OpenSceneGraph/include/osg/Matrixd
Robert Osfield 33b03f7ac3 Updated docs for release.
Added OSG_USE_DOUBLE_MARTRICES define into include/osg/Matrix to make it more
convinient to switch between single and double matrices.
2003-09-09 08:56:51 +00:00

474 lines
17 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_MATRIXD
#define OSG_MATRIXD 1
#include <osg/Object>
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Quat>
#include <string.h>
#include <iostream>
#include <algorithm>
namespace osg {
class Matrixf;
class SG_EXPORT Matrixd
{
public:
typedef double value_type;
inline Matrixd() { makeIdentity(); }
inline Matrixd( const Matrixd& mat) { set(mat.ptr()); }
Matrixd( const Matrixf& mat );
inline explicit Matrixd( float const * const ptr ) { set(ptr); }
inline explicit Matrixd( double const * const ptr ) { set(ptr); }
inline explicit Matrixd( const Quat& quat ) { set(quat); }
Matrixd( value_type a00, value_type a01, value_type a02, value_type a03,
value_type a10, value_type a11, value_type a12, value_type a13,
value_type a20, value_type a21, value_type a22, value_type a23,
value_type a30, value_type a31, value_type a32, value_type a33);
~Matrixd() {}
int compare(const Matrixd& m) const { return memcmp(_mat,m._mat,sizeof(_mat)); }
bool operator < (const Matrixd& m) const { return compare(m)<0; }
bool operator == (const Matrixd& m) const { return compare(m)==0; }
bool operator != (const Matrixd& m) const { return compare(m)!=0; }
inline value_type& operator()(int row, int col) { return _mat[row][col]; }
inline value_type operator()(int row, int col) const { return _mat[row][col]; }
inline bool valid() const { return !isNaN(); }
inline bool isNaN() const { return osg::isNaN(_mat[0][0]) || osg::isNaN(_mat[0][1]) || osg::isNaN(_mat[0][2]) || osg::isNaN(_mat[0][3]) ||
osg::isNaN(_mat[1][0]) || osg::isNaN(_mat[1][1]) || osg::isNaN(_mat[1][2]) || osg::isNaN(_mat[1][3]) ||
osg::isNaN(_mat[2][0]) || osg::isNaN(_mat[2][1]) || osg::isNaN(_mat[2][2]) || osg::isNaN(_mat[2][3]) ||
osg::isNaN(_mat[3][0]) || osg::isNaN(_mat[3][1]) || osg::isNaN(_mat[3][2]) || osg::isNaN(_mat[3][3]); }
inline Matrixd& operator = (const Matrixd& rhs)
{
if( &rhs == this ) return *this;
set(rhs.ptr());
return *this;
}
inline Matrixd& operator = (const Matrixf& other);
inline void set(const Matrixd& rhs) { set(rhs.ptr()); }
void set(const Matrixf& rhs);
inline void set(float const * const ptr)
{
value_type* local_ptr = (value_type*)_mat;
for(int i=0;i<16;++i) local_ptr[i]=(value_type)ptr[i];
}
inline void set(double const * const ptr)
{
value_type* local_ptr = (value_type*)_mat;
for(int i=0;i<16;++i) local_ptr[i]=(value_type)ptr[i];
}
void set( value_type a00, value_type a01, value_type a02, value_type a03,
value_type a10, value_type a11, value_type a12, value_type a13,
value_type a20, value_type a21, value_type a22, value_type a23,
value_type a30, value_type a31, value_type a32, value_type a33);
void set(const Quat& q);
void get(Quat& q) const;
value_type * ptr() { return (value_type*)_mat; }
const value_type * ptr() const { return (const value_type *)_mat; }
void makeIdentity();
void makeScale( const Vec3& );
void makeScale( value_type, value_type, value_type );
void makeTranslate( const Vec3& );
void makeTranslate( value_type, value_type, value_type );
void makeRotate( const Vec3& from, const Vec3& to );
void makeRotate( float angle, const Vec3& axis );
void makeRotate( float angle, float x, float y, float z );
void makeRotate( const Quat& );
void makeRotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3);
/** Set to a orthographic projection. See glOrtho for further details.*/
void makeOrtho(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Get the othorgraphic settings of the orthographic projection matrix.
* Note, if matrix is not an orthographic matrix then invalid values will be returned.*/
void getOrtho(double& left, double& right,
double& bottom, double& top,
double& zNear, double& zFar);
/** Set to a 2D orthographic projection. See glOrtho2D for further details.*/
inline void makeOrtho2D(double left, double right,
double bottom, double top)
{
makeOrtho(left,right,bottom,top,-1.0,1.0);
}
/** Set to a perspective projection. See glFrustum for further details.*/
void makeFrustum(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Get the frustum setting of a perspective projection matrix.
