/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield * * This library is open source and may be redistributed and/or modified under * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or * (at your option) any later version. The full license is in LICENSE file * included with this distribution, and on the openscenegraph.org website. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * OpenSceneGraph Public License for more details. */ #ifndef OSG_STATE #define OSG_STATE 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef GL_TEXTURE0 #define GL_TEXTURE0 0x84C0 #endif #ifndef GL_FOG_COORDINATE_ARRAY #ifdef GL_FOG_COORDINATE_ARRAY_EXT #define GL_FOG_COORDINATE_ARRAY GL_FOG_COORDINATE_ARRAY_EXT #else #define GL_FOG_COORDINATE_ARRAY 0x8457 #endif #endif #ifndef GL_SECONDARY_COLOR_ARRAY #ifdef GL_SECONDARY_COLOR_ARRAY_EXT #define GL_SECONDARY_COLOR_ARRAY GL_SECONDARY_COLOR_ARRAY_EXT #else #define GL_SECONDARY_COLOR_ARRAY 0x845E #endif #endif namespace osg { /** macro for use with osg::StateAttribute::apply methods for detecting and * reporting OpenGL error messages.*/ #define OSG_GL_DEBUG(message) \ if (state.getFineGrainedErrorDetection()) \ { \ GLenum errorNo = glGetError(); \ if (errorNo!=GL_NO_ERROR) \ { \ osg::notify(WARN)<<"Warning: detected OpenGL error '"<size) popStateSet(); } typedef std::vector StateSetStack; /** Get the StateSet stack.*/ StateSetStack& getStateSetStack() { return _stateStateStack; } /** Copy the modes and attributes which capture the current state.*/ void captureCurrentState(StateSet& stateset) const; /** reset the state object to an empty stack.*/ void reset(); inline const Viewport* getCurrentViewport() const { return static_cast(getLastAppliedAttribute(osg::StateAttribute::VIEWPORT)); } void setInitialViewMatrix(const osg::RefMatrix* matrix); inline const osg::Matrix& getInitialViewMatrix() const { return *_initialViewMatrix; } inline const osg::Matrix& getInitialInverseViewMatrix() const { return _initialInverseViewMatrix; } inline void applyProjectionMatrix(const osg::RefMatrix* matrix) { if (_projection!=matrix) { glMatrixMode( GL_PROJECTION ); if (matrix) { _projection=matrix; glLoadMatrix(matrix->ptr()); } else { _projection=_identity; glLoadIdentity(); } glMatrixMode( GL_MODELVIEW ); } } inline const osg::Matrix& getProjectionMatrix() const { return *_projection; } inline void applyModelViewMatrix(const osg::RefMatrix* matrix) { if (_modelView!=matrix) { if (matrix) { _modelView=matrix; glLoadMatrix(matrix->ptr()); } else { _modelView=_identity; glLoadIdentity(); } } } const osg::Matrix& getModelViewMatrix() const { return *_modelView; } Polytope getViewFrustum() const; /** Apply stateset.*/ void apply(const StateSet* dstate); /** Updates the OpenGL state so that it matches the \c StateSet at the * top of the stack of StateSets maintained internally by a * \c State. */ void apply(); /** Set whether a particular OpenGL mode is valid in the current graphics context. * Use to disable OpenGL modes that are not supported by current graphics drivers/context.*/ inline void setModeValidity(StateAttribute::GLMode mode,bool valid) { ModeStack& ms = _modeMap[mode]; ms.valid = valid; } /** Get whether a particular OpenGL mode is valid in the current graphics context. * Use to disable OpenGL modes that are not supported by current graphics drivers/context.*/ inline bool getModeValidity(StateAttribute::GLMode mode) { ModeStack& ms = _modeMap[mode]; return ms.valid; } inline void setGlobalDefaultModeValue(StateAttribute::GLMode mode,bool enabled) { ModeStack& ms = _modeMap[mode]; ms.global_default_value = enabled; } inline bool getGlobalDefaultModeValue(StateAttribute::GLMode mode) { return _modeMap[mode].global_default_value; } /** Apply an OpenGL mode if required. This is a wrapper around * \c glEnable() and \c glDisable(), that just actually calls these * functions if the \c enabled flag is different than the current * state. * @return \c true if the state was actually changed. \c false * otherwise. Notice that a \c false return does not indicate * an error, it just means that the mode was already set to the * same value as the \c enabled parameter. */ inline bool applyMode(StateAttribute::GLMode mode,bool enabled) { ModeStack& ms = _modeMap[mode]; ms.changed = true; return applyMode(mode,enabled,ms); } inline void setGlobalDefaultTextureModeValue(unsigned int unit, StateAttribute::GLMode mode,bool enabled) { ModeMap& modeMap = getOrCreateTextureModeMap(unit); ModeStack& ms = modeMap[mode]; ms.global_default_value = enabled; } inline bool getGlobalDefaultTextureModeValue(unsigned int unit, StateAttribute::GLMode mode) { ModeMap& modeMap = getOrCreateTextureModeMap(unit); ModeStack& ms = modeMap[mode]; return ms.global_default_value; } inline bool applyTextureMode(unsigned int unit, StateAttribute::GLMode mode,bool enabled) { if (setActiveTextureUnit(unit)) { ModeMap& modeMap = getOrCreateTextureModeMap(unit); ModeStack& ms = modeMap[mode]; ms.changed = true; return applyMode(mode,enabled,ms); } else return false; } inline void setGlobalDefaultAttribute(const StateAttribute* attribute) { AttributeStack& as = _attributeMap[attribute->getTypeMemberPair()]; as.global_default_attribute = attribute; } inline const StateAttribute* getGlobalDefaultAttribute(StateAttribute::Type type, unsigned int member=0) { AttributeStack& as = _attributeMap[StateAttribute::TypeMemberPair(type,member)]; return as.global_default_attribute.get(); } /** Apply an attribute if required. */ inline bool applyAttribute(const StateAttribute* attribute) { AttributeStack& as = _attributeMap[attribute->getTypeMemberPair()]; as.changed = true; return applyAttribute(attribute,as); } inline void setGlobalDefaultTextureAttribute(unsigned int unit, const StateAttribute* attribute) { AttributeMap& attributeMap = getOrCreateTextureAttributeMap(unit); AttributeStack& as = attributeMap[attribute->getTypeMemberPair()]; as.global_default_attribute = attribute; } inline const StateAttribute* getGlobalDefaultTextureAttribute(unsigned int unit, StateAttribute::Type type, unsigned int member = 0) { AttributeMap& attributeMap = getOrCreateTextureAttributeMap(unit); AttributeStack& as = attributeMap[StateAttribute::TypeMemberPair(type,member)]; return as.global_default_attribute.get(); } inline bool applyTextureAttribute(unsigned int unit, const StateAttribute* attribute) { if (setActiveTextureUnit(unit)) { AttributeMap& attributeMap = getOrCreateTextureAttributeMap(unit); AttributeStack& as = attributeMap[attribute->getTypeMemberPair()]; as.changed = true; return applyAttribute(attribute,as); } else return false; } /** Mode has been set externally, update state to reflect this setting.