/* OpenSceneGraph example, osgmultiplerendertargets. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // Below is relatively straight forward example of using the OpenGL multiple render targets (MRT) extension // to FrameBufferObjects/GLSL shaders. // // Another, more sophisticated MRT example can be found in the osgstereomatch example. // // The callback modifies an input image. struct MyCameraPostDrawCallback : public osg::Camera::DrawCallback { MyCameraPostDrawCallback(osg::Image* image): _image(image) { } virtual void operator () (const osg::Camera& /*camera*/) const { if (_image && _image->getPixelFormat()==GL_RGBA && _image->getDataType()==GL_UNSIGNED_BYTE) { // we'll pick out the center 1/2 of the whole image, int column_start = _image->s()/4; int column_end = 3*column_start; int row_start = _image->t()/4; int row_end = 3*row_start; // and then halve their contribution for(int r=row_start; rdata(column_start, r); for(int c=column_start; cdirty(); } else if (_image && _image->getPixelFormat()==GL_RGBA && _image->getDataType()==GL_FLOAT) { // we'll pick out the center 1/2 of the whole image, int column_start = _image->s()/4; int column_end = 3*column_start; int row_start = _image->t()/4; int row_end = 3*row_start; // and then halve their contribution for(int r=row_start; rdata(column_start, r); for(int c=column_start; cdirty(); //print out the first three values float* data = (float*)_image->data(0, 0); fprintf(stderr,"Float pixel data: r %e g %e b %e\n", data[0], data[1], data[2]); } } osg::Image* _image; }; #define NUM_TEXTURES 4 // The quad geometry is used by the render to texture camera to generate multiple textures. osg::Group* createRTTQuad(unsigned int tex_width, unsigned int tex_height, bool useHDR) { osg::Group *top_group = new osg::Group; osg::ref_ptr quad_geode = new osg::Geode; osg::ref_ptr quad_coords = new osg::Vec3Array; // vertex coords // counter-clockwise quad_coords->push_back(osg::Vec3d(0, 0, -1)); quad_coords->push_back(osg::Vec3d(1, 0, -1)); quad_coords->push_back(osg::Vec3d(1, 1, -1)); quad_coords->push_back(osg::Vec3d(0, 1, -1)); osg::ref_ptr quad_tcoords = new osg::Vec2Array; // texture coords quad_tcoords->push_back(osg::Vec2(0, 0)); quad_tcoords->push_back(osg::Vec2(tex_width, 0)); quad_tcoords->push_back(osg::Vec2(tex_width, tex_height)); quad_tcoords->push_back(osg::Vec2(0, tex_height)); osg::ref_ptr quad_geom = new osg::Geometry; osg::ref_ptr quad_da = new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,4); osg::ref_ptr quad_colors = new osg::Vec4Array; quad_colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f)); quad_geom->setVertexArray(quad_coords.get()); quad_geom->setTexCoordArray(0, quad_tcoords.get()); quad_geom->addPrimitiveSet(quad_da.get()); quad_geom->setColorArray(quad_colors.get()); quad_geom->setColorBinding(osg::Geometry::BIND_OVERALL); osg::StateSet *stateset = quad_geom->getOrCreateStateSet(); stateset->setMode(GL_LIGHTING,osg::StateAttribute::OFF); stateset->addUniform(new osg::Uniform("width", (int)tex_width)); // Attach shader, glFragData is used to create data for multiple render targets if (useHDR) { static const char *shaderSource = { "uniform int width;" "void main(void)\n" "{\n" " gl_FragData[0] = vec4(-1e-12,0,0,1);\n" " gl_FragData[1] = vec4(0,1e-12,0,1);\n" " gl_FragData[2] = vec4(0,0,1e-12,1);\n" " gl_FragData[3] = vec4(0,0,1e-12,1);\n" "}\n" }; osg::ref_ptr fshader = new osg::Shader( osg::Shader::FRAGMENT , shaderSource); osg::ref_ptr program = new osg::Program; program->addShader(fshader.get()); stateset->setAttributeAndModes(program.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE ); } else { static const char *shaderSource = { "uniform int width;" "void main(void)\n" "{\n" " gl_FragData[0] = vec4(1,0,0,1);\n" " gl_FragData[1] = vec4(0,1,0,1);\n" " gl_FragData[2] = vec4(0,0,1,1);\n" " gl_FragData[3] = vec4(0,0,1,1);\n" "}\n" }; osg::ref_ptr fshader = new osg::Shader( osg::Shader::FRAGMENT , shaderSource); osg::ref_ptr program = new osg::Program; program->addShader(fshader.get()); stateset->setAttributeAndModes(program.