OpenSceneGraph/examples/osgvolume/osgvolume.cpp

1238 lines
45 KiB
C++

/* OpenSceneGraph example, osgvolume.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <osg/Node>
#include <osg/Geometry>
#include <osg/Notify>
#include <osg/Texture3D>
#include <osg/Texture1D>
#include <osg/ImageSequence>
#include <osg/TexGen>
#include <osg/Geode>
#include <osg/Billboard>
#include <osg/PositionAttitudeTransform>
#include <osg/ClipNode>
#include <osg/AlphaFunc>
#include <osg/TexGenNode>
#include <osg/TexEnv>
#include <osg/TexEnvCombine>
#include <osg/Material>
#include <osg/PrimitiveSet>
#include <osg/Endian>
#include <osg/BlendFunc>
#include <osg/BlendEquation>
#include <osg/TransferFunction>
#include <osg/MatrixTransform>
#include <osgDB/Registry>
#include <osgDB/ReadFile>
#include <osgDB/WriteFile>
#include <osgDB/FileUtils>
#include <osgDB/FileNameUtils>
#include <osgGA/EventVisitor>
#include <osgGA/TrackballManipulator>
#include <osgGA/FlightManipulator>
#include <osgGA/KeySwitchMatrixManipulator>
#include <osgGA/StateSetManipulator>
#include <osgUtil/CullVisitor>
#include <osgViewer/Viewer>
#include <osgViewer/ViewerEventHandlers>
#include <osgManipulator/TabBoxDragger>
#include <osgManipulator/TabPlaneTrackballDragger>
#include <osgManipulator/TrackballDragger>
#include <osg/io_utils>
#include <algorithm>
#include <iostream>
#include <osg/ImageUtils>
#include <osgVolume/Volume>
#include <osgVolume/VolumeTile>
#include <osgVolume/RayTracedTechnique>
#include <osgVolume/FixedFunctionTechnique>
#include <osgVolume/MultipassTechnique>
#include <osgVolume/VolumeScene>
enum ShadingModel
{
Standard,
Light,
Isosurface,
MaximumIntensityProjection
};
osg::Image* createTexture3D(osg::ImageList& imageList,
unsigned int numComponentsDesired,
int s_maximumTextureSize,
int t_maximumTextureSize,
int r_maximumTextureSize,
bool resizeToPowerOfTwo)
{
if (numComponentsDesired==0)
{
return osg::createImage3DWithAlpha(imageList,
s_maximumTextureSize,
t_maximumTextureSize,
r_maximumTextureSize,
resizeToPowerOfTwo);
}
else
{
GLenum desiredPixelFormat = 0;
switch(numComponentsDesired)
{
case(1) : desiredPixelFormat = GL_LUMINANCE; break;
case(2) : desiredPixelFormat = GL_LUMINANCE_ALPHA; break;
case(3) : desiredPixelFormat = GL_RGB; break;
case(4) : desiredPixelFormat = GL_RGBA; break;
}
return osg::createImage3D(imageList,
desiredPixelFormat,
s_maximumTextureSize,
t_maximumTextureSize,
r_maximumTextureSize,
resizeToPowerOfTwo);
}
}
struct ScaleOperator
{
ScaleOperator():_scale(1.0f) {}
ScaleOperator(float scale):_scale(scale) {}
ScaleOperator(const ScaleOperator& so):_scale(so._scale) {}
ScaleOperator& operator = (const ScaleOperator& so) { _scale = so._scale; return *this; }
float _scale;
inline void luminance(float& l) const { l*= _scale; }
inline void alpha(float& a) const { a*= _scale; }
inline void luminance_alpha(float& l,float& a) const { l*= _scale; a*= _scale; }
inline void rgb(float& r,float& g,float& b) const { r*= _scale; g*=_scale; b*=_scale; }
inline void rgba(float& r,float& g,float& b,float& a) const { r*= _scale; g*=_scale; b*=_scale; a*=_scale; }
};
struct RecordRowOperator : public osg::CastAndScaleToFloatOperation
{
RecordRowOperator(unsigned int num):_colours(num),_pos(0) {}
mutable std::vector<osg::Vec4> _colours;
mutable unsigned int _pos;
inline void luminance(float l) const { rgba(l,l,l,1.0f); }
inline void alpha(float a) const { rgba(1.0f,1.0f,1.0f,a); }
inline void luminance_alpha(float l,float a) const { rgba(l,l,l,a); }
inline void rgb(float r,float g,float b) const { rgba(r,g,b,1.0f); }
inline void rgba(float r,float g,float b,float a) const { _colours[_pos++].set(r,g,b,a); }
};
struct WriteRowOperator
{
WriteRowOperator():_pos(0) {}
WriteRowOperator(unsigned int num):_colours(num),_pos(0) {}
std::vector<osg::Vec4> _colours;
mutable unsigned int _pos;
inline void luminance(float& l) const { l = _colours[_pos++].r(); }
inline void alpha(float& a) const { a = _colours[_pos++].a(); }
inline void luminance_alpha(float& l,float& a) const { l = _colours[_pos].r(); a = _colours[_pos++].a(); }
inline void rgb(float& r,float& g,float& b) const { r = _colours[_pos].r(); g = _colours[_pos].g(); b = _colours[_pos].b(); }
inline void rgba(float& r,float& g,float& b,float& a) const { r = _colours[_pos].r(); g = _colours[_pos].g(); b = _colours[_pos].b(); a = _colours[_pos++].a(); }
};
void clampToNearestValidPowerOfTwo(int& sizeX, int& sizeY, int& sizeZ, int s_maximumTextureSize, int t_maximumTextureSize, int r_maximumTextureSize)
{
// compute nearest powers of two for each axis.