*/ void haveAppliedMode(StateAttribute::GLMode mode,StateAttribute::GLModeValue value); /** Mode has been set externally, therefore dirty the associated mode in osg::State * so it is applied on next call to osg::State::apply(..)*/ void haveAppliedMode(StateAttribute::GLMode mode); /** Attribute has been applied externally, update state to reflect this setting.*/ void haveAppliedAttribute(const StateAttribute* attribute); /** Attribute has been applied externally, * and therefore this attribute type has been dirtied * and will need to be re-applied on next osg::State.apply(..). * note, if you have an osg::StateAttribute which you have applied externally * then use the have_applied(attribute) method as this will cause the osg::State to * track the current state more accurately and enable lazy state updating such * that only changed state will be applied.*/ void haveAppliedAttribute(StateAttribute::Type type, unsigned int member=0); /** Get whether the current specified mode is enabled (true) or disabled (false).*/ bool getLastAppliedMode(StateAttribute::GLMode mode) const; /** Get the current specified attribute, return NULL if one has not yet been applied.*/ const StateAttribute* getLastAppliedAttribute(StateAttribute::Type type, unsigned int member=0) const; /** texture Mode has been set externally, update state to reflect this setting.*/ void haveAppliedTextureMode(unsigned int unit, StateAttribute::GLMode mode,StateAttribute::GLModeValue value); /** texture Mode has been set externally, therefore dirty the associated mode in osg::State * so it is applied on next call to osg::State::apply(..)*/ void haveAppliedTextureMode(unsigned int unit, StateAttribute::GLMode mode); /** texture Attribute has been applied externally, update state to reflect this setting.*/ void haveAppliedTextureAttribute(unsigned int unit, const StateAttribute* attribute); /** texture Attribute has been applied externally, * and therefore this attribute type has been dirtied * and will need to be re-appplied on next osg::State.apply(..). * note, if you have an osg::StateAttribute which you have applied externally * then use the have_applied(attribute) method as this will the osg::State to * track the current state more accurately and enable lazy state updating such * that only changed state will be applied.*/ void haveAppliedTextureAttribute(unsigned int unit, StateAttribute::Type type, unsigned int member=0); /** Get whether the current specified texture mode is enabled (true) or disabled (false).*/ bool getLastAppliedTextureMode(unsigned int unit, StateAttribute::GLMode mode) const; /** Get the current specified texture attribute, return NULL if one has not yet been applied.*/ const StateAttribute* getLastAppliedTextureAttribute(unsigned int unit, StateAttribute::Type type, unsigned int member=0) const; /** Dirty the modes previously applied in osg::State.*/ void dirtyAllModes(); /** Dirty the modes attributes previously applied in osg::State.*/ void dirtyAllAttributes(); /** disable the vertex, normal, color, tex coords, secondary color, fog coord and index arrays.*/ void disableAllVertexArrays(); /** dirty the vertex, normal, color, tex coords, secondary color, fog coord and index arrays.*/ void dirtyAllVertexArrays(); void setCurrentVertexBufferObject(osg::VertexBufferObject* vbo) { _currentVBO = vbo; } const VertexBufferObject* getCurrentVertexBufferObject() { return _currentVBO; } inline void bindVertexBufferObject(const osg::VertexBufferObject* vbo) { if (vbo == _currentVBO) return; if (vbo->isDirty(_contextID)) vbo->compileBuffer(_contextID, *this); else _glBindBuffer(GL_ARRAY_BUFFER_ARB,vbo->buffer(_contextID)); _currentVBO = vbo; } inline void unbindVertexBufferObject() { if (!_currentVBO) return; _glBindBuffer(GL_ARRAY_BUFFER_ARB,0); _currentVBO = 0; } void setCurrentElementBufferObject(osg::ElementBufferObject* ebo) { _currentEBO = ebo; } const ElementBufferObject* getCurrentElementBufferObject() { return _currentEBO; } inline void bindElementBufferObject(const osg::ElementBufferObject* ebo) { if (ebo == _currentEBO) return; if (ebo->isDirty(_contextID)) ebo->compileBuffer(_contextID, *this); else _glBindBuffer(GL_ELEMENT_ARRAY_BUFFER_ARB,ebo->buffer(_contextID)); _currentEBO = ebo; } inline void unbindElementBufferObject() { if (!_currentEBO) return; _glBindBuffer(GL_ELEMENT_ARRAY_BUFFER_ARB,0); _currentEBO = 0; } void setCurrentPixelBufferObject(osg::PixelBufferObject* pbo) { _currentPBO = pbo; } const PixelBufferObject* getCurrentPixelBufferObject() { return _currentPBO; } inline void bindPixelBufferObject(const osg::PixelBufferObject* pbo) { if (pbo == _currentPBO) return; if (pbo->isDirty(_contextID)) pbo->compileBuffer(_contextID, *this); else _glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB,pbo->buffer(_contextID)); _currentPBO = pbo; } inline void unbindPixelBufferObject() { if (!_currentPBO) return; _glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB,0); _currentPBO = 0; } /** Wrapper around glInterleavedArrays(..). * also resets the internal array points and modes within osg::State to keep the other * vertex array operations consistent. */ void setInterleavedArrays( GLenum format, GLsizei stride, const GLvoid* pointer); /** Set the vertex pointer using an osg::Array, and manage any VBO that are required.