/* OpenSceneGraph example, osggeometry. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // This demo illustrates how to create the various different types of geometry that // the osg::Geometry class can represent. This demo uses the OpenGL red book diagram of different // OpenGL Primitives as a template for all the equivalent OpenSceneGraph Primitives. The OpenSceneGraph // wraps OpenGL very thinly and therefore uses all the same enum and naming conventions. The coordinate data is also // wrapped around OpenGL's vertex arrays and draw arrays/elements calls. Familiarity with // OpenGL will help you understand the osg::Geometry class which encapsulate all this, or if you // haven't learned OpenGL yet, learning osg::Geometry will help you understand how OpenGL // works! // The osg::Geometry class "is a" subclass of osg::Drawable base class, so is an object that provides // a draw method for drawing objects in the scene. osg::Geometry contains all the vertex, normal // color and texture coordinate arrays required to specify the coordinates of your objects, and the // primitives join these coordinates together as the points, lines or surfaces that you will see // rendered on your screen. // // This demo is split into two functions, the createScene() function which creates the scene graph // with the various primitives in it, and the main() which sets up a basic viewer window and // adds to the it the scene generated by createScene(). struct NormalPrint { void operator() (const osg::Vec3& v1,const osg::Vec3& v2,const osg::Vec3& v3, bool) const { osg::Vec3 normal = (v2-v1)^(v3-v2); normal.normalize(); std::cout << "\t("< tf; drawable.accept(tf); std::cout<. osg::Array's are reference counted and hence sharable, // which std::vector<> provides all the convenience, flexibility and robustness // of the most popular of all STL containers. osg::Vec3Array* vertices = new osg::Vec3Array; vertices->push_back(osg::Vec3(-1.02168, -2.15188e-09, 0.885735)); vertices->push_back(osg::Vec3(-0.976368, -2.15188e-09, 0.832179)); vertices->push_back(osg::Vec3(-0.873376, 9.18133e-09, 0.832179)); vertices->push_back(osg::Vec3(-0.836299, -2.15188e-09, 0.885735)); vertices->push_back(osg::Vec3(-0.790982, 9.18133e-09, 0.959889)); // pass the created vertex array to the points geometry object. pointsGeom->setVertexArray(vertices); // create the color of the geometry, one single for the whole geometry. // for consistency of design even one single color must added as an element // in a color array. osg::Vec4Array* colors = new osg::Vec4Array; // add a white color, colors take the form r,g,b,a with 0.0 off, 1.0 full on. colors->push_back(osg::Vec4(1.0f,1.0f,0.0f,1.0f)); // pass the color array to points geometry, note the binding to tell the geometry // that only use one color for the whole object. pointsGeom->setColorArray(colors, osg::Array::BIND_OVERALL); // set the normal in the same way color. osg::Vec3Array* normals = new osg::Vec3Array; normals->push_back(osg::Vec3(0.0f,-1.0f,0.0f)); pointsGeom->setNormalArray(normals, osg::Array::BIND_OVERALL); // create and add a DrawArray Primitive (see include/osg/Primitive). The first // parameter passed to the DrawArrays constructor is the Primitive::Mode which // in this case is POINTS (which has the same value GL_POINTS), the second // parameter is the index position into the vertex array of the first point // to draw, and the third parameter is the number of points to draw. pointsGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::POINTS,0,vertices->size())); // add the points geometry to the geode. geode->addDrawable(pointsGeom); } // create LINES { // create Geometry object to store all the vertices and lines primitive. osg::Geometry* linesGeom = new osg::Geometry(); // this time we'll preallocate the vertex array to the size we // need and then simple set them as array elements, 8 points // makes 4 line segments. osg::Vec3Array* vertices = new osg::Vec3Array(8); (*vertices)[0].set(-1.13704, -2.15188e-09, 0.40373); (*vertices)[1].set(-0.856897, -2.15188e-09, 0.531441); (*vertices)[2].set(-0.889855, -2.15188e-09, 0.444927); (*vertices)[3].set(-0.568518, -2.15188e-09, 0.40373); (*vertices)[4].set(-1.00933, -2.15188e-09, 0.370773); (*vertices)[5].set(-0.716827, -2.15188e-09, 0.292498); (*vertices)[6].set(-1.07936, 9.18133e-09, 0.317217); (*vertices)[7].set(-0.700348, 9.18133e-09, 0.362533); // pass the created vertex array to the points geometry object. linesGeom->setVertexArray(vertices); // set the colors as before, plus using the above osg::Vec4Array* colors = new osg::Vec4Array; colors->push_back(osg::Vec4(1.0f,1.0f,0.0f,1.0f)); linesGeom->setColorArray(colors, osg::Array::BIND_OVERALL); // set the normal in the same way color. osg::Vec3Array* normals = new osg::Vec3Array; normals->push_back(osg::Vec3(0.0f,-1.0f,0.0f)); linesGeom->setNormalArray(normals, osg::Array::BIND_OVERALL); // This time we simply use primitive, and hardwire the number of coords to use // since we know up front, linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINES,0,8)); // add the points geometry to the geode. geode->addDrawable(linesGeom); } // create LINE_STRIP { // create Geometry object to store all the vertices and lines primitive. osg::Geometry* linesGeom = new osg::Geometry(); // this time we'll preallocate the vertex array to the size // and then use an iterator to fill in the values, a bit perverse // but does demonstrate that we have just a standard std::vector underneath. osg::Vec3Array* vertices = new osg::Vec3Array(5); osg::Vec3Array::iterator vitr = vertices->begin(); (vitr++)->set(-0.0741545, -2.15188e-09, 0.416089); (vitr++)->set(0.234823, -2.15188e-09, 0.259541); (vitr++)->set(0.164788, -2.15188e-09, 0.366653); (vitr++)->set(-0.0288379, -2.15188e-09, 0.333695); (vitr++)->set(-0.0453167, -2.15188e-09, 0.280139); // pass the created vertex array to the points geometry object. linesGeom->setVertexArray(vertices); // set the colors as before, plus using the above osg::Vec4Array* colors = new osg::Vec4Array; colors->push_back(osg::Vec4(1.0f,1.0f,0.0f,1.0f)); linesGeom->setColorArray(colors, osg::Array::BIND_OVERALL); // set the normal in the same way color. osg::Vec3Array* normals = new osg::Vec3Array; normals->push_back(osg::Vec3(0.0f,-1.0f,0.0f)); linesGeom->setNormalArray(normals, osg::Array::BIND_OVERALL); // This time we simply use primitive, and hardwire the number of coords to use // since we know up front, linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP,0,5)); // add the points geometry to the geode. geode->addDrawable(linesGeom); } // create LINE_LOOP { // create Geometry object to store all the vertices and lines primitive. osg::Geometry* linesGeom = new osg::Geometry(); // this time we'll a C arrays to initialize the vertices. osg::Vec3 myCoords[] = { osg::Vec3(0.741546, -2.15188e-09, 0.453167), osg::Vec3(0.840418, -2.15188e-09, 0.304858), osg::Vec3(1.12468, -2.15188e-09, 0.300738), osg::Vec3(1.03816, 9.18133e-09, 0.453167), osg::Vec3(0.968129, -2.15188e-09, 0.337815), osg::Vec3(0.869256, -2.15188e-09, 0.531441) }; int numCoords = sizeof(myCoords)/sizeof(osg::Vec3); osg::Vec3Array* vertices = new osg::Vec3Array(numCoords,myCoords); // pass the created vertex array to the points geometry object. linesGeom->setVertexArray(vertices); // set the colors as before, plus using the above osg::Vec4Array* colors = new osg::Vec4Array; colors->push_back(osg::Vec4(1.0f,1.0f,0.0f,1.0f)); linesGeom->setColorArray(colors, osg::Array::BIND_OVERALL); // set the normal in the same way color. osg::Vec3Array* normals = new osg::Vec3Array; normals->push_back(osg::Vec3(0.0f,-1.0f,0.0f)); linesGeom->setNormalArray(normals, osg::Array::BIND_OVERALL); // This time we simply use primitive, and hardwire the number