int s_nearestPowerOfTwo = 1;
while(s_nearestPowerOfTwo<sizeX && s_nearestPowerOfTwo<s_maximumTextureSize) s_nearestPowerOfTwo*=2;
int t_nearestPowerOfTwo = 1;
while(t_nearestPowerOfTwo<sizeY && t_nearestPowerOfTwo<t_maximumTextureSize) t_nearestPowerOfTwo*=2;
int r_nearestPowerOfTwo = 1;
while(r_nearestPowerOfTwo<sizeZ && r_nearestPowerOfTwo<r_maximumTextureSize) r_nearestPowerOfTwo*=2;
sizeX = s_nearestPowerOfTwo;
sizeY = t_nearestPowerOfTwo;
sizeZ = r_nearestPowerOfTwo;
}
osg::Image* readRaw(int sizeX, int sizeY, int sizeZ, int numberBytesPerComponent, int numberOfComponents, const std::string& endian, const std::string& raw_filename)
{
osgDB::ifstream fin(raw_filename.c_str(), std::ifstream::binary);
if (!fin) return 0;
GLenum pixelFormat;
switch(numberOfComponents)
{
case 1 : pixelFormat = GL_LUMINANCE; break;
case 2 : pixelFormat = GL_LUMINANCE_ALPHA; break;
case 3 : pixelFormat = GL_RGB; break;
case 4 : pixelFormat = GL_RGBA; break;
default :
osg::notify(osg::NOTICE)<<"Error: numberOfComponents="<<numberOfComponents<<" not supported, only 1,2,3 or 4 are supported."<<std::endl;
return 0;
}
GLenum dataType;
switch(numberBytesPerComponent)
{
case 1 : dataType = GL_UNSIGNED_BYTE; break;
case 2 : dataType = GL_UNSIGNED_SHORT; break;
case 4 : dataType = GL_UNSIGNED_INT; break;
default :
osg::notify(osg::NOTICE)<<"Error: numberBytesPerComponent="<<numberBytesPerComponent<<" not supported, only 1,2 or 4 are supported."<<std::endl;
return 0;
}
int s_maximumTextureSize=256, t_maximumTextureSize=256, r_maximumTextureSize=256;
int sizeS = sizeX;
int sizeT = sizeY;
int sizeR = sizeZ;
clampToNearestValidPowerOfTwo(sizeS, sizeT, sizeR, s_maximumTextureSize, t_maximumTextureSize, r_maximumTextureSize);
osg::ref_ptr<osg::Image> image = new osg::Image;
image->allocateImage(sizeS, sizeT, sizeR, pixelFormat, dataType);
bool endianSwap = (osg::getCpuByteOrder()==osg::BigEndian) ? (endian!="big") : (endian=="big");
unsigned int r_offset = (sizeZ<sizeR) ? sizeR/2 - sizeZ/2 : 0;
int offset = endianSwap ? numberBytesPerComponent : 0;
int delta = endianSwap ? -1 : 1;
for(int r=0;r<sizeZ;++r)
{
for(int t=0;t<sizeY;++t)
{
char* data = (char*) image->data(0,t,r+r_offset);
for(int s=0;s<sizeX;++s)
{
if (!fin) return 0;
for(int c=0;c<numberOfComponents;++c)
{
char* ptr = data+offset;
for(int b=0;b<numberBytesPerComponent;++b)
{
fin.read((char*)ptr, 1);
ptr += delta;
}
data += numberBytesPerComponent;
}
}
}
}
// normalise texture
{
// compute range of values
osg::Vec4 minValue, maxValue;
osg::computeMinMax(image.get(), minValue, maxValue);
osg::modifyImage(image.get(),ScaleOperator(1.0f/maxValue.r()));
}
fin.close();
if (dataType!=GL_UNSIGNED_BYTE)
{
// need to convert to ubyte
osg::ref_ptr<osg::Image> new_image = new osg::Image;
new_image->allocateImage(sizeS, sizeT, sizeR, pixelFormat, GL_UNSIGNED_BYTE);
RecordRowOperator readOp(sizeS);
WriteRowOperator writeOp;
for(int r=0;r<sizeR;++r)
{
for(int t=0;t<sizeT;++t)
{
// reset the indices to beginning
readOp._pos = 0;
writeOp._pos = 0;
// read the pixels into readOp's _colour array
osg::readRow(sizeS, pixelFormat, dataType, image->data(0,t,r), readOp);
// pass readOp's _colour array contents over to writeOp (note this is just a pointer swap).
writeOp._colours.swap(readOp._colours);
osg::modifyRow(sizeS, pixelFormat, GL_UNSIGNED_BYTE, new_image->data(0,t,r), writeOp);
// return readOp's _colour array contents back to its rightful owner.
