/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield * * This library is open source and may be redistributed and/or modified under * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or * (at your option) any later version. The full license is in LICENSE file * included with this distribution, and on the openscenegraph.org website. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * OpenSceneGraph Public License for more details. */ #include #include #include #include #include #include /// Good introductions to Quaternions at: /// http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm /// http://mathworld.wolfram.com/Quaternion.html using namespace osg; void Quat::set(const Matrixf& matrix) { matrix.get(*this); } void Quat::set(const Matrixd& matrix) { matrix.get(*this); } void Quat::get(Matrixf& matrix) const { matrix.set(*this); } void Quat::get(Matrixd& matrix) const { matrix.set(*this); } /// Set the elements of the Quat to represent a rotation of angle /// (radians) around the axis (x,y,z) void Quat::makeRotate( value_type angle, value_type x, value_type y, value_type z ) { value_type inversenorm = 1.0/sqrt( x*x + y*y + z*z ); value_type coshalfangle = cos( 0.5*angle ); value_type sinhalfangle = sin( 0.5*angle ); _v[0] = x * sinhalfangle * inversenorm; _v[1] = y * sinhalfangle * inversenorm; _v[2] = z * sinhalfangle * inversenorm; _v[3] = coshalfangle; } void Quat::makeRotate( value_type angle, const Vec3f& vec ) { makeRotate( angle, vec[0], vec[1], vec[2] ); } void Quat::makeRotate( value_type angle, const Vec3d& vec ) { makeRotate( angle, vec[0], vec[1], vec[2] ); } void Quat::makeRotate ( value_type angle1, const Vec3f& axis1, value_type angle2, const Vec3f& axis2, value_type angle3, const Vec3f& axis3) { makeRotate(angle1,Vec3d(axis1), angle2,Vec3d(axis2), angle3,Vec3d(axis3)); } void Quat::makeRotate ( value_type angle1, const Vec3d& axis1, value_type angle2, const Vec3d& axis2, value_type angle3, const Vec3d& axis3) { Quat q1; q1.makeRotate(angle1,axis1); Quat q2; q2.makeRotate(angle2,axis2); Quat q3; q3.makeRotate(angle3,axis3); *this = q1*q2*q3; } void Quat::makeRotate( const Vec3f& from, const Vec3f& to ) { makeRotate( Vec3d(from), Vec3d(to) ); } // Make a rotation Quat which will rotate vec1 to vec2 // Generally take adot product to get the angle between these // and then use a cross product to get the rotation axis // Watch out for the two special cases of when the vectors // are co-incident or opposite in direction. void Quat::makeRotate( const Vec3d& from, const Vec3d& to ) { const value_type epsilon = 0.0000001; value_type length1 = from.length(); value_type length2 = to.length(); // dot product vec1*vec2 value_type cosangle = from*to/(length1*length2); if ( fabs(cosangle - 1) < epsilon ) { osg::notify(osg::INFO)<<"*** Quat::makeRotate(from,to) with near co-linear vectors, epsilon= "< epsilon ) { omega= acos(cosomega) ; // 0 <= omega <= Pi (see man acos) sinomega = sin(omega) ; // this sinomega should always be +ve so // could try sinomega=sqrt(1-cosomega*cosomega) to avoid a sin()? scale_from = sin((1.0-t)*omega)/sinomega ; scale_to = sin(t*omega)/sinomega ; } else { /* -------------------------------------------------- The ends of the vectors are very close we can use simple linear interpolation - no need to worry about the "spherical" interpolation -------------------------------------------------- */ scale_from = 1.0 - t ; scale_to = t ; } *this = (from*scale_from) + (quatTo*scale_to); // so that we get a Vec4 } #define QX _v[0] #define QY _v[1] #define QZ _v[2] #define QW _v[3] #ifdef OSG_USE_UNIT_TESTS void test_Quat_Eueler(value_type heading,value_type pitch,value_type roll) { osg::Quat q; q.makeRotate(heading,pitch,roll); osg::Matrix q_m; q.get(q_m); osg::Vec3 xAxis(1,0,0); osg::Vec3 yAxis(0,1,0); osg::Vec3 zAxis(0,0,1); cout << "heading = "<