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE ); } quad_geode->addDrawable(quad_geom.get()); top_group->addChild(quad_geode.get()); return top_group; } // Here a scene consisting of a single quad is created. This scene is viewed by the screen camera. // The quad is textured using a shader and the multiple textures generated in the RTT stage. osg::Node* createScene(osg::Node* cam_subgraph, unsigned int tex_width, unsigned int tex_height, bool useHDR, bool useImage) { if (!cam_subgraph) return 0; // create a group to contain the quad and the pre render camera. osg::Group* parent = new osg::Group; // textures to render to and to use for texturing of the final quad osg::TextureRectangle* textureRect[NUM_TEXTURES] = {0,0,0,0}; for (int i=0;isetTextureSize(tex_width, tex_height); textureRect[i]->setInternalFormat(GL_RGBA); textureRect[i]->setFilter(osg::Texture2D::MIN_FILTER,osg::Texture2D::LINEAR); textureRect[i]->setFilter(osg::Texture2D::MAG_FILTER,osg::Texture2D::LINEAR); if (useHDR) { // Default HDR format textureRect[i]->setInternalFormat(GL_RGBA32F_ARB); // GL_FLOAT_RGBA32_NV might be supported on pre 8-series GPUs //textureRect[i]->setInternalFormat(GL_FLOAT_RGBA32_NV); // GL_RGBA16F_ARB can be used with this example, // but modify e-12 and e12 in the shaders accordingly //textureRect[i]->setInternalFormat(GL_RGBA16F_ARB); textureRect[i]->setSourceFormat(GL_RGBA); textureRect[i]->setSourceType(GL_FLOAT); } } // first create the geometry of the quad { osg::Geometry* polyGeom = new osg::Geometry(); polyGeom->setSupportsDisplayList(false); osg::Vec3Array* vertices = new osg::Vec3Array; osg::Vec2Array* texcoords = new osg::Vec2Array; vertices->push_back(osg::Vec3d(0,0,0)); texcoords->push_back(osg::Vec2(0,0)); vertices->push_back(osg::Vec3d(1,0,0)); texcoords->push_back(osg::Vec2(tex_width,0)); vertices->push_back(osg::Vec3d(1,0,1)); texcoords->push_back(osg::Vec2(tex_width,tex_height)); vertices->push_back(osg::Vec3d(0,0,1)); texcoords->push_back(osg::Vec2(0,tex_height)); polyGeom->setVertexArray(vertices); polyGeom->setTexCoordArray(0,texcoords); osg::Vec4Array* colors = new osg::Vec4Array; colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f)); polyGeom->setColorArray(colors); polyGeom->setColorBinding(osg::Geometry::BIND_OVERALL); polyGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,vertices->size())); // now we need to add the textures (generated by RTT) to the Drawable. osg::StateSet* stateset = new osg::StateSet; for (int i=0;isetTextureAttributeAndModes(i, textureRect[i], osg::StateAttribute::ON); } polyGeom->setStateSet(stateset); // Attach a shader to the final quad to combine the input textures. if (useHDR) { static const char *shaderSource = { "uniform sampler2DRect textureID0;\n" "uniform sampler2DRect textureID1;\n" "uniform sampler2DRect textureID2;\n" "uniform sampler2DRect textureID3;\n" "uniform float width;\n" "uniform float height; \n" "void main(void)\n" "{\n" " gl_FragData[0] = \n" " vec4( -1e12 * texture2DRect( textureID0, gl_TexCoord[0].st ).rgb, 1) + \n" " vec4( 1e12 * texture2DRect( textureID1, gl_TexCoord[0].st ).rgb, 1) + \n" " vec4( 1e12 * texture2DRect( textureID2, gl_TexCoord[0].st ).rgb, 1) + \n" " vec4(-0.5e12 * texture2DRect( textureID3, gl_TexCoord[0].st ).rgb, 1); \n" "}\n" }; osg::ref_ptr fshader = new osg::Shader( osg::Shader::FRAGMENT , shaderSource); osg::ref_ptr program = new osg::Program; program->addShader( fshader.get()); stateset->setAttributeAndModes( program.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE ); } else { static const char *shaderSource = { "uniform sampler2DRect textureID0;\n" "uniform sampler2DRect textureID1;\n" "uniform sampler2DRect textureID2;\n" "uniform sampler2DRect textureID3;\n" "void main(void)\n" "{\n" " gl_FragData[0] = \n" " vec4(texture2DRect( textureID0, gl_TexCoord[0].st ).rgb, 1) + \n" " vec4(texture2DRect( textureID1, gl_TexCoord[0].st ).rgb, 1) + \n" " vec4(texture2DRect( textureID2, gl_TexCoord[0].st ).rgb, 1) + \n" " -0.5*vec4(texture2DRect( textureID3, gl_TexCoord[0].st ).rgb, 1); \n" "}\n" }; osg::ref_ptr fshader = new osg::Shader( osg::Shader::FRAGMENT , shaderSource); osg::ref_ptr program = new osg::Program; program->addShader( fshader.get()); stateset->setAttributeAndModes( program.