
{
char* ptr = data+offset;
for(int b=0;b<numberBytesPerComponent;++b)
{
fin.read((char*)ptr, 1);
ptr += delta;
}
data += numberBytesPerComponent;
}
}
}
}
// normalise texture
{
// compute range of values
FindRangeOperator rangeOp;
readImage(image.get(), rangeOp);
modifyImage(image.get(),ScaleOperator(1.0f/rangeOp._rmax));
}
fin.close();
if (dataType!=GL_UNSIGNED_BYTE)
{
// need to convert to ubyte
osg::ref_ptr<osg::Image> new_image = new osg::Image;
new_image->allocateImage(sizeS, sizeT, sizeR, pixelFormat, GL_UNSIGNED_BYTE);
RecordRowOperator readOp(sizeS);
WriteRowOperator writeOp;
for(int r=0;r<sizeR;++r)
{
for(int t=0;t<sizeT;++t)
{
// reset the indices to begining
readOp._pos = 0;
writeOp._pos = 0;
// read the pixels into readOp's _colour array
readRow(sizeS, pixelFormat, dataType, image->data(0,t,r), readOp);
// pass readOp's _colour array contents over to writeOp (note this is just a pointer swap).
writeOp._colours.swap(readOp._colours);
modifyRow(sizeS, pixelFormat, GL_UNSIGNED_BYTE, new_image->data(0,t,r), writeOp);
// return readOp's _colour array contents back to its rightful owner.
writeOp._colours.swap(readOp._colours);
}
}
image = new_image;
}
return image.release();
}
enum ColourSpaceOperation
{
NO_COLOUR_SPACE_OPERATION,
MODULATE_ALPHA_BY_LUMINANCE,
MODULATE_ALPHA_BY_COLOUR,
REPLACE_ALPHA_WITH_LUMINACE
};
struct ModulateAlphaByLuminanceOperator
{
ModulateAlphaByLuminanceOperator() {}
inline void luminance(float&) const {}
inline void alpha(float&) const {}
inline void luminance_alpha(float& l,float& a) const { a*= l; }
inline void rgb(float&,float&,float&) const {}
inline void rgba(float& r,float& g,float& b,float& a) const { float l = (r+g+b)*0.3333333; a *= l;}
};
struct ModulateAlphaByColourOperator
{
ModulateAlphaByColourOperator(const osg::Vec4& colour):_colour(colour) { _lum = _colour.length(); }
osg::Vec4 _colour;
float _lum;
inline void luminance(float&) const {}
inline void alpha(float&) const {}
inline void luminance_alpha(float& l,float& a) const { a*= l*_lum; }
inline void rgb(float&,float&,float&) const {}
inline void rgba(float& r,float& g,float& b,float& a) const { a = (r*_colour.r()+g*_colour.g()+b*_colour.b()+a*_colour.a()); }
};
struct ReplaceAlphaWithLuminanceOperator
{
ReplaceAlphaWithLuminanceOperator() {}
inline void luminance(float&) const {}
inline void alpha(float&) const {}
inline void luminance_alpha(float& l,float& a) const { a= l; }
inline void rgb(float&,float&,float&) const { }
inline void rgba(float& r,float& g,float& b,float& a) const { float l = (r+g+b)*0.3333333; a = l; }
};
void doColourSpaceConversion(ColourSpaceOperation op, osg::Image* image, osg::Vec4& colour)
{
switch(op)
{
case (MODULATE_ALPHA_BY_LUMINANCE):
std::cout<<"doing conversion MODULATE_ALPHA_BY_LUMINANCE"<<std::endl;
modifyImage(image,ModulateAlphaByLuminanceOperator());
break;
case (MODULATE_ALPHA_BY_COLOUR):
std::cout<<"doing conversion MODULATE_ALPHA_BY_COLOUR"<<std::endl;
modifyImage(image,ModulateAlphaByColourOperator(colour));
break;
case (REPLACE_ALPHA_WITH_LUMINACE):
std::cout<<"doing conversion REPLACE_ALPHA_WITH_LUMINACE"<<std::endl;
modifyImage(image,ReplaceAlphaWithLuminanceOperator());
break;
default:
break;
}
}
int main( int argc, char **argv )
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// set up the usage document, in case we need to print out how to use this program.