of coords to use // since we know up front, linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_LOOP,0,numCoords)); // add the points geometry to the geode. geode->addDrawable(linesGeom); } // now we'll stop creating separate normal and color arrays // since we are using the same values all the time, we'll just // share the same ColorArray and NormalArrays.. // set the colors as before, use a ref_ptr rather than just // standard C pointer, as that in the case of it not being // assigned it will still be cleaned up automatically. osg::ref_ptr shared_colors = new osg::Vec4Array; shared_colors->push_back(osg::Vec4(1.0f,1.0f,0.0f,1.0f)); // same trick for shared normal. osg::ref_ptr shared_normals = new osg::Vec3Array; shared_normals->push_back(osg::Vec3(0.0f,-1.0f,0.0f)); // Note on vertex ordering. // According to the OpenGL diagram vertices should be specified in a clockwise direction. // In reality you need to specify coords for polygons in a anticlockwise direction // for their front face to be pointing towards you; get this wrong and you could // find back face culling removing the wrong faces of your models. The OpenGL diagram // is just plain wrong, but it's a nice diagram so we'll keep it for now! // create POLYGON { // create Geometry object to store all the vertices and lines primitive. osg::Geometry* polyGeom = new osg::Geometry(); // this time we'll use C arrays to initialize the vertices. // note, anticlockwise ordering. // note II, OpenGL polygons must be convex, planar polygons, otherwise // undefined results will occur. If you have concave polygons or ones // that cross over themselves then use the osgUtil::Tessellator to fix // the polygons into a set of valid polygons. osg::Vec3 myCoords[] = { osg::Vec3(-1.0464, 0.0f, -0.193626), osg::Vec3(-1.0258, 0.0f, -0.26778), osg::Vec3(-0.807461, 0.0f, -0.181267), osg::Vec3(-0.766264, 0.0f, -0.0576758), osg::Vec3(-0.980488, 0.0f, -0.094753) }; int numCoords = sizeof(myCoords)/sizeof(osg::Vec3); osg::Vec3Array* vertices = new osg::Vec3Array(numCoords,myCoords); // pass the created vertex array to the points geometry object. polyGeom->setVertexArray(vertices); // use the shared color array. polyGeom->setColorArray(shared_colors.get(), osg::Array::BIND_OVERALL); // use the shared normal array. polyGeom->setNormalArray(shared_normals.get(), osg::Array::BIND_OVERALL); // This time we simply use primitive, and hardwire the number of coords to use // since we know up front, polyGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::POLYGON,0,numCoords)); printTriangles("Polygon",*polyGeom); // add the points geometry to the geode. geode->addDrawable(polyGeom); } // create QUADS { // create Geometry object to store all the vertices and lines primitive. osg::Geometry* polyGeom = new osg::Geometry(); // note, anticlockwise ordering. osg::Vec3 myCoords[] = { osg::Vec3(0.0247182, 0.0f, -0.156548), osg::Vec3(0.0247182, 0.0f, -0.00823939), osg::Vec3(-0.160668, 0.0f, -0.0453167), osg::Vec3(-0.222464, 0.0f, -0.13183), osg::Vec3(0.238942, 0.0f, -0.251302), osg::Vec3(0.333696, 0.0f, 0.0329576), osg::Vec3(0.164788, 0.0f, -0.0453167), osg::Vec3(0.13595, 0.0f, -0.255421) }; int numCoords = sizeof(myCoords)/sizeof(osg::Vec3); osg::Vec3Array* vertices = new osg::Vec3Array(numCoords,myCoords); // pass the created vertex array to the points geometry object. polyGeom->setVertexArray(vertices); // use the shared color array. polyGeom->setColorArray(shared_colors.get(), osg::Array::BIND_OVERALL); // use the shared normal array. polyGeom->setNormalArray(shared_normals.get(), osg::Array::BIND_OVERALL); // This time we simply use primitive, and hardwire the number of coords to use // since we know up front, polyGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,numCoords)); printTriangles("Quads",*polyGeom); // add the points geometry to the geode. geode->addDrawable(polyGeom); } // create