OpenSceneGraph/include/osg/Plane

363 lines
14 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_PLANE
#define OSG_PLANE 1
#include <osg/Config>
#include <osg/Export>
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Matrix>
#include <osg/BoundingSphere>
#include <osg/BoundingBox>
#include <vector>
namespace osg {
/** @brief A plane class. It can be used to represent an infinite plane.
*
* The infinite plane is described by an implicit plane equation a*x+b*y+c*z+d = 0. Though it is not mandatory that
* a^2+b^2+c^2 = 1 is fulfilled in general some methods require it (@see osg::Plane::distance). */
class OSG_EXPORT Plane
{
public:
#ifdef OSG_USE_FLOAT_PLANE
/** Type of Plane class.*/
typedef float value_type;
typedef Vec3f Vec3_type;
typedef Vec4f Vec4_type;
#else
/** Type of Plane class.*/
typedef double value_type;
typedef Vec3d Vec3_type;
typedef Vec4d Vec4_type;
#endif
/** Number of vector components. */
enum { num_components = 3 };
/// Default constructor
/** The default constructor initializes all values to zero.
* @warning Although the method osg::Plane::valid() will return true after the default constructors call the plane
* is mathematically invalid! Default data do not describe a valid plane. */
inline Plane() { _fv[0]=0.0; _fv[1]=0.0; _fv[2]=0.0; _fv[3]=0.0; _lowerBBCorner = 0; _upperBBCorner = 0; }
inline Plane(const Plane& pl) { set(pl); }
/// Constructor
/** The plane is described as a*x+b*y+c*z+d = 0.
* @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
inline Plane(value_type a,value_type b,value_type c,value_type d) { set(a,b,c,d); }
/// Constructor
/** The plane can also be described as vec*[x,y,z,1].
* @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
inline Plane(const Vec4f& vec) { set(vec); }
/// Constructor
/** The plane can also be described as vec*[x,y,z,1].
* @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
inline Plane(const Vec4d& vec) { set(vec); }
/// Constructor
/** This constructor initializes the internal values directly without any checking or manipulation.
* @param norm The normal of the plane.
* @param d The negative distance from the point of origin to the plane.
* @remark You may call osg::Plane::MakeUnitLength afterwards if the passed normal was not normalized. */
inline Plane(const Vec3_type& norm,value_type d) { set(norm,d); }
/// Constructor
/** This constructor calculates from the three points describing an infinite plane the internal values.
* @param v1 Point in the plane.
* @param v2 Point in the plane.
* @param v3 Point in the plane.
* @remark After this constructor call the plane's normal is normalized in case the three points described a mathematically
* valid plane.
* @remark The normal is determined by building the cross product of (v2-v1) ^ (v3-v2). */
inline Plane(const Vec3_type& v1, const Vec3_type& v2, const Vec3_type& v3) { set(v1,v2,v3); }
/// Constructor
/** This constructor initializes the internal values directly without any checking or manipulation.
* @param norm The normal of the plane.
* @param point A point of the plane.
