#ifndef OSG_VEC4 #define OSG_VEC4 1 #include #include #ifdef OSG_USE_IO_DOT_H #include #else #include using namespace std; #endif namespace osg { /** General purpose float quad, uses include representation of colour coordinates. No support yet added for float * Vec4 - is it necessary? Need to define a non-member non-friend operator* etc. Vec4 * float is okay */ class Vec4 { public: // Methods are defined here so that they are implicitly inlined Vec4() {} // no operations done to maintain speed Vec4(float x, float y, float z, float w) { _v[0]=x; _v[1]=y; _v[2]=z; _v[3]=w; } float _v[4]; bool operator == (const Vec4& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2] && _v[3]==v._v[3]; } inline float* ptr() { return _v; } inline const float* ptr() const { return _v; } inline void set( float x, float y, float z, float w) { _v[0]=x; _v[1]=y; _v[2]=z; _v[3]=w; } inline float& operator [] (int i) { return _v[i]; } inline float operator [] (int i) const { return _v[i]; } inline float& x() { return _v[0]; } inline float& y() { return _v[1]; } inline float& z() { return _v[2]; } inline float& w() { return _v[3]; } inline float x() const { return _v[0]; } inline float y() const { return _v[1]; } inline float z() const { return _v[2]; } inline float w() const { return _v[3]; } /// dot product inline float operator * (const Vec4& rhs) const { return _v[0]*rhs._v[0]+ _v[1]*rhs._v[1]+ _v[2]*rhs._v[2]+ _v[3]*rhs._v[3] ; } /// multiply by scalar inline Vec4 operator * (const float& rhs) const { return Vec4(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs, _v[3]*rhs); } /// unary multiply by scalar inline Vec4& operator *= (const float& rhs) { _v[0]*=rhs; _v[1]*=rhs; _v[2]*=rhs; _v[3]*=rhs; return *this; } /// divide by scalar inline Vec4 operator / (const float& rhs) const { return Vec4(_v[0]/rhs, _v[1]/rhs, _v[2]/rhs, _v[3]/rhs); } /// unary divide by scalar inline Vec4& operator /= (const float& rhs) { _v[0]/=rhs; _v[1]/=rhs; _v[2]/=rhs; _v[3]/=rhs; return *this; } /// binary vector add inline Vec4 operator + (const Vec4& rhs) const { return Vec4(_v[0]+rhs._v[0], _v[1]+rhs._v[1], _v[2]+rhs._v[2], _v[3]+rhs._v[3]); } /** unary vector add. Slightly more efficient because no temporary intermediate object*/ inline Vec4& operator += (const Vec4& rhs) { _v[0] += rhs._v[0]; _v[1] += rhs._v[1]; _v[2] += rhs._v[2]; _v[3] += rhs._v[3]; return *this; } /// binary vector subract inline Vec4 operator - (const Vec4& rhs) const { return Vec4(_v[0]-rhs._v[0], _v[1]-rhs._v[1], _v[2]-rhs._v[2], _v[3]-rhs._v[3] ); } /// unary vector subract inline Vec4& operator -= (const Vec4& rhs) { _v[0]-=rhs._v[0]; _v[1]-=rhs._v[1]; _v[2]-=rhs._v[2]; _v[3]-=rhs._v[3]; return *this; } /// negation operator. Returns the negative of the Vec4 inline Vec4 operator - () const { return Vec4 (-_v[0], -_v[1], -_v[2], -_v[3]); } /// Length of the vector = sqrt( vec . vec ) inline float length( void ) const { return sqrtf( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]); } /// Length squared of the vector = vec . vec inline float length2( void ) const { return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]; } /** normalize the vector so that it has length unity returns the previous length of the vector*/ inline float normalize() { float norm = Vec4::length(); _v[0] /= norm; _v[1] /= norm; _v[2] /= norm; _v[3] /= norm; return( norm ); } friend inline ostream& operator << (ostream& output, const Vec4& vec) { output << vec._v[0] << " " << vec._v[1] << " " << vec._v[2] << " " << vec._v[3]; return output; // to enable cascading } }; // end of class Vec4 } // end of namespace osg #endif