writeOp._colours.swap(readOp._colours);
}
}
image = new_image;
}
return image.release();
}
class TestSupportOperation: public osg::GraphicsOperation
{
public:
TestSupportOperation():
osg::Referenced(true),
osg::GraphicsOperation("TestSupportOperation",false),
supported(true),
errorMessage(),
maximumTextureSize(256) {}
virtual void operator () (osg::GraphicsContext* /*gc*/)
{
OpenThreads::ScopedLock<OpenThreads::Mutex> lock(mutex);
glGetIntegerv( GL_MAX_3D_TEXTURE_SIZE, &maximumTextureSize );
osg::notify(osg::NOTICE)<<"Max texture size="<<maximumTextureSize<<std::endl;
}
OpenThreads::Mutex mutex;
bool supported;
std::string errorMessage;
GLint maximumTextureSize;
};
class DraggerVolumeTileCallback : public osgManipulator::DraggerCallback
{
public:
DraggerVolumeTileCallback(osgVolume::VolumeTile* volume, osgVolume::Locator* locator):
_volume(volume),
_locator(locator) {}
virtual bool receive(const osgManipulator::MotionCommand& command);
osg::observer_ptr<osgVolume::VolumeTile> _volume;
osg::ref_ptr<osgVolume::Locator> _locator;
osg::Matrix _startMotionMatrix;
osg::Matrix _localToWorld;
osg::Matrix _worldToLocal;
};
bool DraggerVolumeTileCallback::receive(const osgManipulator::MotionCommand& command)
{
if (!_locator) return false;
switch (command.getStage())
{
case osgManipulator::MotionCommand::START:
{
// Save the current matrix
_startMotionMatrix = _locator->getTransform();
// Get the LocalToWorld and WorldToLocal matrix for this node.
osg::NodePath nodePathToRoot;
osgManipulator::computeNodePathToRoot(*_volume,nodePathToRoot);
_localToWorld = _startMotionMatrix * osg::computeLocalToWorld(nodePathToRoot);
_worldToLocal = osg::Matrix::inverse(_localToWorld);
return true;
}
case osgManipulator::MotionCommand::MOVE:
{
// Transform the command's motion matrix into local motion matrix.
osg::Matrix localMotionMatrix = _localToWorld * command.getWorldToLocal()
* command.getMotionMatrix()
* command.getLocalToWorld() * _worldToLocal;
// Transform by the localMotionMatrix
_locator->setTransform(localMotionMatrix * _startMotionMatrix);
// osg::notify(osg::NOTICE)<<"New locator matrix "<<_locator->getTransform()<<std::endl;
return true;
}
case osgManipulator::MotionCommand::FINISH:
{
return true;
}
case osgManipulator::MotionCommand::NONE:
default:
return false;
}
}
int main( int argc, char **argv )
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// set up the usage document, in case we need to print out how to use this program.
arguments.getApplicationUsage()->setDescription(arguments.getApplicationName()+" is the example which demonstrates use of 3D textures.");
arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] filename ...");
arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information");
arguments.getApplicationUsage()->addCommandLineOption("--images [filenames]","Specify a stack of 2d images to build the 3d volume from.");
arguments.getApplicationUsage()->addCommandLineOption("--shader","Use OpenGL Shading Language. (default)");
arguments.getApplicationUsage()->addCommandLineOption("--multi-pass","Use MultipassTechnique to render volumes.");
arguments.getApplicationUsage()->addCommandLineOption("--model","load 3D model and insert into the scene along with the volume.");
arguments.getApplicationUsage()->addCommandLineOption("--hull","load 3D hull that defines the extents of the region to volume render.");
arguments.getApplicationUsage()->addCommandLineOption("--no-shader","Disable use of OpenGL Shading Language.");
arguments.getApplicationUsage()->addCommandLineOption("--gpu-tf","Aply the transfer function on the GPU. (default)");
arguments.getApplicationUsage()->addCommandLineOption("--cpu-tf","Apply the transfer function on the CPU.");
arguments.getApplicationUsage()->addCommandLineOption("--mip","Use Maximum Intensity Projection (MIP) filtering.");
arguments.getApplicationUsage()->addCommandLineOption("--isosurface","Use Iso surface render.");
arguments.getApplicationUsage()->addCommandLineOption("--light","Use normals computed on the GPU to render a lit volume.");
arguments.getApplicationUsage()->addCommandLineOption("-n","Use normals computed on the GPU to render a lit volume.");
arguments.getApplicationUsage()->addCommandLineOption("--xSize <size>","Relative width of rendered brick.");
arguments.getApplicationUsage()->addCommandLineOption("--ySize <size>","Relative length of rendered brick.");
arguments.getApplicationUsage()->addCommandLineOption("--zSize <size>","Relative height of rendered brick.");
arguments.getApplicationUsage()->addCommandLineOption("--maxTextureSize <size>","Set the texture maximum resolution in the s,t,r (x,y,z) dimensions.");
arguments.getApplicationUsage()->addCommandLineOption("--s_maxTextureSize <size>","Set the texture maximum resolution in the s (x) dimension.");
arguments.getApplicationUsage()->addCommandLineOption("--t_maxTextureSize <size>","Set the texture maximum resolution in the t (y) dimension.");
arguments.getApplicationUsage()->addCommandLineOption("--r_maxTextureSize <size>","Set the texture maximum resolution in the r (z) dimension.");
arguments.getApplicationUsage()->addCommandLineOption("--modulate-alpha-by-luminance","For each pixel multiply the alpha value by the luminance.");
arguments.getApplicationUsage()->addCommandLineOption("--replace-alpha-with-luminance","For each pixel set the alpha value to the luminance.");
arguments.getApplicationUsage()->addCommandLineOption("--replace-rgb-with-luminance","For each rgb pixel convert to the luminance.");
arguments.getApplicationUsage()->addCommandLineOption("--num-components <num>","Set the number of components to in he target image.");
arguments.getApplicationUsage()->addCommandLineOption("--no-rescale","Disable the rescaling of the pixel data to 0.0 to 1.0 range");
arguments.getApplicationUsage()->addCommandLineOption("--rescale","Enable the rescale of the pixel data to 0.0 to 1.0 range (default).");
arguments.getApplicationUsage()->addCommandLineOption("--shift-min-to-zero","Shift the pixel data so min value is 0.0.");
arguments.getApplicationUsage()->addCommandLineOption("--sequence-length <num>","Set the length of time that a sequence of images with run for.");
arguments.getApplicationUsage()->addCommandLineOption("--sd <num>","Short hand for --sequence-length");
arguments.getApplicationUsage()->addCommandLineOption("--sdwm <num>","Set the SampleDensityWhenMovingProperty to specified value");
arguments.getApplicationUsage()->addCommandLineOption("--lod","Enable techniques to reduce the level of detail when moving.");
arguments.getApplicationUsage()->addCommandLineOption("--bg r g b a","Set the window background color(r,g,b,a) with each component the 0 to 1.0 range");
// arguments.getApplicationUsage()->addCommandLineOption("--raw <sizeX> <sizeY> <sizeZ> <numberBytesPerComponent> <numberOfComponents> <endian> <filename>","read a raw image data");
// construct the viewer.