* Note, if matrix is not an perspective matrix then invalid values will be returned.*/
void getFrustum(double& left, double& right,
double& bottom, double& top,
double& zNear, double& zFar);
/** Set to a symmetrical perspective projection, See gluPerspective for further details.
* Aspect ratio is defined as width/height.*/
void makePerspective(double fovy,double aspectRatio,
double zNear, double zFar);
/** Set to the position and orientation modelview matrix, using the same convention as gluLookAt. */
void makeLookAt(const Vec3& eye,const Vec3& center,const Vec3& up);
/** Get to the position and orientation of a modelview matrix, using the same convention as gluLookAt. */
void getLookAt(Vec3& eye,Vec3& center,Vec3& up,float lookDistance=1.0f);
bool invert( const Matrixd& );
//basic utility functions to create new matrices
inline static Matrixd identity( void );
inline static Matrixd scale( const Vec3& sv);
inline static Matrixd scale( value_type sx, value_type sy, value_type sz);
inline static Matrixd translate( const Vec3& dv);
inline static Matrixd translate( value_type x, value_type y, value_type z);
inline static Matrixd rotate( const Vec3& from, const Vec3& to);
inline static Matrixd rotate( float angle, float x, float y, float z);
inline static Matrixd rotate( float angle, const Vec3& axis);
inline static Matrixd rotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3);
inline static Matrixd rotate( const Quat& quat);
inline static Matrixd inverse( const Matrixd& matrix);
/** Create a orthographic projection. See glOrtho for further details.*/
inline static Matrixd ortho(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Create a 2D orthographic projection. See glOrtho for further details.*/
inline static Matrixd ortho2D(double left, double right,
double bottom, double top);
/** Create a perspective projection. See glFrustum for further details.*/
inline static Matrixd frustum(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Create a symmetrical perspective projection, See gluPerspective for further details.
* Aspect ratio is defined as width/height.*/
inline static Matrixd perspective(double fovy,double aspectRatio,
double zNear, double zFar);
/** Create the position and orientation as per a camera, using the same convention as gluLookAt. */
inline static Matrixd lookAt(const Vec3& eye,const Vec3& center,const Vec3& up);
inline Vec3 preMult( const Vec3& v ) const;
inline Vec3 postMult( const Vec3& v ) const;
inline Vec3 operator* ( const Vec3& v ) const;
inline Vec4 preMult( const Vec4& v ) const;
inline Vec4 postMult( const Vec4& v ) const;
inline Vec4 operator* ( const Vec4& v ) const;
void setTrans( value_type tx, value_type ty, value_type tz );
void setTrans( const Vec3& v );
inline Vec3 getTrans() const { return Vec3(_mat[3][0],_mat[3][1],_mat[3][2]); }
inline Vec3 getScale() const { return Vec3(_mat[0][0],_mat[1][1],_mat[2][2]); }
/** apply apply an 3x3 transform of v*M[0..2,0..2] */
inline static Vec3 transform3x3(const Vec3& v,const Matrixd& m);
/** apply apply an 3x3 transform of M[0..2,0..2]*v */
inline static Vec3 transform3x3(const Matrixd& m,const Vec3& v);
// basic Matrixd multiplication, our workhorse methods.