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE ); } stateset->addUniform(new osg::Uniform("textureID0", 0)); stateset->addUniform(new osg::Uniform("textureID1", 1)); stateset->addUniform(new osg::Uniform("textureID2", 2)); stateset->addUniform(new osg::Uniform("textureID3", 3)); //stateset->setDataVariance(osg::Object::DYNAMIC); osg::Geode* geode = new osg::Geode(); geode->addDrawable(polyGeom); parent->addChild(geode); } // now create the camera to do the multiple render to texture { osg::Camera* camera = new osg::Camera; // set up the background color and clear mask. camera->setClearColor(osg::Vec4(0.1f,0.1f,0.3f,1.0f)); camera->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // the camera is going to look at our input quad camera->setProjectionMatrix(osg::Matrix::ortho2D(0,1,0,1)); camera->setReferenceFrame(osg::Transform::ABSOLUTE_RF); camera->setViewMatrix(osg::Matrix::identity()); // set viewport camera->setViewport(0, 0, tex_width, tex_height); // set the camera to render before the main camera. camera->setRenderOrder(osg::Camera::PRE_RENDER); // tell the camera to use OpenGL frame buffer objects camera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT); // attach the textures to use for (int i=0; iattach(osg::Camera::BufferComponent(osg::Camera::COLOR_BUFFER0+i), textureRect[i]); } // we can also read back any of the targets as an image, modify this image and push it back if (useImage) { // which texture to get the image from const int tex_to_get = 0; osg::Image* image = new osg::Image; if (useHDR) { image->allocateImage(tex_width, tex_height, 1, GL_RGBA, GL_FLOAT); } else { image->allocateImage(tex_width, tex_height, 1, GL_RGBA, GL_UNSIGNED_BYTE); } // attach the image so its copied on each frame. camera->attach(osg::Camera::BufferComponent(osg::Camera::COLOR_BUFFER0 + tex_to_get), image); camera->setPostDrawCallback(new MyCameraPostDrawCallback(image)); // push back the image to the texture textureRect[tex_to_get]->setImage(0, image); } // add the subgraph to render camera->addChild(cam_subgraph); parent->addChild(camera); } return parent; } int main( int argc, char **argv ) { // use an ArgumentParser object to manage the program arguments. osg::ArgumentParser arguments(&argc,argv); // set up the usage document, in case we need to print out how to use this program. arguments.getApplicationUsage()->setDescription(arguments.getApplicationName() + " demonstrates the use of multiple render targets (MRT) with frame buffer objects (FBOs). A render to texture (RTT) camera is used to render to four textures using a single shader. The four textures are then combined to texture the viewed geometry."); arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] ..."); arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information."); arguments.getApplicationUsage()->addCommandLineOption("--width","Set the width of the render to texture."); arguments.getApplicationUsage()->addCommandLineOption("--height","Set the height of the render to texture."); arguments.getApplicationUsage()->addCommandLineOption("--image","Render one of the targets to an image, then apply a post draw callback to modify it and use this image to update the final texture. Print some texture values when using HDR."); arguments.getApplicationUsage()->addCommandLineOption("--hdr","Use high dynamic range (HDR). Create floating point textures to render to."); // construct the viewer. osgViewer::Viewer viewer(arguments); // if user request help write it out to cout. if (arguments.read("-h") || arguments.read("--help")) { arguments.getApplicationUsage()->write(std::cout); return 1; } unsigned tex_width = 512; unsigned tex_height = 512; while (arguments.read("--width", tex_width)) {} while (arguments.read("--height", tex_height)) {} bool useHDR = false; while (arguments.read("--hdr")) { useHDR = true; } bool useImage = false; while (arguments.read("--image")) { useImage = true; } osg::Group* subGraph = createRTTQuad(tex_width, tex_height, useHDR); osg::Group* rootNode = new osg::Group(); rootNode->addChild(createScene(subGraph, tex_width, tex_height, useHDR, useImage)); // add model to the viewer. viewer.setSceneData( rootNode ); return viewer.run(); }