arguments.getApplicationUsage()->setDescription(arguments.getApplicationName()+" is the example which demonstrates use of 3D textures.");
arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] filename ...");
arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information");
arguments.getApplicationUsage()->addCommandLineOption("-n","Create normal map for per voxel lighting.");
arguments.getApplicationUsage()->addCommandLineOption("-s <numSlices>","Number of slices to create.");
arguments.getApplicationUsage()->addCommandLineOption("--images [filenames]","Specify a stack of 2d images to build the 3d volume from.");
arguments.getApplicationUsage()->addCommandLineOption("--shader","Use OpenGL Shading Language.");
arguments.getApplicationUsage()->addCommandLineOption("--xSize <size>","Relative width of rendered brick.");
arguments.getApplicationUsage()->addCommandLineOption("--ySize <size>","Relative length of rendered brick.");
arguments.getApplicationUsage()->addCommandLineOption("--zSize <size>","Relative height of rendered brick.");
arguments.getApplicationUsage()->addCommandLineOption("--xMultiplier <multiplier>","Tex coord x mulitplier.");
arguments.getApplicationUsage()->addCommandLineOption("--yMultiplier <multiplier>","Tex coord y mulitplier.");
arguments.getApplicationUsage()->addCommandLineOption("--zMultiplier <multiplier>","Tex coord z mulitplier.");
arguments.getApplicationUsage()->addCommandLineOption("--clip <ratio>","clip volume as a ratio, 0.0 clip all, 1.0 clip none.");
arguments.getApplicationUsage()->addCommandLineOption("--maxTextureSize <size>","Set the texture maximum resolution in the s,t,r (x,y,z) dimensions.");
arguments.getApplicationUsage()->addCommandLineOption("--s_maxTextureSize <size>","Set the texture maximum resolution in the s (x) dimension.");
arguments.getApplicationUsage()->addCommandLineOption("--t_maxTextureSize <size>","Set the texture maximum resolution in the t (y) dimension.");
arguments.getApplicationUsage()->addCommandLineOption("--r_maxTextureSize <size>","Set the texture maximum resolution in the r (z) dimension.");
arguments.getApplicationUsage()->addCommandLineOption("--compressed","Enable the usage of compressed textures.");
arguments.getApplicationUsage()->addCommandLineOption("--compressed-arb","Enable the usage of OpenGL ARB compressed textures.");
arguments.getApplicationUsage()->addCommandLineOption("--compressed-dxt1","Enable the usage of S3TC DXT1 compressed textures.");
arguments.getApplicationUsage()->addCommandLineOption("--compressed-dxt3","Enable the usage of S3TC DXT3 compressed textures.");
arguments.getApplicationUsage()->addCommandLineOption("--compressed-dxt5","Enable the usage of S3TC DXT5 compressed textures.");
arguments.getApplicationUsage()->addCommandLineOption("--modulate-alpha-by-luminance","For each pixel multiple the alpha value by the luminance.");
arguments.getApplicationUsage()->addCommandLineOption("--replace-alpha-with-luminance","For each pixel mSet the alpha value to the luminance.");
arguments.getApplicationUsage()->addCommandLineOption("--num-components <num>","Set the number of components to in he target image.");
// arguments.getApplicationUsage()->addCommandLineOption("--raw <sizeX> <sizeY> <sizeZ> <numberBytesPerComponent> <numberOfComponents> <endian> <filename>","read a raw image data");
// construct the viewer.
osgProducer::Viewer viewer(arguments);
// set up the value with sensible default event handlers.
viewer.setUpViewer(osgProducer::Viewer::STANDARD_SETTINGS);
// get details on keyboard and mouse bindings used by the viewer.
viewer.getUsage(*arguments.getApplicationUsage());
// if user request help write it out to cout.
if (arguments.read("-h") || arguments.read("--help"))
{
arguments.getApplicationUsage()->write(std::cout);
return 1;
}
std::string outputFile;
while (arguments.read("-o",outputFile)) {}
unsigned int numSlices=500;
while (arguments.read("-s",numSlices)) {}
float sliceEnd=1.0f;
while (arguments.read("--clip",sliceEnd)) {}
float alphaFunc=0.02f;
while (arguments.read("--alphaFunc",alphaFunc)) {}
bool createNormalMap = false;
while (arguments.read("-n")) createNormalMap=true;
float xSize=1.0f, ySize=1.0f, zSize=1.0f;
while (arguments.read("--xSize",xSize)) {}
while (arguments.read("--ySize",ySize)) {}
while (arguments.read("--zSize",zSize)) {}
float xMultiplier=1.0f, yMultiplier=1.0f, zMultiplier=1.0f;
while (arguments.read("--xMultiplier",xMultiplier)) {}
while (arguments.read("--yMultiplier",yMultiplier)) {}
while (arguments.read("--zMultiplier",zMultiplier)) {}
int s_maximumTextureSize = 256;
int t_maximumTextureSize = 256;
int r_maximumTextureSize = 256;
int maximumTextureSize = 256;
while(arguments.read("--maxTextureSize",maximumTextureSize))
{
s_maximumTextureSize = maximumTextureSize;
t_maximumTextureSize = maximumTextureSize;
r_maximumTextureSize = maximumTextureSize;
}
while(arguments.read("--s_maxTextureSize",s_maximumTextureSize)) {}
while(arguments.read("--t_maxTextureSize",t_maximumTextureSize)) {}
while(arguments.read("--r_maxTextureSize",r_maximumTextureSize)) {}
osg::Texture::InternalFormatMode internalFormatMode = osg::Texture::USE_IMAGE_DATA_FORMAT;
while(arguments.read("--compressed") || arguments.read("--compressed-arb")) { internalFormatMode = osg::Texture::USE_ARB_COMPRESSION; }
while(arguments.read("--compressed-dxt1")) { internalFormatMode = osg::Texture::USE_S3TC_DXT1_COMPRESSION; }
while(arguments.read("--compressed-dxt3")) { internalFormatMode = osg::Texture::USE_S3TC_DXT3_COMPRESSION; }
while(arguments.read("--compressed-dxt5")) { internalFormatMode = osg::Texture::USE_S3TC_DXT5_COMPRESSION; }
// set up colour space operation.