osgViewer::Viewer viewer(arguments);
// add the window size toggle handler
viewer.addEventHandler(new osgViewer::WindowSizeHandler);
{
osg::ref_ptr<osgGA::KeySwitchMatrixManipulator> keyswitchManipulator = new osgGA::KeySwitchMatrixManipulator;
keyswitchManipulator->addMatrixManipulator( '1', "Trackball", new osgGA::TrackballManipulator() );
osgGA::FlightManipulator* flightManipulator = new osgGA::FlightManipulator();
flightManipulator->setYawControlMode(osgGA::FlightManipulator::NO_AUTOMATIC_YAW);
keyswitchManipulator->addMatrixManipulator( '2', "Flight", flightManipulator );
viewer.setCameraManipulator( keyswitchManipulator.get() );
}
// add the stats handler
viewer.addEventHandler(new osgViewer::StatsHandler);
// add stateset manipulator
viewer.addEventHandler(new osgGA::StateSetManipulator(viewer.getCamera()->getOrCreateStateSet()));
// if user request help write it out to cout.
if (arguments.read("-h") || arguments.read("--help"))
{
arguments.getApplicationUsage()->write(std::cout);
return 1;
}
std::string outputFile;
while (arguments.read("-o",outputFile)) {}
osg::Vec4 bgColor(0.0f,0.0f, 0.0f, 0.0f);
while(arguments.read("--bg", bgColor.r(), bgColor.g(), bgColor.b(), bgColor.a())) {}
viewer.getCamera()->setClearColor(bgColor);
osg::ref_ptr<osg::TransferFunction1D> transferFunction;
std::string tranferFunctionFile;
while (arguments.read("--tf",tranferFunctionFile))
{
transferFunction = osgDB::readRefFile<osg::TransferFunction1D>(tranferFunctionFile);
}
while(arguments.read("--test"))
{
transferFunction = new osg::TransferFunction1D;
transferFunction->setColor(0.0, osg::Vec4(1.0,0.0,0.0,0.0));
transferFunction->setColor(0.5, osg::Vec4(1.0,1.0,0.0,0.5));
transferFunction->setColor(1.0, osg::Vec4(0.0,0.0,1.0,1.0));
}
while(arguments.read("--test2"))
{
transferFunction = new osg::TransferFunction1D;
transferFunction->setColor(0.0, osg::Vec4(1.0,0.0,0.0,0.0));
transferFunction->setColor(0.5, osg::Vec4(1.0,1.0,0.0,0.5));
transferFunction->setColor(1.0, osg::Vec4(0.0,0.0,1.0,1.0));
transferFunction->assign(transferFunction->getColorMap());
}
{
// deprecated options
bool invalidOption = false;
unsigned int numSlices=500;
while (arguments.read("-s",numSlices)) { OSG_NOTICE<<"Warning: -s option no longer supported."<<std::endl; invalidOption = true; }
float sliceEnd=1.0f;
while (arguments.read("--clip",sliceEnd)) { OSG_NOTICE<<"Warning: --clip option no longer supported."<<std::endl; invalidOption = true; }
if (invalidOption) return 1;
}
float xMultiplier=1.0f;
while (arguments.read("--xMultiplier",xMultiplier)) {}
float yMultiplier=1.0f;
while (arguments.read("--yMultiplier",yMultiplier)) {}
float zMultiplier=1.0f;
while (arguments.read("--zMultiplier",zMultiplier)) {}
float alphaFunc=0.02f;
while (arguments.read("--alphaFunc",alphaFunc)) {}
ShadingModel shadingModel = Standard;
while(arguments.read("--mip")) shadingModel = MaximumIntensityProjection;
while (arguments.read("--isosurface") || arguments.read("--iso-surface")) shadingModel = Isosurface;
while (arguments.read("--light") || arguments.read("-n")) shadingModel = Light;
float xSize=0.0f, ySize=0.0f, zSize=0.0f;
while (arguments.read("--xSize",xSize)) {}
while (arguments.read("--ySize",ySize)) {}
while (arguments.read("--zSize",zSize)) {}
osg::ref_ptr<TestSupportOperation> testSupportOperation = new TestSupportOperation;
viewer.setRealizeOperation(testSupportOperation.get());
viewer.realize();
int maximumTextureSize = testSupportOperation->maximumTextureSize;
int s_maximumTextureSize = maximumTextureSize;
int t_maximumTextureSize = maximumTextureSize;
int r_maximumTextureSize = maximumTextureSize;
while(arguments.read("--maxTextureSize",maximumTextureSize))
{
s_maximumTextureSize = maximumTextureSize;
t_maximumTextureSize = maximumTextureSize;
r_maximumTextureSize = maximumTextureSize;
}
while(arguments.read("--s_maxTextureSize",s_maximumTextureSize)) {}
while(arguments.read("--t_maxTextureSize",t_maximumTextureSize)) {}
while(arguments.read("--r_maxTextureSize",r_maximumTextureSize)) {}
// set up colour space operation.