void mult( const Matrixd&, const Matrixd& );
void preMult( const Matrixd& );
void postMult( const Matrixd& );
inline void operator *= ( const Matrixd& other )
{ if( this == &other ) {
Matrixd temp(other);
postMult( temp );
}
else postMult( other );
}
inline Matrixd operator * ( const Matrixd &m ) const
{
osg::Matrixd r;
r.mult(*this,m);
return r;
}
protected:
value_type _mat[4][4];
};
class RefMatrixd : public Object, public Matrixd
{
public:
RefMatrixd():Matrixd() {}
RefMatrixd( const Matrixd& other) : Matrixd(other) {}
RefMatrixd( const Matrixf& other) : Matrixd(other) {}
RefMatrixd( const RefMatrixd& other) : Object(other), Matrixd(other) {}
explicit RefMatrixd( Matrixd::value_type const * const def ):Matrixd(def) {}
RefMatrixd( Matrixd::value_type a00, Matrixd::value_type a01, Matrixd::value_type a02, Matrixd::value_type a03,
Matrixd::value_type a10, Matrixd::value_type a11, Matrixd::value_type a12, Matrixd::value_type a13,
Matrixd::value_type a20, Matrixd::value_type a21, Matrixd::value_type a22, Matrixd::value_type a23,
Matrixd::value_type a30, Matrixd::value_type a31, Matrixd::value_type a32, Matrixd::value_type a33):
Matrixd(a00, a01, a02, a03,
a10, a11, a12, a13,
a20, a21, a22, a23,
a30, a31, a32, a33) {}
virtual Object* cloneType() const { return new RefMatrixd(); }
virtual Object* clone(const CopyOp&) const { return new RefMatrixd(*this); }
virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast<const RefMatrixd*>(obj)!=NULL; }
virtual const char* libraryName() const { return "osg"; }
virtual const char* className() const { return "Matrix"; }
protected:
virtual ~RefMatrixd() {}
};
//static utility methods
inline Matrixd Matrixd::identity(void)
{
Matrixd m;
m.makeIdentity();
return m;
}
inline Matrixd Matrixd::scale(value_type sx, value_type sy, value_type sz)
{
Matrixd m;
m.makeScale(sx,sy,sz);
return m;
}
inline Matrixd Matrixd::scale(const Vec3& v )
{
return scale(v.x(), v.y(), v.z() );
}
inline Matrixd Matrixd::translate(value_type tx, value_type ty, value_type tz)
{
Matrixd m;
m.makeTranslate(tx,ty,tz);
return m;
}
inline Matrixd Matrixd::translate(const Vec3& v )
{
return translate(v.x(), v.y(), v.z() );
}
inline Matrixd Matrixd::rotate( const Quat& q )
{
return Matrixd(q);
}
inline Matrixd Matrixd::rotate(float angle, float x, float y, float z )
{
Matrixd m;
m.makeRotate(angle,x,y,z);
return m;
}
inline Matrixd Matrixd::rotate(float angle, const Vec3& axis )
{
Matrixd m;
m.makeRotate(angle,axis);
return m;
}
inline Matrixd Matrixd::rotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3)
{
Matrixd m;
m.makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
return m;
}
inline Matrixd Matrixd::rotate(const Vec3& from, const Vec3& to )
{
Matrixd m;
m.makeRotate(from,to);
return m;
}
inline Matrixd Matrixd::inverse( const Matrixd& matrix)
{
Matrixd m;
m.invert(matrix);
return m;
}
inline Matrixd Matrixd::ortho(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
Matrixd m;
m.makeOrtho(left,right,bottom,top,zNear,zFar);
return m;
}
inline Matrixd Matrixd::ortho2D(double left, double right,
double bottom, double top)
{
Matrixd m;
m.makeOrtho2D(left,right,bottom,top);
return m;
}
inline Matrixd Matrixd::frustum(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
Matrixd m;
m.makeFrustum(left,right,bottom,top,zNear,zFar);
return m;
}
inline Matrixd Matrixd::perspective(double fovy,double aspectRatio,
double zNear, double zFar)
{
Matrixd m;
m.makePerspective(fovy,aspectRatio,zNear,zFar);
return m;
}
inline Matrixd Matrixd::lookAt(const Vec3& eye,const Vec3& center,const Vec3& up)
{
Matrixd m;
m.makeLookAt(eye,center,up);
return m;
}
inline Vec3 Matrixd::postMult( const Vec3& v ) const
{
float d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
}
inline Vec3 Matrixd::preMult( const Vec3& v ) const
{
float d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
}
inline Vec4 Matrixd::postMult( const Vec4& v ) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
(_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
}
inline Vec4 Matrixd::preMult( const Vec4& v ) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0]*v.w()),
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1]*v.w()),
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2]*v.w()),
(_mat[0][3]*v.x() + _mat[1][3]*v.y() + _mat[2][3]*v.z() + _mat[3][3]*v.w()));
}
inline Vec3 Matrixd::transform3x3(const Vec3& v,const Matrixd& m)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
}
inline Vec3 Matrixd::transform3x3(const Matrixd& m,const Vec3& v)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
(m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
(m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
}
inline Vec3 operator* (const Vec3& v, const Matrixd& m )
{
return m.preMult(v);
}
inline Vec4 operator* (const Vec4& v, const Matrixd& m )
{
return m.preMult(v);
}
inline Vec3 Matrixd::operator* (const Vec3& v) const
{
return postMult(v);
}
inline Vec4 Matrixd::operator* (const Vec4& v) const
{
return postMult(v);
}
inline std::ostream& operator<< (std::ostream& os, const Matrixd& m )
{
os << "{"<<std::endl;
for(int row=0; row<4; ++row) {
os << "\t";
for(int col=0; col<4; ++col)
os << m(row,col) << " ";
os << std::endl;
}
os << "}" << std::endl;
return os;
}
} //namespace osg
#endif