OpenSceneGraph/include/osg/Quat
2001-10-01 11:15:55 +00:00

239 lines
6.8 KiB
Plaintext

#ifndef OSG_QUAT
#define OSG_QUAT 1
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Matrix>
namespace osg {
/** A quaternion class. It can be used to represent an orientation in 3D space.*/
class SG_EXPORT Quat
{
public:
/* ----------------------------------------------------------
DATA MEMBERS
The only data member is a
Vec4 which holds the elements
In other words, osg:Quat is composed of an osg::Vec4
The osg::Quat aggregates an osg::Vec4
These seem to be different jargon for the same thing :-)
---------------------------------------------------------- */
Vec4 _fv; // a four-vector
Quat() {}
Quat( float x, float y, float z, float w ): _fv(x,y,z,w) {}
Quat( const Vec4& v ): _fv(v) {}
/* ----------------------------------
Methods to access data members
---------------------------------- */
inline Vec4& asVec4()
{
return _fv;
}
inline const Vec4& asVec4() const
{
return _fv;
}
inline const Vec3 asVec3() const
{
return Vec3(_fv[0], _fv[1], _fv[2]);
}
inline void set(const float x, const float y, const float z, const float w)
{
_fv.set(x,y,z,w);
}
inline void set(const osg::Vec4& v)
{
_fv = v;
}
/* -------------------------------------------------------------
BASIC ARITHMETIC METHODS
Implemented in terms of Vec4s. Some Vec4 operators, e.g.
operator* are not appropriate for quaternions (as
mathematical objects) so they are implemented differently.
Also define methods for conjugate and the multiplicative inverse.
------------------------------------------------------------- */
/// Multiply by scalar
inline const Quat operator * (const float& rhs) const
{
return Quat(_fv*rhs);
}
/// Unary multiply by scalar
inline Quat& operator *= (const float& rhs)
{
_fv*=rhs;
return *this; // enable nesting
}
/// Binary multiply
inline const Quat operator*(const Quat& rhs) const
{
return Quat( _fv[3]*rhs._fv[0] + _fv[0]*rhs._fv[3] + _fv[1]*rhs._fv[2] - _fv[2]*rhs._fv[1],
_fv[3]*rhs._fv[1] - _fv[0]*rhs._fv[2] + _fv[1]*rhs._fv[3] + _fv[2]*rhs._fv[0],
_fv[3]*rhs._fv[2] + _fv[0]*rhs._fv[1] - _fv[1]*rhs._fv[0] + _fv[2]*rhs._fv[3],
_fv[3]*rhs._fv[3] - _fv[0]*rhs._fv[0] - _fv[1]*rhs._fv[1] - _fv[2]*rhs._fv[2] );
}
/// Unary multiply
inline Quat& operator*=(const Quat& rhs)
{
float x = _fv[3]*rhs._fv[0] + _fv[0]*rhs._fv[3] + _fv[1]*rhs._fv[2] - _fv[2]*rhs._fv[1];
float y = _fv[3]*rhs._fv[1] - _fv[0]*rhs._fv[2] + _fv[1]*rhs._fv[3] + _fv[2]*rhs._fv[0];
float z = _fv[3]*rhs._fv[2] + _fv[0]*rhs._fv[1] - _fv[1]*rhs._fv[0] + _fv[2]*rhs._fv[3];
_fv[3] = _fv[3]*rhs._fv[3] - _fv[0]*rhs._fv[0] - _fv[1]*rhs._fv[1] - _fv[2]*rhs._fv[2];
_fv[2] = z;
_fv[1] = y;
_fv[0] = x;
return (*this); // enable nesting
}
/// Divide by scalar
inline const Quat operator / (const float& rhs) const
{
return Quat(_fv/rhs);
}
/// Unary divide by scalar
inline Quat& operator /= (const float& rhs)
{
_fv/=rhs;
return *this;
}
/// Binary divide
inline const Quat operator/(const Quat& denom) const
{
return ( (*this) * denom.inverse() );
}
/// Unary divide
inline Quat& operator/=(const Quat& denom)
{
(*this) = (*this) * denom.inverse();
return (*this); // enable nesting
}
/// Binary addition
inline const Quat operator + (const Quat& rhs) const
{
return Quat( _fv + rhs._fv );
}
/// Unary addition
inline Quat& operator += (const Quat& rhs)
{
_fv += rhs._fv;
return *this; // enable nesting
}
/// Binary subtraction
inline const Quat operator - (const Quat& rhs) const
{
return Quat( _fv - rhs._fv );
}
/// Unary subtraction
inline Quat& operator -= (const Quat& rhs)
{
_fv-=rhs._fv;
return *this; // enable nesting
}
/** Negation operator - returns the negative of the quaternion.
Basically just calls operator - () on the Vec4 */
inline const Quat operator - () const
{
return Quat ( -_fv );
}
/// Length of the quaternion = sqrt( vec . vec )
const float length() const
{
return _fv.length();
}
/// Length of the quaternion = vec . vec
const float length2() const
{
return _fv.length2();
}
/// Conjugate
inline const Quat conj () const
{
return Quat( -_fv[0], -_fv[1], -_fv[2], _fv[3] );
}
/// Multiplicative inverse method: q^(-1) = q^*/(q.q^*)
inline const Quat inverse () const
{
return conj() / length2();
}
/* --------------------------------------------------------
METHODS RELATED TO ROTATIONS
Set a quaternion which will perform a rotation of an
angle around the axis given by the vector (x,y,z).
Should be written to also accept an angle and a Vec3?
Define Spherical Linear interpolation method also
Not inlined - see the Quat.cpp file for implementation
-------------------------------------------------------- */
void makeRot ( const float angle,
const float x, const float y, const float z );
void makeRot ( const float angle, const Vec3& vec );
/** Make a rotation Quat which will rotate vec1 to vec2.
Generally take adot product to get the angle between these
and then use a cross product to get the rotation axis
Watch out for the two special cases of when the vectors
are co-incident or opposite in direction.*/
void makeRot( const Vec3& vec1, const Vec3& vec2 );
/** Return the angle and vector components represented by the quaternion.*/
void getRot ( float& angle, float& x, float& y, float& z ) const;
/** Return the angle and vector represented by the quaternion.*/
void getRot ( float& angle, Vec3& vec ) const;
/** Spherical Linear Interpolation.
As t goes from 0 to 1, the Quat object goes from "from" to "to". */
void slerp ( const float t, const Quat& from, const Quat& to);
/** Set quaternion to be equivalent to specified matrix.*/
void set( const osg::Matrix& m );
/** Get the equivalent matrix for this quaternion.*/
void get( osg::Matrix& m ) const;
friend inline ostream& operator << (ostream& output, const Quat& vec);
}; // end of class prototype
inline ostream& operator << (ostream& output, const Quat& vec)
{
output << vec._fv[0] << " "
<< vec._fv[1] << " "
<< vec._fv[2] << " "
<< vec._fv[3];
return output; // to enable cascading
}
}; // end of namespace
#endif