* @remark You may call osg::Plane::MakeUnitLength afterwards if the passed normal was not normalized. */
inline Plane(const Vec3_type& norm, const Vec3_type& point) { set(norm,point); }
inline Plane& operator = (const Plane& pl)
{
if (&pl==this) return *this;
set(pl);
return *this;
}
inline void set(const Plane& pl) { _fv[0]=pl._fv[0]; _fv[1]=pl._fv[1]; _fv[2]=pl._fv[2]; _fv[3]=pl._fv[3]; calculateUpperLowerBBCorners(); }
inline void set(value_type a, value_type b, value_type c, value_type d) { _fv[0]=a; _fv[1]=b; _fv[2]=c; _fv[3]=d; calculateUpperLowerBBCorners(); }
inline void set(const Vec4f& vec) { set(vec[0],vec[1],vec[2],vec[3]); }
inline void set(const Vec4d& vec) { set(vec[0],vec[1],vec[2],vec[3]); }
inline void set(const Vec3_type& norm, double d) { set(norm[0],norm[1],norm[2],d); }
inline void set(const Vec3_type& v1, const Vec3_type& v2, const Vec3_type& v3)
{
Vec3_type norm = (v2-v1)^(v3-v2);
value_type length = norm.length();
if (length>1e-6) norm/= length;
else norm.set(0.0,0.0,0.0);
set(norm[0],norm[1],norm[2],-(v1*norm));
}
inline void set(const Vec3_type& norm, const Vec3_type& point)
{
value_type d = -norm[0]*point[0] - norm[1]*point[1] - norm[2]*point[2];
set(norm[0],norm[1],norm[2],d);
}
/** flip/reverse the orientation of the plane.*/
inline void flip()
{
_fv[0] = -_fv[0];
_fv[1] = -_fv[1];
_fv[2] = -_fv[2];
_fv[3] = -_fv[3];
calculateUpperLowerBBCorners();
}
/** This method multiplies the coefficients of the plane equation with a constant factor so that the
* equation a^2+b^2+c^2 = 1 holds. */
inline void makeUnitLength()
{
value_type inv_length = 1.0 / sqrt(_fv[0]*_fv[0] + _fv[1]*_fv[1]+ _fv[2]*_fv[2]);
_fv[0] *= inv_length;
_fv[1] *= inv_length;
_fv[2] *= inv_length;
_fv[3] *= inv_length;
}
/** calculate the upper and lower bounding box corners to be used
* in the intersect(BoundingBox&) method for speeding calculations.*/
inline void calculateUpperLowerBBCorners()
{
_upperBBCorner = (_fv[0]>=0.0?1:0) |
(_fv[1]>=0.0?2:0) |
(_fv[2]>=0.0?4:0);
_lowerBBCorner = (~_upperBBCorner)&7;
}
/// Checks if all internal values describing the plane have valid numbers
/** @warning This method does not check if the plane is mathematically correctly described!
* @remark The only case where all elements have valid numbers and the plane description is invalid occurs if the plane's normal
* is zero. */
inline bool valid() const { return !isNaN(); }
inline bool isNaN() const { return osg::isNaN(_fv[0]) || osg::isNaN(_fv[1]) || osg::isNaN(_fv[2]) || osg::isNaN(_fv[3]); }
inline bool operator == (const Plane& plane) const { return _fv[0]==plane._fv[0] && _fv[1]==plane._fv[1] && _fv[2]==plane._fv[2] && _fv[3]==plane._fv[3]; }
inline bool operator != (const Plane& plane) const { return _fv[0]!=plane._fv[0] || _fv[1]!=plane._fv[1] || _fv[2]!=plane._fv[2] || _fv[3]!=plane._fv[3]; }
/** A plane is said to be smaller than another plane if the first non-identical element of the internal array is smaller than the
* corresponding element of the other plane. */
inline bool operator < (const Plane& plane) const
{
if (_fv[0]<plane._fv[0]) return true;
else if (_fv[0]>plane._fv[0]) return false;
else if (_fv[1]<plane._fv[1]) return true;
else if (_fv[1]>plane._fv[1]) return false;
else if (_fv[2]<plane._fv[2]) return true;
else if (_fv[2]>plane._fv[2]) return false;
else return (_fv[3]<plane._fv[3]);
}
inline value_type* ptr() { return _fv; }
inline const value_type* ptr() const { return _fv; }
inline Vec4_type asVec4() const { return Vec4_type(_fv[0],_fv[1],_fv[2],_fv[3]); }
inline value_type& operator [] (unsigned int i) { return _fv[i]; }
inline value_type operator [] (unsigned int i) const { return _fv[i]; }
inline Vec3_type getNormal() const { return Vec3_type(_fv[0],_fv[1],_fv[2]); }
/** Calculate the distance between a point and the plane.
* @remark This method only leads to real distance values if the plane's norm is 1.
* @sa osg::Plane::makeUnitLength */
inline float distance(const osg::Vec3f& v) const
{
return _fv[0]*v.x()+
_fv[1]*v.y()+
_fv[2]*v.z()+
_fv[3];
}
/** Calculate the distance between a point and the plane.
* @remark This method only leads to real distance values if the plane's norm is 1.