ColourSpaceOperation colourSpaceOperation = NO_COLOUR_SPACE_OPERATION;
osg::Vec4 colourModulate(0.25f,0.25f,0.25f,0.25f);
while(arguments.read("--modulate-alpha-by-luminance")) { colourSpaceOperation = MODULATE_ALPHA_BY_LUMINANCE; }
while(arguments.read("--modulate-alpha-by-colour", colourModulate.x(),colourModulate.y(),colourModulate.z(),colourModulate.w() )) { colourSpaceOperation = MODULATE_ALPHA_BY_COLOUR; }
while(arguments.read("--replace-alpha-with-luminance")) { colourSpaceOperation = REPLACE_ALPHA_WITH_LUMINACE; }
unsigned int numComponentsDesired = 0;
while(arguments.read("--num-components", numComponentsDesired)) {}
bool useShader = false;
while(arguments.read("--shader")) { useShader = true; }
osg::ref_ptr<osg::Image> image_3d;
int sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents;
std::string endian, raw_filename;
while (arguments.read("--raw", sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents, endian, raw_filename))
{
image_3d = readRaw(sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents, endian, raw_filename);
}
while (arguments.read("--images"))
{
ImageList imageList;
for(int pos=1;pos<arguments.argc() && !arguments.isOption(pos);++pos)
{
// not an option so assume string is a filename.
osg::Image *image = osgDB::readImageFile( arguments[pos]);
if(image)
{
imageList.push_back(image);
}
}
// pack the textures into a single texture.
ProcessRow processRow;
image_3d = createTexture3D(imageList, processRow, numComponentsDesired, s_maximumTextureSize, t_maximumTextureSize, r_maximumTextureSize);
}
// any option left unread are converted into errors to write out later.
arguments.reportRemainingOptionsAsUnrecognized();
// report any errors if they have occured when parsing the program aguments.
if (arguments.errors())
{
arguments.writeErrorMessages(std::cout);
return 1;
}
// assume remaining argments are file names of textures.
for(int pos=1;pos<arguments.argc() && !image_3d;++pos)
{
if (!arguments.isOption(pos))
{
// not an option so assume string is a filename.
image_3d = osgDB::readImageFile( arguments[pos]);
}
}
if (!image_3d) return 0;
if (colourSpaceOperation!=NO_COLOUR_SPACE_OPERATION)
{
doColourSpaceConversion(colourSpaceOperation, image_3d.get(), colourModulate);
}
osg::ref_ptr<osg::Image> normalmap_3d = createNormalMap ? createNormalMapTexture(image_3d.get()) : 0;
// create a model from the images.
osg::Node* rootNode = 0;
if (useShader)
{
rootNode = createShaderModel(image_3d, normalmap_3d,
internalFormatMode,
xSize, ySize, zSize,
xMultiplier, yMultiplier, zMultiplier,
numSlices, sliceEnd, alphaFunc);
}
else
{
rootNode = createModel(image_3d, normalmap_3d,
internalFormatMode,
xSize, ySize, zSize,
xMultiplier, yMultiplier, zMultiplier,
numSlices, sliceEnd, alphaFunc);
}
if (!outputFile.empty())
{
std::string ext = osgDB::getFileExtension(outputFile);
std::string name_no_ext = osgDB::getNameLessExtension(outputFile);
if (ext=="osg")
{
if (image_3d.valid())
{
image_3d->setFileName(name_no_ext + ".dds");
osgDB::writeImageFile(*image_3d, image_3d->getFileName());
}
if (normalmap_3d.valid())
{
normalmap_3d->setFileName(name_no_ext + "_normalmap.dds");
osgDB::writeImageFile(*normalmap_3d, normalmap_3d->getFileName());
}
osgDB::writeNodeFile(*rootNode, outputFile);
}
else if (ext=="ive")
{
osgDB::writeNodeFile(*rootNode, outputFile);
}
else if (ext=="dds")
{
osgDB::writeImageFile(*image_3d, outputFile);
}
else
{
std::cout<<"Extension not support for file output, not file written."<<std::endl;
}
return 0;
}
if (rootNode)
{
// set the scene to render
viewer.setSceneData(rootNode);
// create the windows and run the threads.
viewer.realize();
while( !viewer.done() )
{
// wait for all cull and draw threads to complete.
viewer.sync();
// update the scene by traversing it with the the update visitor which will
// call all node update callbacks and animations.
viewer.update();
// fire off the cull and draw traversals of the scene.
viewer.frame();
}
// wait for all cull and draw threads to complete before exit.
viewer.sync();
}
return 0;
}