osg::ColorSpaceOperation colourSpaceOperation = osg::NO_COLOR_SPACE_OPERATION;
osg::Vec4 colourModulate(0.25f,0.25f,0.25f,0.25f);
while(arguments.read("--modulate-alpha-by-luminance")) { colourSpaceOperation = osg::MODULATE_ALPHA_BY_LUMINANCE; }
while(arguments.read("--modulate-alpha-by-colour", colourModulate.x(),colourModulate.y(),colourModulate.z(),colourModulate.w() )) { colourSpaceOperation = osg::MODULATE_ALPHA_BY_COLOR; }
while(arguments.read("--replace-alpha-with-luminance")) { colourSpaceOperation = osg::REPLACE_ALPHA_WITH_LUMINANCE; }
while(arguments.read("--replace-rgb-with-luminance")) { colourSpaceOperation = osg::REPLACE_RGB_WITH_LUMINANCE; }
enum RescaleOperation
{
NO_RESCALE,
RESCALE_TO_ZERO_TO_ONE_RANGE,
SHIFT_MIN_TO_ZERO
};
RescaleOperation rescaleOperation = RESCALE_TO_ZERO_TO_ONE_RANGE;
while(arguments.read("--no-rescale")) rescaleOperation = NO_RESCALE;
while(arguments.read("--rescale")) rescaleOperation = RESCALE_TO_ZERO_TO_ONE_RANGE;
while(arguments.read("--shift-min-to-zero")) rescaleOperation = SHIFT_MIN_TO_ZERO;
bool resizeToPowerOfTwo = false;
unsigned int numComponentsDesired = 0;
while(arguments.read("--num-components", numComponentsDesired)) {}
bool useManipulator = false;
while(arguments.read("--manipulator") || arguments.read("-m")) { useManipulator = true; }
bool useShader = true;
while(arguments.read("--shader")) { useShader = true; }
while(arguments.read("--no-shader")) { useShader = false; }
bool useMultipass = false;
while(arguments.read("--multi-pass")) useMultipass = true;
std::string filename;
osg::ref_ptr<osg::Group> models;
while(arguments.read("--model",filename))
{
osg::ref_ptr<osg::Node> model = osgDB::readRefNodeFile(filename);
if (model.valid())
{
if (!models) models = new osg::Group;
models->addChild(model.get());
}
}
osg::ref_ptr<osg::Group> hulls;
while(arguments.read("--hull",filename))
{
osg::ref_ptr<osg::Node> hull = osgDB::readRefNodeFile(filename);
if (hull.valid())
{
if (!hulls) hulls = new osg::Group;
hulls->addChild(hull.get());
}
}
bool gpuTransferFunction = true;
while(arguments.read("--gpu-tf")) { gpuTransferFunction = true; }
while(arguments.read("--cpu-tf")) { gpuTransferFunction = false; }
double sampleDensityWhenMoving = 0.0;
while(arguments.read("--sdwm", sampleDensityWhenMoving)) {}
double sampleRatioWhenMoving = 0.0;
while(arguments.read("--srwm", sampleRatioWhenMoving)) {}
while(arguments.read("--lod")) { sampleDensityWhenMoving = 0.02; }
double sequenceLength = 10.0;
while(arguments.read("--sequence-duration", sequenceLength) ||
arguments.read("--sd", sequenceLength)) {}
typedef std::list< osg::ref_ptr<osg::Image> > Images;
Images images;
std::string vh_filename;
while (arguments.read("--vh", vh_filename))
{
std::string raw_filename, transfer_filename;
int xdim(0), ydim(0), zdim(0);
osgDB::ifstream header(vh_filename.c_str());
if (header)
{
header >> raw_filename >> transfer_filename >> xdim >> ydim >> zdim >> xSize >> ySize >> zSize;
}
if (xdim*ydim*zdim==0)
{
std::cout<<"Error in reading volume header "<<vh_filename<<std::endl;
return 1;
}
if (!raw_filename.empty())
{
images.push_back(readRaw(xdim, ydim, zdim, 1, 1, "little", raw_filename));
}
if (!transfer_filename.empty())
{
osgDB::ifstream fin(transfer_filename.c_str());
if (fin)
{
osg::TransferFunction1D::ColorMap colorMap;
float value = 0.0;
while(fin && value<=1.0)
{
float red, green, blue, alpha;
fin >> red >> green >> blue >> alpha;
if (fin)
{
colorMap[value] = osg::Vec4(red/255.0f,green/255.0f,blue/255.0f,alpha/255.0f);
std::cout<<"value = "<<value<<" ("<<red<<", "<<green<<", "<<blue<<", "<<alpha<<")";
std::cout<<" ("<<colorMap[value]<<")"<<std::endl;
}
value += 1/255.0;
}
if (colorMap.empty())
{
std::cout<<"Error: No values read from transfer function file: "<<transfer_filename<<std::endl;
return 0;
}
transferFunction = new osg::TransferFunction1D;
transferFunction->assign(colorMap);
}
}
}
int sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents;
std::string endian, raw_filename;
while (arguments.read("--raw", sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents, endian, raw_filename))
{
images.push_back(readRaw(sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents, endian, raw_filename));
}
int images_pos = arguments.find("--images");
if (images_pos>=0)
{
osg::ImageList imageList;
int pos=images_pos+1;
for(;pos<arguments.argc() && !arguments.isOption(pos);++pos)
{
std::string arg(arguments[pos]);
if (arg.find('*') != std::string::npos)
{
osgDB::DirectoryContents contents = osgDB::expandWildcardsInFilename(arg);
for (unsigned int i = 0; i < contents.size(); ++i)
{
osg::ref_ptr<osg::Image> image = osgDB::readRefImageFile( contents[i] );
if(image)
{
OSG_NOTICE<<"Read osg::Image FileName::"<<image->getFileName()<<", pixelFormat=0x"<<std::hex<<image->getPixelFormat()<<std::dec<<", s="<<image->s()<<", t="<<image->t()<<", r="<<image->r()<<std::endl;
imageList.push_back(image);
}
}
}
else
{
// not an option so assume string is a filename.