*/ inline void setVertexPointer(const Array* array) { if (array) { const VertexBufferObject* vbo = array->getVertexBufferObject(); if (vbo) { bindVertexBufferObject(vbo); setVertexPointer(array->getDataSize(),array->getDataType(),0,vbo->getOffset(array->getVertexBufferObjectIndex())); } else { unbindVertexBufferObject(); setVertexPointer(array->getDataSize(),array->getDataType(),0,array->getDataPointer()); } } else disableVertexPointer(); } /** wrapper around glEnableClientState(GL_VERTEX_ARRAY);glVertexPointer(..); * note, only updates values that change.*/ inline void setVertexPointer( GLint size, GLenum type, GLsizei stride, const GLvoid *ptr ) { if (!_vertexArray._enabled || _vertexArray._dirty) { _vertexArray._enabled = true; glEnableClientState(GL_VERTEX_ARRAY); } //if (_vertexArray._pointer!=ptr || _vertexArray._dirty) { _vertexArray._pointer=ptr; glVertexPointer( size, type, stride, ptr ); } _vertexArray._dirty = false; } /** wrapper around glDisableClientState(GL_VERTEX_ARRAY). * note, only updates values that change.*/ inline void disableVertexPointer() { if (_vertexArray._enabled || _vertexArray._dirty) { _vertexArray._enabled = false; _vertexArray._dirty = false; glDisableClientState(GL_VERTEX_ARRAY); } } inline void dirtyVertexPointer() { _vertexArray._pointer = 0; _vertexArray._dirty = true; } /** Set the normal pointer using an osg::Array, and manage any VBO that are required.*/ inline void setNormalPointer(const Array* array) { if (array) { const VertexBufferObject* vbo = array->getVertexBufferObject(); if (vbo) { bindVertexBufferObject(vbo); setNormalPointer(array->getDataType(),0,vbo->getOffset(array->getVertexBufferObjectIndex())); } else { unbindVertexBufferObject(); setNormalPointer(array->getDataType(),0,array->getDataPointer()); } } else disableNormalPointer(); } /** wrapper around glEnableClientState(GL_NORMAL_ARRAY);glNormalPointer(..); * note, only updates values that change.*/ inline void setNormalPointer( GLenum type, GLsizei stride, const GLvoid *ptr ) { if (!_normalArray._enabled || _normalArray._dirty) { _normalArray._enabled = true; glEnableClientState(GL_NORMAL_ARRAY); } //if (_normalArray._pointer!=ptr || _normalArray._dirty) { _normalArray._pointer=ptr; glNormalPointer( type, stride, ptr ); } _normalArray._dirty = false; } /** wrapper around glDisableClientState(GL_NORMAL_ARRAY); * note, only updates values that change.*/ inline void disableNormalPointer() { if (_normalArray._enabled || _normalArray._dirty) { _normalArray._enabled = false; _normalArray._dirty = false; glDisableClientState(GL_NORMAL_ARRAY); } } inline void dirtyNormalPointer() { _normalArray._pointer = 0; _normalArray._dirty = true; } /** Set the color pointer using an osg::Array, and manage any VBO that are required.*/ inline void setColorPointer(const Array* array) { if (array) { const VertexBufferObject* vbo = array->getVertexBufferObject(); if (vbo) { bindVertexBufferObject(vbo); setColorPointer(array->getDataSize(),array->getDataType(),0,vbo->getOffset(array->getVertexBufferObjectIndex())); } else { unbindVertexBufferObject(); setColorPointer(array->getDataSize(),array->getDataType(),0,array->getDataPointer()); } } else disableColorPointer(); } /** wrapper around glEnableClientState(GL_COLOR_ARRAY);glColorPointer(..); * note, only updates values that change.*/ inline void setColorPointer( GLint size, GLenum type, GLsizei stride, const GLvoid *ptr ) { if (!_colorArray._enabled || _colorArray._dirty) { _colorArray._enabled = true; glEnableClientState(GL_COLOR_ARRAY); } //if (_colorArray._pointer!=ptr || _colorArray._dirty) { _colorArray._pointer=ptr; glColorPointer( size, type, stride, ptr ); } _colorArray._dirty = false; } /** wrapper around glDisableClientState(GL_COLOR_ARRAY); * note, only updates values that change.*/ inline void disableColorPointer() { if (_colorArray._enabled || _colorArray._dirty) { _colorArray._enabled = false; _colorArray._dirty = false; glDisableClientState(GL_COLOR_ARRAY); } } inline void dirtyColorPointer() { _colorArray._pointer = 0; _colorArray._dirty = true; } inline bool isSecondaryColorSupported() const { return _isSecondaryColorSupportResolved?_isSecondaryColorSupported:computeSecondaryColorSupported(); } /** Set the secondary color pointer using an osg::Array, and manage any VBO that are required.*/ inline void setSecondaryColorPointer(const Array* array) { if (array) { const VertexBufferObject* vbo = array->getVertexBufferObject(); if (vbo) { bindVertexBufferObject(vbo); setSecondaryColorPointer(array->getDataSize(),array->getDataType(),0,vbo->getOffset(array->getVertexBufferObjectIndex())); } else { unbindVertexBufferObject(); setSecondaryColorPointer(array->getDataSize(),array->getDataType(),0,array->getDataPointer()); } } else disableSecondaryColorPointer(); } /** wrapper around glEnableClientState(GL_SECONDARY_COLOR_ARRAY);glSecondayColorPointer(..); * note, only updates values that change.*/ void setSecondaryColorPointer( GLint size, GLenum type, GLsizei stride, const GLvoid *ptr ); /** wrapper around glDisableClientState(GL_SECONDARY_COLOR_ARRAY); * note, only updates values that change.*/ inline void disableSecondaryColorPointer() { if (_secondaryColorArray._enabled || _secondaryColorArray._dirty) { _secondaryColorArray._enabled = false; _secondaryColorArray._dirty = false; if (isSecondaryColorSupported()) glDisableClientState(GL_SECONDARY_COLOR_ARRAY); } } inline void dirtySecondaryColorPointer() { _secondaryColorArray._pointer = 0; _secondaryColorArray._dirty = true; } /** wrapper around glEnableClientState(GL_INDEX_ARRAY);glIndexPointer(..); * note, only updates values that change.*/ inline void setIndexPointer( GLenum type, GLsizei stride, const GLvoid *ptr ) { if (!_indexArray._enabled || _indexArray._dirty) { _indexArray._enabled = true; glEnableClientState(GL_INDEX_ARRAY); } //if (_indexArray._pointer!