#include "TestManipulator.h" #include using namespace osg; using namespace osgGA; TestManipulator::TestManipulator() { _modelScale = 0.01f; _minimumZoomScale = 0.05f; _thrown = false; _distance = 1.0f; } TestManipulator::~TestManipulator() { } void TestManipulator::setNode(osg::Node* node) { _node = node; if (_node.get()) { const osg::BoundingSphere& boundingSphere=_node->getBound(); _modelScale = boundingSphere._radius; } } const osg::Node* TestManipulator::getNode() const { return _node.get(); } osg::Node* TestManipulator::getNode() { return _node.get(); } /*ea*/ void TestManipulator::home(const GUIEventAdapter& ,GUIActionAdapter& us) { if(_node.get() && _camera.get()) { const osg::BoundingSphere& boundingSphere=_node->getBound(); _camera->setView(boundingSphere.center()+osg::Vec3(0.0f, 0.0f, 20.0f), boundingSphere.center()+osg::Vec3(0.0f, 1.0f, 20.0f), osg::Vec3(0.0f, 0.0f, 1.0f)); computeLocalDataFromCamera(); us.requestRedraw(); } } void TestManipulator::init(const GUIEventAdapter& ,GUIActionAdapter& ) { flushMouseEventStack(); computeLocalDataFromCamera(); } bool TestManipulator::handle(const GUIEventAdapter& ea,GUIActionAdapter& us) { if(!_camera.get()) return false; switch(ea.getEventType()) { case(GUIEventAdapter::PUSH): { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; return true; } case(GUIEventAdapter::RELEASE): { if (ea.getButtonMask()==0) { if (isMouseMoving()) { if (calcMovement()) { us.requestRedraw(); us.requestContinuousUpdate(true); _thrown = true; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } return true; } case(GUIEventAdapter::DRAG): { addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; return true; } case(GUIEventAdapter::MOVE): { return false; } case(GUIEventAdapter::KEYDOWN): if (ea.getKey()==' ') { flushMouseEventStack(); _thrown = false; home(ea,us); us.requestRedraw(); us.requestContinuousUpdate(false); return true; } else if (ea.getKey()=='+') { _camera->setFusionDistanceRatio(_camera->getFusionDistanceRatio()*1.25f); return true; } else if (ea.getKey()=='-') { _camera->setFusionDistanceRatio(_camera->getFusionDistanceRatio()/1.25f); return true; } // this is quick hack to test out othographic projection. // else if (ea.getKey()=='O') // { // float dist = _camera->getLookDistance(); // _camera->setOrtho(-dist,dist,-dist,dist,-dist,dist); // return true; // } return false; case(GUIEventAdapter::FRAME): _camera->setFusionDistanceMode(osg::Camera::PROPORTIONAL_TO_LOOK_DISTANCE); if (_thrown) { if (calcMovement()) us.requestRedraw(); return true; } return false; default: return false; } } bool TestManipulator::isMouseMoving() { if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; static const float velocity = 0.1f; float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized(); float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized(); float len = sqrtf(dx*dx+dy*dy); float dt = _ga_t0->time()-_ga_t1->time(); return (len>dt*velocity); } void TestManipulator::flushMouseEventStack() { _ga_t1 = NULL; _ga_t0 = NULL; } void TestManipulator::addMouseEvent(const GUIEventAdapter& ea) { _ga_t1 = _ga_t0; _ga_t0 = &ea; } void TestManipulator::computeLocalDataFromCamera() { // maths from gluLookAt/osg::Matrix::makeLookAt osg::Vec3 f(_camera->getCenterPoint()-_camera->getEyePoint()); f.normalize(); osg::Vec3 s(f^_camera->getUpVector()); s.normalize(); osg::Vec3 u(s^f); u.normalize(); osg::Matrix rotation_matrix(s[0], u[0], -f[0], 0.0f, s[1], u[1], -f[1], 0.0f, s[2], u[2], -f[2], 0.0f, 0.0f, 0.0f, 0.0f, 