osg::ref_ptr<osg::Image> image = osgDB::readRefImageFile( arguments[pos] );
if(image)
{
OSG_NOTICE<<"Read osg::Image FileName::"<<image->getFileName()<<", pixelFormat=0x"<<std::hex<<image->getPixelFormat()<<std::dec<<", s="<<image->s()<<", t="<<image->t()<<", r="<<image->r()<<std::endl;
imageList.push_back(image);
}
}
}
arguments.remove(images_pos, pos-images_pos);
// pack the textures into a single texture.
osg::Image* image = createTexture3D(imageList, numComponentsDesired, s_maximumTextureSize, t_maximumTextureSize, r_maximumTextureSize, resizeToPowerOfTwo);
if (image)
{
images.push_back(image);
}
else
{
OSG_NOTICE<<"Unable to create 3D image from source files."<<std::endl;
}
}
// any option left unread are converted into errors to write out later.
arguments.reportRemainingOptionsAsUnrecognized();
// report any errors if they have occurred when parsing the program arguments.
if (arguments.errors())
{
arguments.writeErrorMessages(std::cout);
return 1;
}
// assume remaining arguments are file names of textures.
for(int pos=1;pos<arguments.argc();++pos)
{
if (!arguments.isOption(pos))
{
filename = arguments[pos];
if (osgDB::getLowerCaseFileExtension(filename)=="dicom")
{
// not an option so assume string is a filename.
osg::ref_ptr<osg::Image> image = osgDB::readRefImageFile(filename);
if (image)
{
images.push_back(image);
}
}
else
{
osgDB::FileType fileType = osgDB::fileType(filename);
if (fileType == osgDB::FILE_NOT_FOUND)
{
filename = osgDB::findDataFile(filename);
fileType = osgDB::fileType(filename);
}
if (fileType == osgDB::DIRECTORY)
{
osg::ref_ptr<osg::Image> image = osgDB::readRefImageFile(filename+".dicom");
if (image) images.push_back(image);
}
else if (fileType == osgDB::REGULAR_FILE)
{
// not an option so assume string is a filename.
osg::ref_ptr<osg::Image> image = osgDB::readRefImageFile( filename );
if (image) images.push_back(image);
}
else
{
osg::notify(osg::NOTICE)<<"Error: could not find file: "<<filename<<std::endl;
return 1;
}
}
}
}
if (images.empty())
{
std::cout<<"No model loaded, please specify a volumetric image file on the command line."<<std::endl;
return 1;
}
Images::iterator sizeItr = images.begin();
int image_s = (*sizeItr)->s();
int image_t = (*sizeItr)->t();
int image_r = (*sizeItr)->r();
++sizeItr;
for(;sizeItr != images.end(); ++sizeItr)
{
if ((*sizeItr)->s() != image_s ||
(*sizeItr)->t() != image_t ||
(*sizeItr)->r() != image_r)
{
std::cout<<"Images in sequence are not of the same dimensions."<<std::endl;
return 1;
}
}
osg::ref_ptr<osgVolume::ImageDetails> details = dynamic_cast<osgVolume::ImageDetails*>(images.front()->getUserData());
osg::ref_ptr<osg::RefMatrix> matrix = details ? details->getMatrix() : dynamic_cast<osg::RefMatrix*>(images.front()->getUserData());
if (!matrix)
{
if (xSize==0.0) xSize = static_cast<float>(image_s);
if (ySize==0.0) ySize = static_cast<float>(image_t);
if (zSize==0.0) zSize = static_cast<float>(image_r);
matrix = new osg::RefMatrix(xSize, 0.0, 0.0, 0.0,
0.0, ySize, 0.0, 0.0,
0.0, 0.0, zSize, 0.0,
0.0, 0.0, 0.0, 1.0);
}
if (xMultiplier!=1.0 || yMultiplier!=1.0 || zMultiplier!=1.0)
{
matrix->postMultScale(osg::Vec3d(fabs(xMultiplier), fabs(yMultiplier), fabs(zMultiplier)));
}
osg::Vec4 minValue(FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX);
osg::Vec4 maxValue(-FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX);
bool computeMinMax = false;
for(Images::iterator itr = images.begin();
itr != images.end();
++itr)
{
osg::Vec4 localMinValue, localMaxValue;
if (osg::computeMinMax(itr->get(), localMinValue, localMaxValue))
{
if (localMinValue.r()<minValue.r()) minValue.r() = localMinValue.r();
if (localMinValue.g()<minValue.g()) minValue.g() = localMinValue.g();
if (localMinValue.b()<minValue.b()) minValue.b() = localMinValue.b();
if (localMinValue.a()<minValue.a()) minValue.a() = localMinValue.a();
if (localMaxValue.r()>maxValue.r()) maxValue.r() = localMaxValue.r();
if (localMaxValue.g()>maxValue.g()) maxValue.g() = localMaxValue.g();
if (localMaxValue.b()>maxValue.b()) maxValue.b() = localMaxValue.b();
if (localMaxValue.a()>maxValue.a()) maxValue.a() = localMaxValue.a();
osg::notify(osg::NOTICE)<<" ("<<localMinValue<<") ("<<localMaxValue<<") "<<(*itr)->getFileName()<<std::endl;
computeMinMax = true;
}
}
if (computeMinMax)
{