=ptr || _indexArray._dirty) { _indexArray._pointer=ptr; glIndexPointer( type, stride, ptr ); } _indexArray._dirty = false; } /** wrapper around glDisableClientState(GL_INDEX_ARRAY); * note, only updates values that change.*/ inline void disableIndexPointer() { if (_indexArray._enabled || _indexArray._dirty) { _indexArray._enabled = false; _indexArray._dirty = false; glDisableClientState(GL_INDEX_ARRAY); } } inline void dirtyIndexPointer() { _indexArray._pointer = 0; _indexArray._dirty = true; } inline bool isFogCoordSupported() const { return _isFogCoordSupportResolved?_isFogCoordSupported:computeFogCoordSupported(); } /** Set the fog coord pointer using an osg::Array, and manage any VBO that are required.*/ inline void setFogCoordPointer(const Array* array) { if (array) { const VertexBufferObject* vbo = array->getVertexBufferObject(); if (vbo) { bindVertexBufferObject(vbo); setFogCoordPointer(array->getDataType(),0,vbo->getOffset(array->getVertexBufferObjectIndex())); } else { unbindVertexBufferObject(); setFogCoordPointer(array->getDataType(),0,array->getDataPointer()); } } else disableFogCoordPointer(); } /** wrapper around glEnableClientState(GL_FOG_COORDINATE_ARRAY);glFogCoordPointer(..); * note, only updates values that change.*/ void setFogCoordPointer( GLenum type, GLsizei stride, const GLvoid *ptr ); /** wrapper around glDisableClientState(GL_FOG_COORDINATE_ARRAY); * note, only updates values that change.*/ inline void disableFogCoordPointer() { if (_fogArray._enabled || _fogArray._dirty) { _fogArray._enabled = false; _fogArray._dirty = false; if (isFogCoordSupported()) glDisableClientState(GL_FOG_COORDINATE_ARRAY); } } inline void dirtyFogCoordPointer() { _fogArray._pointer = 0; _fogArray._dirty = true; } /** Set the tex coord pointer using an osg::Array, and manage any VBO that are required.*/ inline void setTexCoordPointer(unsigned int unit, const Array* array) { if (array) { const VertexBufferObject* vbo = array->getVertexBufferObject(); if (vbo) { bindVertexBufferObject(vbo); setTexCoordPointer(unit, array->getDataSize(),array->getDataType(),0,vbo->getOffset(array->getVertexBufferObjectIndex())); } else { unbindVertexBufferObject(); setTexCoordPointer(unit, array->getDataSize(),array->getDataType(),0,array->getDataPointer()); } } else disableTexCoordPointer(unit); } /** wrapper around glEnableClientState(GL_TEXTURE_COORD_ARRAY);glTexCoordPointer(..); * note, only updates values that change.*/ inline void setTexCoordPointer( unsigned int unit, GLint size, GLenum type, GLsizei stride, const GLvoid *ptr ) { if (setClientActiveTextureUnit(unit)) { if ( unit >= _texCoordArrayList.size()) _texCoordArrayList.resize(unit+1); EnabledArrayPair& eap = _texCoordArrayList[unit]; if (!eap._enabled || eap._dirty) { eap._enabled = true; glEnableClientState(GL_TEXTURE_COORD_ARRAY); } //if (eap._pointer!=ptr || eap._dirty) { glTexCoordPointer( size, type, stride, ptr ); eap._pointer = ptr; } eap._dirty = false; } } /** wrapper around glDisableClientState(GL_TEXTURE_COORD_ARRAY); * note, only updates values that change.*/ inline void disableTexCoordPointer( unsigned int unit ) { if (setClientActiveTextureUnit(unit)) { if ( unit >= _texCoordArrayList.size()) _texCoordArrayList.resize(unit+1); EnabledArrayPair& eap = _texCoordArrayList[unit]; if (eap._enabled || eap._dirty) { eap._enabled = false; eap._dirty = false; glDisableClientState(GL_TEXTURE_COORD_ARRAY); } } } inline void dirtyTexCoordPointer( unsigned int unit ) { if ( unit >= _texCoordArrayList.size()) return; // _texCoordArrayList.resize(unit+1); EnabledArrayPair& eap = _texCoordArrayList[unit]; eap._pointer = 0; eap._dirty = true; } inline void disableTexCoordPointersAboveAndIncluding( unsigned int unit ) { while (unit<_texCoordArrayList.size()) { EnabledArrayPair& eap = _texCoordArrayList[unit]; if (eap._enabled || eap._dirty) { if (setClientActiveTextureUnit(unit)) { eap._enabled = false; eap._dirty = false; glDisableClientState(GL_TEXTURE_COORD_ARRAY); } } ++unit; } } inline void dirtyTexCoordPointersAboveAndIncluding( unsigned int unit ) { while (unit<_texCoordArrayList.size()) { EnabledArrayPair& eap = _texCoordArrayList[unit]; eap._pointer = 0; eap._dirty = true; ++unit; } } /** Set the current texture unit, return true if selected, * false if selection failed such as when multitexturing is not supported. * note, only updates values that change.*/ bool setActiveTextureUnit( unsigned int unit ); /** Get the current texture unit.*/ unsigned int getActiveTextureUnit() const { return _currentActiveTextureUnit; } /** Set the current tex coord array texture unit, return true if selected, * false if selection failed such as when multitexturing is not supported. * note, only updates values that change.*/ bool setClientActiveTextureUnit( unsigned int unit ); /** Get the current tex coord array texture unit.*/ unsigned int getClientActiveTextureUnit() const { return _currentClientActiveTextureUnit; } /** Set the vertex attrib pointer using an osg::Array, and manage any VBO that are required.*/ inline void setVertexAttribPointer(unsigned int unit, const Array* array, GLboolean normalized) { if (array) { const VertexBufferObject* vbo = array->getVertexBufferObject(); if (vbo) { bindVertexBufferObject(vbo); setVertexAttribPointer(unit, array->getDataSize(),array->getDataType(),normalized,0,vbo->getOffset(array->getVertexBufferObjectIndex())); } else { unbindVertexBufferObject(); setVertexAttribPointer(unit, array->getDataSize(),array->getDataType(),normalized,0,array->getDataPointer()); } } else disableVertexAttribPointer(unit); } /** wrapper around glEnableVertexAttribArrayARB(index);glVertexAttribPointerARB(..); * note, only updates values that change.*/ void setVertexAttribPointer( unsigned int index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid *ptr ); /** wrapper around DisableVertexAttribArrayARB(index); * note, only updates values that change.