QUAD_STRIP { // create Geometry object to store all the vertices and lines primitive. osg::Geometry* polyGeom = new osg::Geometry(); // note, first coord at top, second at bottom, reverse to that buggy OpenGL image.. osg::Vec3 myCoords[] = { osg::Vec3(0.733306, -2.15188e-09, -0.0741545), osg::Vec3(0.758024, -2.15188e-09, -0.205985), osg::Vec3(0.885735, -2.15188e-09, -0.0576757), osg::Vec3(0.885735, -2.15188e-09, -0.214224), osg::Vec3(0.964009, 9.18133e-09, -0.0370773), osg::Vec3(1.0464, 9.18133e-09, -0.173027), osg::Vec3(1.11232, -2.15188e-09, 0.0123591), osg::Vec3(1.12468, 9.18133e-09, -0.164788), }; int numCoords = sizeof(myCoords)/sizeof(osg::Vec3); osg::Vec3Array* vertices = new osg::Vec3Array(numCoords,myCoords); // pass the created vertex array to the points geometry object. polyGeom->setVertexArray(vertices); // use the shared color array. polyGeom->setColorArray(shared_colors.get(), osg::Array::BIND_OVERALL); // use the shared normal array. polyGeom->setNormalArray(shared_normals.get(), osg::Array::BIND_OVERALL); // This time we simply use primitive, and hardwire the number of coords to use // since we know up front, polyGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUAD_STRIP,0,numCoords)); printTriangles("Quads strip",*polyGeom); // add the points geometry to the geode. geode->addDrawable(polyGeom); } // create TRIANGLES, TRIANGLE_STRIP and TRIANGLE_FAN all in one Geometry/ { // create Geometry object to store all the vertices and lines primitive. osg::Geometry* polyGeom = new osg::Geometry(); // note, first coord at top, second at bottom, reverse to that buggy OpenGL image.. osg::Vec3 myCoords[] = { // TRIANGLES 6 vertices, v0..v5 // note in anticlockwise order. osg::Vec3(-1.12056, -2.15188e-09, -0.840418), osg::Vec3(-0.95165, -2.15188e-09, -0.840418), osg::Vec3(-1.11644, 9.18133e-09, -0.716827), // note in anticlockwise order. osg::Vec3(-0.840418, 9.18133e-09, -0.778623), osg::Vec3(-0.622074, 9.18133e-09, -0.613835), osg::Vec3(-1.067, 9.18133e-09, -0.609715), // TRIANGLE STRIP 6 vertices, v6..v11 // note defined top point first, // then anticlockwise for the next two points, // then alternating to bottom there after. osg::Vec3(-0.160668, -2.15188e-09, -0.531441), osg::Vec3(-0.160668, -2.15188e-09, -0.749785), osg::Vec3(0.0617955, 9.18133e-09, -0.531441), osg::Vec3(0.168908, -2.15188e-09, -0.753905), osg::Vec3(0.238942, -2.15188e-09, -0.531441), osg::Vec3(0.280139, -2.15188e-09, -0.823939), // TRIANGLE FAN 5 vertices, v12..v16 // note defined in anticlockwise order. osg::Vec3(0.844538, 9.18133e-09, -0.712708), osg::Vec3(1.0258, 9.18133e-09, -0.799221), osg::Vec3(1.03816, -2.15188e-09, -0.692109), osg::Vec3(0.988727, 9.18133e-09, -0.568518), osg::Vec3(0.840418, -2.15188e-09, -0.506723), }; int numCoords = sizeof(myCoords)/sizeof(osg::Vec3); osg::Vec3Array* vertices = new osg::Vec3Array(numCoords,myCoords); // pass the created vertex array to the points geometry object. polyGeom->setVertexArray(vertices); // use the shared color array. polyGeom->setColorArray(shared_colors.get(), osg::Array::BIND_OVERALL); // use the shared normal array. polyGeom->setNormalArray(shared_normals.get(), osg::Array::BIND_OVERALL); // This time we simply use primitive, and hardwire the number of coords to use // since we know up front, polyGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::TRIANGLES,0,6)); polyGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::TRIANGLE_STRIP,6,6)); polyGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::TRIANGLE_FAN,12,5)); // polygon stipple osg::StateSet* stateSet = new osg::StateSet(); polyGeom->setStateSet(stateSet); #if !defined(OSG_GLES1_AVAILABLE) && !defined(OSG_GLES2_AVAILABLE) && !defined(OSG_GL3_AVAILABLE) osg::PolygonStipple* polygonStipple = new osg::PolygonStipple; stateSet->setAttributeAndModes(polygonStipple,osg::StateAttribute::OVERRIDE|osg::StateAttribute::ON); #endif