osg::notify(osg::NOTICE)<<"Min value "<<minValue<<std::endl;
osg::notify(osg::NOTICE)<<"Max value "<<maxValue<<std::endl;
float minComponent = minValue[0];
minComponent = osg::minimum(minComponent,minValue[1]);
minComponent = osg::minimum(minComponent,minValue[2]);
minComponent = osg::minimum(minComponent,minValue[3]);
float maxComponent = maxValue[0];
maxComponent = osg::maximum(maxComponent,maxValue[1]);
maxComponent = osg::maximum(maxComponent,maxValue[2]);
maxComponent = osg::maximum(maxComponent,maxValue[3]);
#if 0
switch(rescaleOperation)
{
case(NO_RESCALE):
break;
case(RESCALE_TO_ZERO_TO_ONE_RANGE):
{
float scale = 0.99f/(maxComponent-minComponent);
float offset = -minComponent * scale;
for(Images::iterator itr = images.begin();
itr != images.end();
++itr)
{
osg::offsetAndScaleImage(itr->get(),
osg::Vec4(offset, offset, offset, offset),
osg::Vec4(scale, scale, scale, scale));
}
break;
}
case(SHIFT_MIN_TO_ZERO):
{
float offset = -minComponent;
for(Images::iterator itr = images.begin();
itr != images.end();
++itr)
{
osg::offsetAndScaleImage(itr->get(),
osg::Vec4(offset, offset, offset, offset),
osg::Vec4(1.0f, 1.0f, 1.0f, 1.0f));
}
break;
}
};
#endif
}
if (colourSpaceOperation!=osg::NO_COLOR_SPACE_OPERATION)
{
for(Images::iterator itr = images.begin();
itr != images.end();
++itr)
{
(*itr) = osg::colorSpaceConversion(colourSpaceOperation, itr->get(), colourModulate);
}
}
if (!gpuTransferFunction && transferFunction.valid())
{
for(Images::iterator itr = images.begin();
itr != images.end();
++itr)
{
*itr = osgVolume::applyTransferFunction(itr->get(), transferFunction.get());
}
}
osg::ref_ptr<osg::Image> image_3d = 0;
if (images.size()==1)
{
osg::notify(osg::NOTICE)<<"Single image "<<images.size()<<" volumes."<<std::endl;
image_3d = images.front();
}
else
{
osg::notify(osg::NOTICE)<<"Creating sequence of "<<images.size()<<" volumes."<<std::endl;
osg::ref_ptr<osg::ImageSequence> imageSequence = new osg::ImageSequence;
imageSequence->setLength(sequenceLength);
image_3d = imageSequence.get();
for(Images::iterator itr = images.begin();
itr != images.end();
++itr)
{
imageSequence->addImage(itr->get());
}
imageSequence->play();
}
osg::ref_ptr<osgVolume::Volume> volume = new osgVolume::Volume;
osg::ref_ptr<osgVolume::VolumeTile> tile = new osgVolume::VolumeTile;
volume->addChild(tile.get());
osg::ref_ptr<osgVolume::ImageLayer> layer = new osgVolume::ImageLayer(image_3d.get());
if (details)
{
layer->setTexelOffset(details->getTexelOffset());
layer->setTexelScale(details->getTexelScale());
}
switch(rescaleOperation)
{
case(NO_RESCALE):
break;
case(RESCALE_TO_ZERO_TO_ONE_RANGE):
{
layer->rescaleToZeroToOneRange();
break;
}
case(SHIFT_MIN_TO_ZERO):
{
layer->translateMinToZero();
break;
}
};
if (xMultiplier<0.0 || yMultiplier<0.0 || zMultiplier<0.0)
{
layer->setLocator(new osgVolume::Locator(
osg::Matrix::translate(xMultiplier<0.0 ? -1.0 : 0.0, yMultiplier<0.0 ? -1.0 : 0.0, zMultiplier<0.0 ? -1.0 : 0.0) *
osg::Matrix::scale(xMultiplier<0.0 ? -1.0 : 1.0, yMultiplier<0.0 ? -1.0 : 1.0, zMultiplier<0.0 ? -1.0 : 1.0) *
(*matrix)
));;
}
else
{
layer->setLocator(new osgVolume::Locator(*matrix));
}
tile->setLocator(new osgVolume::Locator(*matrix));
tile->setLayer(layer.get());
tile->setEventCallback(new osgVolume::PropertyAdjustmentCallback());
if (useShader)
{
osgVolume::SwitchProperty* sp = new osgVolume::SwitchProperty;
sp->setActiveProperty(0);
osgVolume::AlphaFuncProperty* ap = new osgVolume::AlphaFuncProperty(alphaFunc);
osgVolume::IsoSurfaceProperty* isop = new osgVolume::IsoSurfaceProperty(alphaFunc);
// SampleDensity is now deprecated
osgVolume::SampleDensityProperty* sd = new osgVolume::SampleDensityProperty(0.005f);
osgVolume::SampleDensityWhenMovingProperty* sdwm = sampleDensityWhenMoving!=0.0 ? new osgVolume::SampleDensityWhenMovingProperty(sampleDensityWhenMoving) : 0;
// use SampleRatio in place of SampleDensity
osgVolume::SampleRatioProperty* sr = new osgVolume::SampleRatioProperty(1.0f);
osgVolume::SampleRatioWhenMovingProperty* srwm = sampleRatioWhenMoving!=0.0 ? new osgVolume::SampleRatioWhenMovingProperty(sampleRatioWhenMoving) : 0;
osgVolume::TransparencyProperty* tp = new osgVolume::TransparencyProperty(1.0);
osgVolume::TransferFunctionProperty* tfp = transferFunction.valid() ? new osgVolume::TransferFunctionProperty(transferFunction.get()) : 0;