*/ void disableVertexAttribPointer( unsigned int index ); void disableVertexAttribPointersAboveAndIncluding( unsigned int index ); inline void dirtyVertexAttribPointersAboveAndIncluding( unsigned int index ) { while (index<_vertexAttribArrayList.size()) { EnabledArrayPair& eap = _vertexAttribArrayList[index]; eap._pointer = 0; eap._dirty = true; ++index; } } bool isVertexBufferObjectSupported() const { return _isVertexBufferObjectSupportResolved?_isVertexBufferObjectSupported:computeVertexBufferObjectSupported(); } void setLastAppliedProgramObject(const Program::PerContextProgram* program) { if (_lastAppliedProgramObject!=program) { _lastAppliedProgramObject = program; if (program) _appliedProgramObjectSet.insert(program); } } const Program::PerContextProgram* getLastAppliedProgramObject() const { return _lastAppliedProgramObject; } inline GLint getUniformLocation( const std::string& name ) const { return _lastAppliedProgramObject ? _lastAppliedProgramObject->getUniformLocation(name) : -1; } inline GLint getAttribLocation( const std::string& name ) const { return _lastAppliedProgramObject ? _lastAppliedProgramObject->getAttribLocation(name) : -1; } /** Set the frame stamp for the current frame.*/ inline void setFrameStamp(FrameStamp* fs) { _frameStamp = fs; } /** Get the frame stamp for the current frame.*/ inline const FrameStamp* getFrameStamp() const { return _frameStamp.get(); } /** Set the DisplaySettings. Note, nothing is applied, the visual settings are just * used in the State object to pass the current visual settings to Drawables * during rendering. */ inline void setDisplaySettings(DisplaySettings* vs) { _displaySettings = vs; } /** Get the DisplaySettings */ inline const DisplaySettings* getDisplaySettings() const { return _displaySettings.get(); } /** Set flag for early termination of the draw traversal.*/ void setAbortRenderingPtr(bool* abortPtr) { _abortRenderingPtr = abortPtr; } /** Get flag for early termination of the draw traversal, * if true steps should be taken to complete rendering early.*/ bool getAbortRendering() const { return _abortRenderingPtr!=0?(*_abortRenderingPtr):false; } struct DynamicObjectRenderingCompletedCallback : public osg::Referenced { virtual void completed(osg::State*) = 0; }; /** Set the callback to be called when the dynamic object count hits 0.*/ void setDynamicObjectRenderingCompletedCallback(DynamicObjectRenderingCompletedCallback* cb){ _completeDynamicObjectRenderingCallback = cb; } /** Get the callback to be called when the dynamic object count hits 0.*/ DynamicObjectRenderingCompletedCallback* getDynamicObjectRenderingCompletedCallback() { return _completeDynamicObjectRenderingCallback.get(); } /** Set the number of dynamic objects that will be rendered in this graphics context this frame.*/ void setDynamicObjectCount(unsigned int count, bool callCallbackOnZero = false) { if (_dynamicObjectCount != count) { _dynamicObjectCount = count; if (_dynamicObjectCount==0 && callCallbackOnZero && _completeDynamicObjectRenderingCallback.valid()) { _completeDynamicObjectRenderingCallback->completed(this); } } } /** Get the number of dynamic objects that will be rendered in this graphics context this frame.*/ unsigned int getDynamicObjectCount() const { return _dynamicObjectCount; } /** Decrement the number of dynamic objects left to render this frame, and once the count goes to zero call the * DynamicObjectRenderingCompletedCallback to inform of completion.*/ inline void decrementDynamicObjectCount() { --_dynamicObjectCount; if (_dynamicObjectCount==0 && _completeDynamicObjectRenderingCallback.valid()) { _completeDynamicObjectRenderingCallback->completed(this); } } enum CheckForGLErrors { /** NEVER_CHECK_GL_ERRORS hints that OpenGL need not be checked for, this is the fastest option since checking for errors does incurr a small overhead.*/ NEVER_CHECK_GL_ERRORS, /** ONCE_PER_FRAME means that OpenGl errors will be checked for once per frame, the overhead is still small, but at least OpenGL errors that are occurring will be caught, the reporting isn't fine grained enough for debugging purposes.*/ ONCE_PER_FRAME, /** ONCE_PER_ATTRIBUTE means that OpenGL errors will be checked for after every attribute is applied, allow errors to be directly associated with particular operations which makes debugging much easier.*/ ONCE_PER_ATTRIBUTE }; /** Set whether and how often OpenGL errors should be checked for.*/ void setCheckForGLErrors(CheckForGLErrors check) { _checkGLErrors = check; } /** Get whether and how often OpenGL errors should be checked for.*/ CheckForGLErrors getCheckForGLErrors() const { return _checkGLErrors; } bool checkGLErrors(const char* str) const; bool checkGLErrors(StateAttribute::GLMode mode) const; bool checkGLErrors(const StateAttribute* attribute) const; /** Initialize extension used by osg:::State.*/ void initializeExtensionProcs(); protected: virtual ~State(); GraphicsContext* _graphicsContext; unsigned int _contextID; ref_ptr _frameStamp; ref_ptr _identity; ref_ptr _initialViewMatrix; ref_ptr _projection; ref_ptr _modelView; Matrix _initialInverseViewMatrix; ref_ptr _displaySettings; bool* _abortRenderingPtr; CheckForGLErrors _checkGLErrors; struct ModeStack { typedef std::vector ValueVec; ModeStack() { valid = true; changed = false; last_applied_value = false; global_default_value = false; } bool valid; bool changed; bool last_applied_value; bool global_default_value; ValueVec valueVec; }; struct AttributeStack { typedef std::pair AttributePair; typedef std::vector AttributeVec; AttributeStack() { changed = false; last_applied_attribute = 0L; global_default_attribute = 0L; } /** apply an attribute if required, passing in attribute and appropriate attribute stack */ bool changed; const StateAttribute* last_applied_attribute; ref_ptr global_default_attribute; AttributeVec attributeVec; }; struct UniformStack { typedef std::pair UniformPair; typedef std::vector UniformVec; UniformStack() {} UniformVec uniformVec; }; /** Apply an OpenGL mode if required, passing in mode, enable flag and * appropriate mode stack. This is a wrapper around \c glEnable() and * \c