You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenSceneGraph/include/osg/Vec3f

225 lines
6.8 KiB

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_VEC3F
#define OSG_VEC3F 1
#include <osg/Vec2f>
#include <osg/Math>
namespace osg {
/** General purpose float triple for use as vertices, vectors and normals.
* Provides general math operations from addition through to cross products.
* No support yet added for float * Vec3f - is it necessary?
* Need to define a non-member non-friend operator* etc.
* Vec3f * float is okay
*/
class Vec3f
{
public:
/** Data type of vector components.*/
typedef float value_type;
/** Number of vector components. */
enum { num_components = 3 };
value_type _v[3];
/** Constructor that sets all components of the vector to zero */
Vec3f() { _v[0]=0.0f; _v[1]=0.0f; _v[2]=0.0f;}
Vec3f(value_type x,value_type y,value_type z) { _v[0]=x; _v[1]=y; _v[2]=z; }
Vec3f(const Vec2f& v2,value_type zz)
{
_v[0] = v2[0];
_v[1] = v2[1];
_v[2] = zz;
}
inline bool operator == (const Vec3f& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2]; }
inline bool operator != (const Vec3f& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2]; }
inline bool operator < (const Vec3f& v) const
{
if (_v[0]<v._v[0]) return true;
else if (_v[0]>v._v[0]) return false;
else if (_v[1]<v._v[1]) return true;
else if (_v[1]>v._v[1]) return false;
else return (_v[2]<v._v[2]);
}
inline value_type* ptr() { return _v; }
inline const value_type* ptr() const { return _v; }
inline void set( value_type x, value_type y, value_type z)
{
_v[0]=x; _v[1]=y; _v[2]=z;
}
inline void set( const Vec3f& rhs)
{
_v[0]=rhs._v[0]; _v[1]=rhs._v[1]; _v[2]=rhs._v[2];
}
inline value_type& operator [] (int i) { return _v[i]; }
inline value_type operator [] (int i) const { return _v[i]; }
inline value_type& x() { return _v[0]; }
inline value_type& y() { return _v[1]; }
inline value_type& z() { return _v[2]; }
inline value_type x() const { return _v[0]; }
inline value_type y() const { return _v[1]; }
inline value_type z() const { return _v[2]; }
/** Returns true if all components have values that are not NaN. */
inline bool valid() const { return !isNaN(); }
/** Returns true if at least one component has value NaN. */
inline bool isNaN() const { return osg::isNaN(_v[0]) || osg::isNaN(_v[1]) || osg::isNaN(_v[2]); }
/** Dot product. */
inline value_type operator * (const Vec3f& rhs) const
{
return _v[0]*rhs._v[0]+_v[1]*rhs._v[1]+_v[2]*rhs._v[2];
}
/** Cross product. */
inline const Vec3f operator ^ (const Vec3f& rhs) const
{
return Vec3f(_v[1]*rhs._v[2]-_v[2]*rhs._v[1],
_v[2]*rhs._v[0]-_v[0]*rhs._v[2] ,
_v[0]*rhs._v[1]-_v[1]*rhs._v[0]);
}
/** Multiply by scalar. */
inline const Vec3f operator * (value_type rhs) const
{
return Vec3f(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs);
}
/** Unary multiply by scalar. */
inline Vec3f& operator *= (value_type rhs)
{
_v[0]*=rhs;
_v[1]*=rhs;
_v[2]*=rhs;
return *this;
}
/** Divide by scalar. */
inline const Vec3f operator / (value_type rhs) const
{
return Vec3f(_v[0]/rhs, _v[1]/rhs, _v[2]/rhs);
}
/** Unary divide by scalar. */
inline Vec3f& operator /= (value_type rhs)
{
_v[0]/=rhs;
_v[1]/=rhs;
_v[2]/=rhs;
return *this;
}
/** Binary vector add. */
inline const Vec3f operator + (const Vec3f& rhs) const
{
return Vec3f(_v[0]+rhs._v[0], _v[1]+rhs._v[1], _v[2]+rhs._v[2]);
}
/** Unary vector add. Slightly more efficient because no temporary
* intermediate object.
*/
inline Vec3f& operator += (const Vec3f& rhs)
{
_v[0] += rhs._v[0];
_v[1] += rhs._v[1];
_v[2] += rhs._v[2];
return *this;
}
/** Binary vector subtract. */
inline const Vec3f operator - (const Vec3f& rhs) const
{
return Vec3f(_v[0]-rhs._v[0], _v[1]-rhs._v[1], _v[2]-rhs._v[2]);
}
/** Unary vector subtract. */
inline Vec3f& operator -= (const Vec3f& rhs)
{
_v[0]-=rhs._v[0];
_v[1]-=rhs._v[1];
_v[2]-=rhs._v[2];
return *this;
}
/** Negation operator. Returns the negative of the Vec3f. */
inline const Vec3f operator - () const
{
return Vec3f (-_v[0], -_v[1], -_v[2]);
}
/** Length of the vector = sqrt( vec . vec ) */
inline value_type length() const
{
return sqrtf( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
}
/** Length squared of the vector = vec . vec */
inline value_type length2() const
{
return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2];
}
/** Normalize the vector so that it has length unity.
* Returns the previous length of the vector.
*/
inline value_type normalize()
{
value_type norm = Vec3f::length();
if (norm>0.0)
{
value_type inv = 1.0f/norm;
_v[0] *= inv;
_v[1] *= inv;
_v[2] *= inv;
}
return( norm );
}
}; // end of class Vec3f
/** multiply by vector components. */
inline Vec3f componentMultiply(const Vec3f& lhs, const Vec3f& rhs)
{
return Vec3f(lhs[0]*rhs[0], lhs[1]*rhs[1], lhs[2]*rhs[2]);
}
/** divide rhs components by rhs vector components. */
inline Vec3f componentDivide(const Vec3f& lhs, const Vec3f& rhs)
{
return Vec3f(lhs[0]/rhs[0], lhs[1]/rhs[1], lhs[2]/rhs[2]);
}
const Vec3f X_AXIS(1.0,0.0,0.0);
const Vec3f Y_AXIS(0.0,1.0,0.0);
const Vec3f Z_AXIS(0.0,0.0,1.0);
} // end of namespace osg
#endif