{
// Standard
osgVolume::CompositeProperty* cp = new osgVolume::CompositeProperty;
cp->addProperty(ap);
if (useMultipass)
{
cp->addProperty(sr);
if (srwm) cp->addProperty(srwm);
}
else
{
cp->addProperty(sd);
if (sdwm) cp->addProperty(sdwm);
}
cp->addProperty(tp);
if (tfp)
{
OSG_NOTICE<<"Adding TransferFunction"<<std::endl;
cp->addProperty(tfp);
}
sp->addProperty(cp);
}
{
// Light
osgVolume::CompositeProperty* cp = new osgVolume::CompositeProperty;
cp->addProperty(ap);
if (useMultipass) cp->addProperty(sr);
else cp->addProperty(sd);
cp->addProperty(tp);
cp->addProperty(new osgVolume::LightingProperty);
if (sdwm) cp->addProperty(sdwm);
if (tfp) cp->addProperty(tfp);
sp->addProperty(cp);
}
{
// Isosurface
osgVolume::CompositeProperty* cp = new osgVolume::CompositeProperty;
if (useMultipass) cp->addProperty(sr);
else cp->addProperty(sd);
cp->addProperty(tp);
cp->addProperty(isop);
if (sdwm) cp->addProperty(sdwm);
if (tfp) cp->addProperty(tfp);
sp->addProperty(cp);
}
{
// MaximumIntensityProjection
osgVolume::CompositeProperty* cp = new osgVolume::CompositeProperty;
cp->addProperty(ap);
if (useMultipass) cp->addProperty(sr);
else cp->addProperty(sd);
cp->addProperty(tp);
cp->addProperty(new osgVolume::MaximumIntensityProjectionProperty);
if (sdwm) cp->addProperty(sdwm);
if (tfp) cp->addProperty(tfp);
sp->addProperty(cp);
}
switch(shadingModel)
{
case(Standard): sp->setActiveProperty(0); break;
case(Light): sp->setActiveProperty(1); break;
case(Isosurface): sp->setActiveProperty(2); break;
case(MaximumIntensityProjection): sp->setActiveProperty(3); break;
}
layer->addProperty(sp);
if (useMultipass)
{
tile->setVolumeTechnique(new osgVolume::MultipassTechnique);
}
else
{
tile->setVolumeTechnique(new osgVolume::RayTracedTechnique);
}
}
else
{
layer->addProperty(new osgVolume::AlphaFuncProperty(alphaFunc));
tile->setVolumeTechnique(new osgVolume::FixedFunctionTechnique);
}
if (!outputFile.empty())
{
std::string ext = osgDB::getFileExtension(outputFile);
std::string name_no_ext = osgDB::getNameLessExtension(outputFile);
if (ext=="osg" || ext=="osgt" || ext=="osgx" )
{
if (image_3d.valid())
{
std::string image_writeExtension = ".osgb";
image_3d->setFileName(name_no_ext + image_writeExtension);
osg::ref_ptr<osgDB::Options> options = new osgDB::Options("ddsNoAutoFlipWrite");;
osgDB::writeImageFile(*image_3d, image_3d->getFileName(), options.get());
}
osgDB::writeNodeFile(*volume, outputFile);
}
else if (ext=="ive" || ext=="osgb" )
{
osgDB::writeNodeFile(*volume, outputFile);
}
else if (ext=="dds")
{
osgDB::writeImageFile(*image_3d, outputFile);
}
else
{
std::cout<<"Extension not support for file output, not file written."<<std::endl;
}
return 0;
}
if (volume.valid())
{
osg::ref_ptr<osg::Node> loadedModel = volume.get();
if (useManipulator)
{
osg::ref_ptr<osg::Group> group = new osg::Group;
#if 1
osg::ref_ptr<osgManipulator::Dragger> dragger = new osgManipulator::TabBoxDragger;
#else
osg::ref_ptr<osgManipulator::Dragger> dragger = new osgManipulator::TrackballDragger();
#endif
dragger->setupDefaultGeometry();
dragger->setHandleEvents(true);
dragger->setActivationModKeyMask(osgGA::GUIEventAdapter::MODKEY_SHIFT);
dragger->addDraggerCallback(new DraggerVolumeTileCallback(tile.get(), tile->getLocator()));
dragger->setMatrix(osg::Matrix::translate(0.5,0.5,0.5)*tile->getLocator()->getTransform());
dragger->applyAppropriateFrontFace(dragger->getOrCreateStateSet());
group->addChild(dragger.get());
//dragger->addChild(volume.get());
group->addChild(volume.get());
loadedModel = group;
}
if (hulls.get())
{
tile->addChild(hulls.get());
}
// add add models into the scene alongside the volume
if (models.get())
{
osg::ref_ptr<osg::Group> group = new osg::Group;
group->addChild(models.get());
group->addChild(loadedModel.get());
loadedModel = group.get();
}
// if we want to do multi-pass volume rendering we need decorate the whole scene with a VolumeScene node.
if (useMultipass)
{
osg::ref_ptr<osgVolume::VolumeScene> volumeScene = new osgVolume::VolumeScene;
volumeScene->addChild(loadedModel.get());
loadedModel->getOrCreateStateSet();
loadedModel = volumeScene.get();
}
// set the scene to render
viewer.setSceneData(loadedModel.get());
// the viewers main frame loop
viewer.run();
}
return 0;
}