glDisable(), that just actually calls these functions if the * \c enabled flag is different than the current state. * @return \c true if the state was actually changed. \c false * otherwise. Notice that a \c false return does not indicate * an error, it just means that the mode was already set to the * same value as the \c enabled parameter. */ inline bool applyMode(StateAttribute::GLMode mode,bool enabled,ModeStack& ms) { if (ms.valid && ms.last_applied_value != enabled) { ms.last_applied_value = enabled; if (enabled) glEnable(mode); else glDisable(mode); if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(mode); return true; } else return false; } /** apply an attribute if required, passing in attribute and appropriate attribute stack */ inline bool applyAttribute(const StateAttribute* attribute,AttributeStack& as) { if (as.last_applied_attribute != attribute) { if (!as.global_default_attribute.valid()) as.global_default_attribute = dynamic_cast(attribute->cloneType()); as.last_applied_attribute = attribute; attribute->apply(*this); if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(attribute); return true; } else return false; } inline bool applyGlobalDefaultAttribute(AttributeStack& as) { if (as.last_applied_attribute != as.global_default_attribute.get()) { as.last_applied_attribute = as.global_default_attribute.get(); if (as.global_default_attribute.valid()) { as.global_default_attribute->apply(*this); if (_checkGLErrors==ONCE_PER_ATTRIBUTE) checkGLErrors(as.global_default_attribute.get()); } return true; } else return false; } typedef std::map ModeMap; typedef std::vector TextureModeMapList; typedef std::map AttributeMap; typedef std::vector TextureAttributeMapList; typedef std::map UniformMap; typedef std::vector > MatrixStack; typedef std::set > AppliedProgramObjectSet; ModeMap _modeMap; AttributeMap _attributeMap; UniformMap _uniformMap; TextureModeMapList _textureModeMapList; TextureAttributeMapList _textureAttributeMapList; AppliedProgramObjectSet _appliedProgramObjectSet; const Program::PerContextProgram* _lastAppliedProgramObject; StateSetStack _stateStateStack; struct EnabledArrayPair { EnabledArrayPair():_dirty(true),_enabled(false),_normalized(0),_pointer(0) {} EnabledArrayPair(const EnabledArrayPair& eap):_dirty(eap._dirty), _enabled(eap._enabled),_normalized(eap._normalized),_pointer(eap._pointer) {} EnabledArrayPair& operator = (const EnabledArrayPair& eap) { _dirty=eap._dirty; _enabled=eap._enabled; _normalized=eap._normalized;_pointer=eap._pointer; return *this; } bool _dirty; bool _enabled; GLboolean _normalized; const GLvoid* _pointer; }; typedef std::vector EnabledTexCoordArrayList; typedef std::vector EnabledVertexAttribArrayList; EnabledArrayPair _vertexArray; EnabledArrayPair _normalArray; EnabledArrayPair _colorArray; EnabledArrayPair _secondaryColorArray; EnabledArrayPair _indexArray; EnabledArrayPair _fogArray; EnabledTexCoordArrayList _texCoordArrayList; EnabledVertexAttribArrayList _vertexAttribArrayList; unsigned int _currentActiveTextureUnit; unsigned int _currentClientActiveTextureUnit; const VertexBufferObject* _currentVBO; const ElementBufferObject* _currentEBO; const PixelBufferObject* _currentPBO; inline ModeMap& getOrCreateTextureModeMap(unsigned int unit) { if (unit>=_textureModeMapList.size()) _textureModeMapList.resize(unit+1); return _textureModeMapList[unit]; } inline AttributeMap& getOrCreateTextureAttributeMap(unsigned int unit) { if (unit>=_textureAttributeMapList.size()) _textureAttributeMapList.resize(unit+1); return _textureAttributeMapList[unit]; } inline void pushModeList(ModeMap& modeMap,const StateSet::ModeList& modeList); inline void pushAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList); inline void pushUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList); inline void popModeList(ModeMap& modeMap,const StateSet::ModeList& modeList); inline void popAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList); inline void popUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList); inline void applyModeList(ModeMap& modeMap,const StateSet::ModeList& modeList); inline void applyAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList); inline void applyUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList); inline void applyModeMap(ModeMap& modeMap); inline void applyAttributeMap(AttributeMap& attributeMap); inline void applyUniformMap(UniformMap& uniformMap); void haveAppliedMode(ModeMap& modeMap,StateAttribute::GLMode mode,StateAttribute::GLModeValue value); void haveAppliedMode(ModeMap& modeMap,StateAttribute::GLMode mode); void haveAppliedAttribute(AttributeMap& attributeMap,const StateAttribute* attribute); void haveAppliedAttribute(AttributeMap& attributeMap,StateAttribute::Type type, unsigned int member); bool getLastAppliedMode(const ModeMap& modeMap,StateAttribute::GLMode mode) const; const StateAttribute* getLastAppliedAttribute(const AttributeMap& attributeMap,StateAttribute::Type type, unsigned int member) const; mutable bool _isSecondaryColorSupportResolved; mutable bool _isSecondaryColorSupported; bool computeSecondaryColorSupported() const; mutable bool _isFogCoordSupportResolved; mutable bool _isFogCoordSupported; bool computeFogCoordSupported() const; mutable bool _isVertexBufferObjectSupportResolved; mutable bool _isVertexBufferObjectSupported; bool computeVertexBufferObjectSupported() const; typedef void (APIENTRY * ActiveTextureProc) (GLenum texture); typedef void (APIENTRY * FogCoordPointerProc) (GLenum type, GLsizei stride, const GLvoid *pointer); typedef void (APIENTRY * SecondaryColorPointerProc) (GLint size, GLenum type, GLsizei stride, const GLvoid *pointer); typedef void (APIENTRY * VertexAttribPointerProc) (unsigned int, GLint, GLenum, GLboolean normalized, GLsizei stride, const GLvoid *pointer); typedef void (APIENTRY * EnableVertexAttribProc) (unsigned int); typedef void (APIENTRY * DisableVertexAttribProc) (unsigned int); typedef void (APIENTRY * BindBufferProc) (GLenum target, GLuint buffer); bool _extensionProcsInitialized; ActiveTextureProc _glClientActiveTexture; ActiveTextureProc _glActiveTexture; FogCoordPointerProc _glFogCoordPointer; SecondaryColorPointerProc _glSecondaryColorPointer; VertexAttribPointerProc _glVertexAttribPointer; EnableVertexAttribProc _glEnableVertexAttribArray; DisableVertexAttribProc _glDisableVertexAttribArray; BindBufferProc _glBindBuffer; unsigned int _dynamicObjectCount; osg::ref_ptr _completeDynamicObjectRenderingCallback; }; inline void State::pushModeList(ModeMap& modeMap,const StateSet::ModeList& modeList) { for(StateSet::ModeList::const_iterator mitr=modeList.begin(); mitr!