/************************************************************************ * * * Copyright (C) 2002 3Dlabs Inc. Ltd. * * * ************************************************************************/ #include #include /* Coherent noise function over 1, 2 or 3 dimensions */ /* (copyright Ken Perlin) */ #define MAXB 0x100 #define N 0x1000 #define NP 12 /* 2^N */ #define NM 0xfff #define s_curve(t) ( t * t * (3. - 2. * t) ) #define lerp(t, a, b) ( a + t * (b - a) ) #define setup(i,b0,b1,r0,r1)\ t = vec[i] + N;\ b0 = ((int)t) & BM;\ b1 = (b0+1) & BM;\ r0 = t - (int)t;\ r1 = r0 - 1.; #define at2(rx,ry) ( rx * q[0] + ry * q[1] ) #define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) static void initNoise(void); static int p[MAXB + MAXB + 2]; static double g3[MAXB + MAXB + 2][3]; static double g2[MAXB + MAXB + 2][2]; static double g1[MAXB + MAXB + 2]; int start; int B; int BM; void SetNoiseFrequency(int frequency) { start = 1; B = frequency; BM = B-1; } double noise1(double arg) { int bx0, bx1; double rx0, rx1, sx, t, u, v, vec[1]; vec[0] = arg; if (start) { start = 0; initNoise(); } setup(0,bx0,bx1,rx0,rx1); sx = s_curve(rx0); u = rx0 * g1[ p[ bx0 ] ]; v = rx1 * g1[ p[ bx1 ] ]; return(lerp(sx, u, v)); } double noise2(double vec[2]) { int bx0, bx1, by0, by1, b00, b10, b01, b11; double rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v; int i, j; if (start) { start = 0; initNoise(); } setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; sx = s_curve(rx0); sy = s_curve(ry0); q = g2[ b00 ] ; u = at2(rx0,ry0); q = g2[ b10 ] ; v = at2(rx1,ry0); a = lerp(sx, u, v); q = g2[ b01 ] ; u = at2(rx0,ry1); q = g2[ b11 ] ; v = at2(rx1,ry1); b = lerp(sx, u, v); return lerp(sy, a, b); } double noise3(double vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; double rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; int i, j; if (start) { start = 0; initNoise(); } setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0); q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0); a = lerp(t, u, v); q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0); q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0); b = lerp(t, u, v); c = lerp(sy, a, b); q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1); q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1); a = lerp(t, u, v); q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1); q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1); b = lerp(t, u, v); d = lerp(sy, a, b); //fprintf(stderr, "%f\n", lerp(sz, c, d)); return lerp(sz, c, d); } void normalize2(double v[2]) { double s; s = sqrt(v[0] * v[0] + v[1] * v[1]); v[0] = v[0] / s; v[1] = v[1] / s; } void normalize3(double v[3]) { double s; s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); v[0] = v[0] / s; v[1] = v[1] / s; v[2] = v[2] / s; } void initNoise(void) { int i, j, k; srand(30757); for (i = 0 ; i < B ; i++) { p[i] = i; g1[i] = (double)((rand() % (B + B)) - B) / B; for (j = 0 ; j < 2 ; j++) g2[i][j] = (double)((rand() % (B + B)) - B) / B; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (double)((rand() % (B + B)) - B) / B; normalize3(g3[i]); } while (--i) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; g1[B + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[B + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[B + i][j] = g3[i][j]; } } /* --- My harmonic summing functions - PDB --------------------------*/ /* In what follows "alpha" is the weight when the sum is formed. Typically it is 2, As this approaches 1 the function is noisier. "beta" is the harmonic scaling/spacing, typically 2. */ double PerlinNoise1D(double x,double alpha,double beta,int n) { int i; double val,sum = 0; double p,scale = 1; p = x; for (i=0;i