printTriangles("Triangles/Strip/Fan",*polyGeom); // add the points geometry to the geode. geode->addDrawable(polyGeom); } return geode; } // define a node callback to animate a transform as a cycle along the y axis, between 0 and 2.0. class MyTransformCallback : public osg::NodeCallback { public: MyTransformCallback(float angularVelocity) { _angular_velocity = angularVelocity; } virtual void operator() (osg::Node* node, osg::NodeVisitor* nv) { osg::MatrixTransform* transform = dynamic_cast(node); if (nv && transform && nv->getFrameStamp()) { double time = nv->getFrameStamp()->getSimulationTime(); transform->setMatrix(osg::Matrix::translate(0.0f,1.0f+cosf(time*_angular_velocity),0.0f)); } // must continue subgraph traversal. traverse(node,nv); } protected: float _angular_velocity; }; osg::Node* createBackground() { // we'll create a texture mapped quad to sit behind the Geometry osg::Image* image = osgDB::readImageFile("Images/primitives.gif"); if (!image) return NULL; // create Geometry object to store all the vertices and lines primitive. osg::Geometry* polyGeom = new osg::Geometry(); // note, anticlockwise ordering. osg::Vec3 myCoords[] = { osg::Vec3(-1.22908f,0.0f,1.0f), osg::Vec3(-1.22908f,0.0f,-1.0f), osg::Vec3(1.22908f,0.0f,-1.0f), osg::Vec3(1.22908f,0.0f,1.0f) }; int numCoords = sizeof(myCoords)/sizeof(osg::Vec3); // pass the created vertex array to the points geometry object. polyGeom->setVertexArray(new osg::Vec3Array(numCoords,myCoords)); osg::Vec4Array* colors = new osg::Vec4Array; colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f)); polyGeom->setColorArray(colors, osg::Array::BIND_OVERALL); // set the normal in the same way color. osg::Vec3Array* normals = new osg::Vec3Array; normals->push_back(osg::Vec3(0.0f,-1.0f,0.0f)); polyGeom->setNormalArray(normals, osg::Array::BIND_OVERALL); osg::Vec2 myTexCoords[] = { osg::Vec2(0,1), osg::Vec2(0,0), osg::Vec2(1,0), osg::Vec2(1,1) }; int numTexCoords = sizeof(myTexCoords)/sizeof(osg::Vec2); // pass the created tex coord array to the points geometry object, // and use it to set texture unit 0. polyGeom->setTexCoordArray(0,new osg::Vec2Array(numTexCoords,myTexCoords)); // well use indices and DrawElements to define the primitive this time. unsigned short myIndices[] = { 0, 1, 3, 2 }; int numIndices = sizeof(myIndices)/sizeof(unsigned short); // There are three variants of the DrawElements osg::Primitive, UByteDrawElements which // contains unsigned char indices, UShortDrawElements which contains unsigned short indices, // and UIntDrawElements which contains ... unsigned int indices. // The first parameter to DrawElements is polyGeom->addPrimitiveSet(new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLE_STRIP,numIndices,myIndices)); // new we need to add the texture to the Drawable, we do so by creating a // StateSet to contain the Texture2D StateAttribute. osg::StateSet* stateset = new osg::StateSet; // set up the texture. osg::Texture2D* texture = new osg::Texture2D; texture->setImage(image); stateset->setTextureAttributeAndModes(0, texture,osg::StateAttribute::ON); polyGeom->setStateSet(stateset); // create the Geode (Geometry Node) to contain all our osg::Geometry objects. osg::Geode* geode = new osg::Geode(); // add the points geometry to the geode. geode->addDrawable(polyGeom); //return geode; // create a transform to move the background back and forward with. osg::MatrixTransform* transform = new osg::MatrixTransform(); transform->setUpdateCallback(new MyTransformCallback(1.0f)); transform->addChild(geode); return transform; } int main(int, char **) { // create the model osg::Group* root = new osg::Group; root->addChild( createScene() ); root->addChild( createBackground() ); //osgDB::writeNodeFile(*root,"geoemtry.osgt"); osgViewer::Viewer viewer; // add model to viewer. viewer.setSceneData( root ); return viewer.run(); }