=modeList.end(); ++mitr) { // get the mode stack for incoming GLmode {mitr->first}. ModeStack& ms = modeMap[mitr->first]; if (ms.valueVec.empty()) { // first pair so simply push incoming pair to back. ms.valueVec.push_back(mitr->second); } else if ((ms.valueVec.back() & StateAttribute::OVERRIDE) && !(mitr->second & StateAttribute::PROTECTED)) // check the existing override flag { // push existing back since override keeps the previous value. ms.valueVec.push_back(ms.valueVec.back()); } else { // no override on so simply push incoming pair to back. ms.valueVec.push_back(mitr->second); } ms.changed = true; } } inline void State::pushAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList) { for(StateSet::AttributeList::const_iterator aitr=attributeList.begin(); aitr!=attributeList.end(); ++aitr) { // get the attribute stack for incoming type {aitr->first}. AttributeStack& as = attributeMap[aitr->first]; if (as.attributeVec.empty()) { // first pair so simply push incoming pair to back. as.attributeVec.push_back( AttributeStack::AttributePair(aitr->second.first.get(),aitr->second.second)); } else if ((as.attributeVec.back().second & StateAttribute::OVERRIDE) && !(aitr->second.second & StateAttribute::PROTECTED)) // check the existing override flag { // push existing back since override keeps the previous value. as.attributeVec.push_back(as.attributeVec.back()); } else { // no override on so simply push incoming pair to back. as.attributeVec.push_back( AttributeStack::AttributePair(aitr->second.first.get(),aitr->second.second)); } as.changed = true; } } inline void State::pushUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList) { for(StateSet::UniformList::const_iterator aitr=uniformList.begin(); aitr!=uniformList.end(); ++aitr) { // get the attribute stack for incoming type {aitr->first}. UniformStack& us = uniformMap[aitr->first]; if (us.uniformVec.empty()) { // first pair so simply push incoming pair to back. us.uniformVec.push_back( UniformStack::UniformPair(aitr->second.first.get(),aitr->second.second)); } else if ((us.uniformVec.back().second & StateAttribute::OVERRIDE) && !(aitr->second.second & StateAttribute::PROTECTED)) // check the existing override flag { // push existing back since override keeps the previous value. us.uniformVec.push_back(us.uniformVec.back()); } else { // no override on so simply push incoming pair to back. us.uniformVec.push_back( UniformStack::UniformPair(aitr->second.first.get(),aitr->second.second)); } } } inline void State::popModeList(ModeMap& modeMap,const StateSet::ModeList& modeList) { for(StateSet::ModeList::const_iterator mitr=modeList.begin(); mitr!=modeList.end(); ++mitr) { // get the mode stack for incoming GLmode {mitr->first}. ModeStack& ms = modeMap[mitr->first]; if (!ms.valueVec.empty()) { ms.valueVec.pop_back(); } ms.changed = true; } } inline void State::popAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList) { for(StateSet::AttributeList::const_iterator aitr=attributeList.begin(); aitr!=attributeList.end(); ++aitr) { // get the attribute stack for incoming type {aitr->first}. AttributeStack& as = attributeMap[aitr->first]; if (!as.attributeVec.empty()) { as.attributeVec.pop_back(); } as.changed = true; } } inline void State::popUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList) { for(StateSet::UniformList::const_iterator aitr=uniformList.begin(); aitr!=uniformList.end(); ++aitr) { // get the attribute stack for incoming type {aitr->first}. UniformStack& us = uniformMap[aitr->first]; if (!us.uniformVec.empty()) { us.uniformVec.pop_back(); } } } inline void State::applyModeList(ModeMap& modeMap,const StateSet::ModeList& modeList) { StateSet::ModeList::const_iterator ds_mitr = modeList.begin(); ModeMap::iterator this_mitr=modeMap.begin(); while (this_mitr!=modeMap.end() && ds_mitr!=modeList.end()) { if (this_mitr->firstfirst) { // note GLMode = this_mitr->first ModeStack& ms = this_mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyMode(this_mitr->first,new_value,ms); } else { // assume default of disabled. applyMode(this_mitr->first,ms.global_default_value,ms); } } ++this_mitr; } else if (ds_mitr->firstfirst) { // ds_mitr->first is a new mode, therefore // need to insert a new mode entry for ds_mistr->first. ModeStack& ms = modeMap[ds_mitr->first]; bool new_value = ds_mitr->second & StateAttribute::ON; applyMode(ds_mitr->first,new_value,ms); // will need to disable this mode on next apply so set it to changed. ms.changed = true; ++ds_mitr; } else { // this_mitr & ds_mitr refer to the same mode, check the override // if any otherwise just apply the incoming mode. ModeStack& ms = this_mitr->second; if (!ms.valueVec.empty() && (ms.valueVec.back() & StateAttribute::OVERRIDE) && !(ds_mitr->second & StateAttribute::PROTECTED)) { // override is on, just treat as a normal apply on modes. if (ms.changed) { ms.changed = false; bool new_value = ms.valueVec.back() & StateAttribute::ON; applyMode(this_mitr->first,new_value,ms); } } else { // no override on or no previous entry, therefore consider incoming mode. bool new_value = ds_mitr->second & StateAttribute::ON; if (applyMode(ds_mitr->first,new_value,ms)) { ms.changed = true; } } ++this_mitr; ++ds_mitr; } } // iterator over the remaining state modes to apply any previous changes. for(; this_mitr!