* @sa osg::Plane::makeUnitLength */
inline double distance(const osg::Vec3d& v) const
{
return _fv[0]*v.x()+
_fv[1]*v.y()+
_fv[2]*v.z()+
_fv[3];
}
/** calculate the dot product of the plane normal and a point.*/
inline float dotProductNormal(const osg::Vec3f& v) const
{
return _fv[0]*v.x()+
_fv[1]*v.y()+
_fv[2]*v.z();
}
/** calculate the dot product of the plane normal and a point.*/
inline double dotProductNormal(const osg::Vec3d& v) const
{
return _fv[0]*v.x()+
_fv[1]*v.y()+
_fv[2]*v.z();
}
/** intersection test between plane and vertex list
return 1 if the bs is completely above plane,
return 0 if the bs intersects the plane,
return -1 if the bs is completely below the plane.*/
inline int intersect(const std::vector<Vec3f>& vertices) const
{
if (vertices.empty()) return -1;
int noAbove = 0;
int noBelow = 0;
int noOn = 0;
for(std::vector<Vec3f>::const_iterator itr=vertices.begin();
itr != vertices.end();
++itr)
{
float d = distance(*itr);
if (d>0.0f) ++noAbove;
else if (d<0.0f) ++noBelow;
else ++noOn;
}
if (noAbove>0)
{
if (noBelow>0) return 0;
else return 1;
}
return -1; // treat points on line as outside...
}
/** intersection test between plane and vertex list
return 1 if the bs is completely above plane,
return 0 if the bs intersects the plane,
return -1 if the bs is completely below the plane.*/
inline int intersect(const std::vector<Vec3d>& vertices) const
{
if (vertices.empty()) return -1;
int noAbove = 0;
int noBelow = 0;
int noOn = 0;
for(std::vector<Vec3d>::const_iterator itr=vertices.begin();
itr != vertices.end();
++itr)
{
double d = distance(*itr);
if (d>0.0) ++noAbove;
else if (d<0.0) ++noBelow;
else ++noOn;
}
if (noAbove>0)
{
if (noBelow>0) return 0;
else return 1;
}
return -1; // treat points on line as outside...
}
/** intersection test between plane and bounding sphere.
return 1 if the bs is completely above plane,
return 0 if the bs intersects the plane,
return -1 if the bs is completely below the plane.*/
inline int intersect(const BoundingSphere& bs) const
{
float d = distance(bs.center());
if (d>bs.radius()) return 1;
else if (d<-bs.radius()) return -1;
else return 0;
}
/** intersection test between plane and bounding sphere.
return 1 if the bs is completely above plane,
return 0 if the bs intersects the plane,
return -1 if the bs is completely below the plane.*/
inline int intersect(const BoundingBox& bb) const
{
// if lowest point above plane than all above.
if (distance(bb.corner(_lowerBBCorner))>0.0f) return 1;
// if highest point is below plane then all below.
if (distance(bb.corner(_upperBBCorner))<0.0f) return -1;
// d_lower<=0.0f && d_upper>=0.0f
// therefore must be crossing plane.
return 0;
}
/** Transform the plane by matrix. Note, this operation carries out
* the calculation of the inverse of the matrix since a plane
* must be multiplied by the inverse transposed to transform it. This
* make this operation expensive. If the inverse has been already
* calculated elsewhere then use transformProvidingInverse() instead.
* See http://www.worldserver.com/turk/computergraphics/NormalTransformations.pdf*/
inline void transform(const osg::Matrix& matrix)
{
osg::Matrix inverse;
inverse.invert(matrix);
transformProvidingInverse(inverse);
}
/** Transform the plane by providing a pre inverted matrix.
* see transform for details. */
inline void transformProvidingInverse(const osg::Matrix& matrix)
{
// note pre multiplications, which effectively transposes matrix.
Vec4_type vec(_fv[0],_fv[1],_fv[2],_fv[3]);
vec = matrix * vec;
set(vec);
makeUnitLength();
}
protected:
/** Vec member variable. */
value_type _fv[4];
// variables cached to optimize calcs against bounding boxes.
unsigned int _upperBBCorner;
unsigned int _lowerBBCorner;
};
} // end of namespace
#endif