1.0f); _center = _camera->getCenterPoint(); _distance = _camera->getLookDistance(); _rotation.set(rotation_matrix); _rotation = _rotation.inverse(); } void TestManipulator::computeCameraFromLocalData() { osg::Matrix new_rotation; new_rotation.makeRotate(_rotation); osg::Vec3 up = osg::Vec3(0.0f,1.0f,0.0) * new_rotation; osg::Vec3 eye = (osg::Vec3(0.0f,0.0f,_distance) * new_rotation) + _center; _camera->setLookAt(eye,_center,up); } bool TestManipulator::calcMovement() { // return if less then two events have been added. if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized(); float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized(); // return if there is no movement. if (dx==0 && dy==0) return false; unsigned int buttonMask = _ga_t1->getButtonMask(); if (buttonMask==GUIEventAdapter::LEFT_MOUSE_BUTTON) { // rotate camera. osg::Quat new_rotate; new_rotate.makeRotate(dx / 3.0f, osg::Vec3(0.0f, 0.0f, 1.0f)); _rotation = _rotation*new_rotate; computeCameraFromLocalData(); return true; } else if (buttonMask==GUIEventAdapter::MIDDLE_MOUSE_BUTTON) { // pan model. osg::Vec3 dv = osg::Vec3(0.0f, 0.0f, -500.0f) * dy; _center += dv; computeCameraFromLocalData(); return true; } else if (buttonMask==GUIEventAdapter::RIGHT_MOUSE_BUTTON) { osg::Vec3 uv = _camera->getUpVector(); osg::Vec3 sv = _camera->getSideVector(); osg::Vec3 fv = uv ^ sv; osg::Vec3 dv = fv*(dy*-500.0f)-sv*(dx*500.0f); _center += dv; computeCameraFromLocalData(); return true; } return false; } /* * This size should really be based on the distance from the center of * rotation to the point on the object underneath the mouse. That * point would then track the mouse as closely as possible. This is a * simple example, though, so that is left as an Exercise for the * Programmer. */ const float TRACKBALLSIZE = 0.8f; /* * Ok, simulate a track-ball. Project the points onto the virtual * trackball, then figure out the axis of rotation, which is the cross * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0) * Note: This is a deformed trackball-- is a trackball in the center, * but is deformed into a hyperbolic sheet of rotation away from the * center. This particular function was chosen after trying out * several variations. * * It is assumed that the arguments to this routine are in the range * (-1.0 ... 1.0) */ void TestManipulator::trackball(osg::Vec3& axis,float& angle, float p1x, float p1y, float p2x, float p2y) { /* * First, figure out z-coordinates for projection of P1 and P2 to * deformed sphere */ osg::Vec3 uv = _camera->getUpVector(); osg::Vec3 sv = _camera->getSideVector(); osg::Vec3 lv = _camera->getLookVector(); osg::Vec3 p1 = sv*p1x+uv*p1y-lv*tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y); osg::Vec3 p2 = sv*p2x+uv*p2y-lv*tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y); /* * Now, we want the cross product of P1 and P2 */ axis = p2^p1; axis.normalize(); /* * Figure out how much to rotate around that axis. */ float t = (p2-p1).length() / (2.0*TRACKBALLSIZE); /* * Avoid problems with out-of-control values... */ if (t > 1.0) t = 1.0; if (t < -1.0) t = -1.0; angle = inRadians(asin(t)); } /* * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet * if we are away from the center of the sphere. */ float TestManipulator::tb_project_to_sphere(float r, float x, float y) { float d, t, z; d = sqrt(x*x + y*y); /* Inside sphere */ if (d < r * 0.70710678118654752440) { z = sqrt(r*r - d*d); } /* On hyperbola */ else { t = r / 1.41421356237309504880; z = t*t / d; } return z; }