=modeMap.end(); ++this_mitr) { // note GLMode = this_mitr->first ModeStack& ms = this_mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyMode(this_mitr->first,new_value,ms); } else { // assume default of disabled. applyMode(this_mitr->first,ms.global_default_value,ms); } } } // iterator over the remaining incoming modes to apply any new mode. for(; ds_mitr!=modeList.end(); ++ds_mitr) { ModeStack& ms = modeMap[ds_mitr->first]; bool new_value = ds_mitr->second & StateAttribute::ON; applyMode(ds_mitr->first,new_value,ms); // will need to disable this mode on next apply so set it to changed. ms.changed = true; } } inline void State::applyAttributeList(AttributeMap& attributeMap,const StateSet::AttributeList& attributeList) { StateSet::AttributeList::const_iterator ds_aitr=attributeList.begin(); AttributeMap::iterator this_aitr=attributeMap.begin(); while (this_aitr!=attributeMap.end() && ds_aitr!=attributeList.end()) { if (this_aitr->firstfirst) { // note attribute type = this_aitr->first AttributeStack& as = this_aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttribute(new_attr,as); } else { applyGlobalDefaultAttribute(as); } } ++this_aitr; } else if (ds_aitr->firstfirst) { // ds_aitr->first is a new attribute, therefore // need to insert a new attribute entry for ds_aitr->first. AttributeStack& as = attributeMap[ds_aitr->first]; const StateAttribute* new_attr = ds_aitr->second.first.get(); applyAttribute(new_attr,as); as.changed = true; ++ds_aitr; } else { // this_mitr & ds_mitr refer to the same attribute, check the override // if any otherwise just apply the incoming attribute AttributeStack& as = this_aitr->second; if (!as.attributeVec.empty() && (as.attributeVec.back().second & StateAttribute::OVERRIDE) && !(ds_aitr->second.second & StateAttribute::PROTECTED)) { // override is on, just treat as a normal apply on attribute. if (as.changed) { as.changed = false; const StateAttribute* new_attr = as.attributeVec.back().first; applyAttribute(new_attr,as); } } else { // no override on or no previous entry, therefore consider incoming attribute. const StateAttribute* new_attr = ds_aitr->second.first.get(); if (applyAttribute(new_attr,as)) { as.changed = true; } } ++this_aitr; ++ds_aitr; } } // iterator over the remaining state attributes to apply any previous changes. for(; this_aitr!=attributeMap.end(); ++this_aitr) { // note attribute type = this_aitr->first AttributeStack& as = this_aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttribute(new_attr,as); } else { applyGlobalDefaultAttribute(as); } } } // iterator over the remaining incoming attribute to apply any new attribute. for(; ds_aitr!=attributeList.end(); ++ds_aitr) { // ds_aitr->first is a new attribute, therefore // need to insert a new attribute entry for ds_aitr->first. AttributeStack& as = attributeMap[ds_aitr->first]; const StateAttribute* new_attr = ds_aitr->second.first.get(); applyAttribute(new_attr,as); // will need to update this attribute on next apply so set it to changed. as.changed = true; } } inline void State::applyUniformList(UniformMap& uniformMap,const StateSet::UniformList& uniformList) { if (!_lastAppliedProgramObject) return; StateSet::UniformList::const_iterator ds_aitr=uniformList.begin(); UniformMap::iterator this_aitr=uniformMap.begin(); while (this_aitr!=uniformMap.end() && ds_aitr!=uniformList.end()) { if (this_aitr->firstfirst) { // note attribute type = this_aitr->first UniformStack& as = this_aitr->second; if (!as.uniformVec.empty()) { _lastAppliedProgramObject->apply(*as.uniformVec.back().first); } ++this_aitr; } else if (ds_aitr->firstfirst) { _lastAppliedProgramObject->apply(*(ds_aitr->second.first.get())); ++ds_aitr; } else { // this_mitr & ds_mitr refer to the same attribute, check the override // if any otherwise just apply the incoming attribute UniformStack& as = this_aitr->second; if (!as.uniformVec.empty() && (as.uniformVec.back().second & StateAttribute::OVERRIDE) && !(ds_aitr->second.second & StateAttribute::PROTECTED)) { // override is on, just treat as a normal apply on uniform. _lastAppliedProgramObject->apply(*as.uniformVec.back().first); } else { // no override on or no previous entry, therefore consider incoming attribute. _lastAppliedProgramObject->apply(*(ds_aitr->second.first.get())); } ++this_aitr; ++ds_aitr; } } // iterator over the remaining state attributes to apply any previous changes. for(; this_aitr!=uniformMap.end(); ++this_aitr) { // note attribute type = this_aitr->first UniformStack& as = this_aitr->second; if (!as.uniformVec.empty()) { _lastAppliedProgramObject->apply(*as.uniformVec.back().first); } } // iterator over the remaining incoming attribute to apply any new attribute. for(; ds_aitr!=uniformList.end(); ++ds_aitr) { _lastAppliedProgramObject->apply(*(ds_aitr->second.first.get())); } } inline void State::applyModeMap(ModeMap& modeMap) { for(ModeMap::iterator mitr=modeMap.begin(); mitr!=modeMap.end(); ++mitr) { // note GLMode = mitr->first ModeStack& ms = mitr->second; if (ms.changed) { ms.changed = false; if (!ms.valueVec.empty()) { bool new_value = ms.valueVec.back() & StateAttribute::ON; applyMode(mitr->first,new_value,ms); } else { // assume default of disabled. applyMode(mitr->first,ms.global_default_value,ms); } } } } inline void State::applyAttributeMap(AttributeMap& attributeMap) { for(AttributeMap::iterator aitr=attributeMap.begin(); aitr!=attributeMap.end(); ++aitr) { AttributeStack& as = aitr->second; if (as.changed) { as.changed = false; if (!as.attributeVec.empty()) { const StateAttribute* new_attr = as.attributeVec.back().first; applyAttribute(new_attr,as); } else { applyGlobalDefaultAttribute(as); } } } } inline void State::applyUniformMap(UniformMap& uniformMap) { if (!_lastAppliedProgramObject) return; for(UniformMap::iterator aitr=uniformMap.begin(); aitr!=uniformMap.end(); ++aitr) { UniformStack& as = aitr->second; if (!as.uniformVec.empty()) { _lastAppliedProgramObject->apply(*as.uniformVec.back().first); } } } } #endif