#include #include #include using namespace osg; using namespace osgUtil; TrackballManipulator::TrackballManipulator() { _modelScale = 0.01f; _minimumZoomScale = 0.05f; _thrown = false; } TrackballManipulator::~TrackballManipulator() { } void TrackballManipulator::setNode(osg::Node* node) { _node = node; if (_node.get()) { const osg::BoundingSphere& boundingSphere=_node->getBound(); _modelScale = boundingSphere._radius; } } const osg::Node* TrackballManipulator::getNode() const { return _node.get(); } /*ea*/ void TrackballManipulator::home(const GUIEventAdapter& ,GUIActionAdapter& us) { if(_node.get() && _camera.get()) { const osg::BoundingSphere& boundingSphere=_node->getBound(); _camera->setView(boundingSphere._center+osg::Vec3( 0.0,-2.0f * boundingSphere._radius,0.0f), boundingSphere._center, osg::Vec3(0.0f,0.0f,1.0f)); us.requestRedraw(); } } void TrackballManipulator::init(const GUIEventAdapter& ,GUIActionAdapter& ) { flushMouseEventStack(); } bool TrackballManipulator::handle(const GUIEventAdapter& ea,GUIActionAdapter& us) { if(!_camera.get()) return false; switch(ea.getEventType()) { case(GUIEventAdapter::PUSH): { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } return true; case(GUIEventAdapter::RELEASE): { if (ea.getButtonMask()==0) { if (isMouseMoving()) { if (calcMovement()) { us.requestRedraw(); us.requestContinuousUpdate(true); _thrown = true; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } } return true; case(GUIEventAdapter::DRAG): { addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } return true; case(GUIEventAdapter::MOVE): { } return false; case(GUIEventAdapter::KEYBOARD): if (ea.getKey()==' ') { flushMouseEventStack(); _thrown = false; home(ea,us); us.requestRedraw(); us.requestContinuousUpdate(false); return true; } return false; case(GUIEventAdapter::FRAME): if (_thrown) { if (calcMovement()) us.requestRedraw(); return true; } return false; default: return false; } } bool TrackballManipulator::isMouseMoving() { if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; static const float velocity = 100.0f; float dx = _ga_t0->getX()-_ga_t1->getX(); float dy = _ga_t0->getY()-_ga_t1->getY(); float len = sqrtf(dx*dx+dy*dy); float dt = _ga_t0->time()-_ga_t1->time(); return (len>dt*velocity); } void TrackballManipulator::flushMouseEventStack() { _ga_t1 = NULL; _ga_t0 = NULL; } void TrackballManipulator::addMouseEvent(const GUIEventAdapter& ea) { _ga_t1 = _ga_t0; _ga_t0 = &ea; } bool TrackballManipulator::calcMovement() { _camera->setFusionDistanceFunction(osg::Camera::PROPORTIONAL_TO_LOOK_DISTANCE,1.0f); // return if less then two events have been added. if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; float dx = _ga_t0->getX()-_ga_t1->getX(); float dy = _ga_t0->getY()-_ga_t1->getY(); // return if there is no movement. if (dx==0 && dy==0) return false; float focalLength = (_camera->getCenterPoint()-_camera->getEyePoint()).length(); unsigned int buttonMask = _ga_t1->getButtonMask(); if (buttonMask==GUIEventAdapter::LEFT_BUTTON) { // rotate camera. osg::Vec3 center = _camera->getCenterPoint(); osg::Vec3 axis; float angle; float mx0 = (_ga_t0->getXmin()+_ga_t0->getXmax())/2.0f; float rx0 = (_ga_t0->getXmax()-_ga_t0->getXmin())/2.0f; float my0 = (_ga_t0->getYmin()+_ga_t0->getYmax())/2.0f; float ry0 = (_ga_t0->getYmax()-_ga_t0->getYmin())/2.0f; float mx1 = (_ga_t0->getXmin()+_ga_t1->getXmax())/2.0f; float rx1 = (_ga_t0->getXmax()-_ga_t1->getXmin())/2.0f; float my1 = (_ga_t1->getYmin()+_ga_t1->getYmax())/2.0f; float ry1 = (_ga_t1->getYmax()-_ga_t1->getYmin())/2.0f; float px0 = (_ga_t0->getX()-mx0)/rx0; float py0 = (my0-_ga_t0->getY())/ry0; float px1 = (_ga_t1->getX()-mx1)/rx1; float py1 = (my1-_ga_t1->getY())/ry1; trackball(axis,angle,px1,py1,px0,py0); osg::Matrix mat; mat.makeTranslate(-center.x(),-center.y(),-center.z()); mat *= Matrix::rotate(angle,axis.x(),axis.y(),axis.z()); mat *= Matrix::translate(center.x(),center.y(),center.z()); _camera->transformLookAt(mat); return true; } else if (buttonMask==GUIEventAdapter::MIDDLE_BUTTON || buttonMask==(GUIEventAdapter::LEFT_BUTTON|GUIEventAdapter::RIGHT_BUTTON)) { // pan model. float scale = 0.0015f*focalLength; osg::Vec3 uv = _camera->getUpVector(); osg::Vec3 sv = _camera->getSideVector(); osg::Vec3 dv = uv*(dy*scale)-sv*(dx*scale); osg::Matrix mat; mat.makeTranslate(dv.x(),dv.y(),dv.z()); _camera->transformLookAt(mat); return true; } else if (buttonMask==GUIEventAdapter::RIGHT_BUTTON) { // zoom model. float fd = focalLength; float scale = 1.0f-dy*0.001f; if (fd*scale>_modelScale*_minimumZoomScale) { // zoom camera in. osg::Vec3 center = _camera->getCenterPoint(); osg::Matrix mat; mat.makeTranslate(-center.x(),-center.y(),-center.z()); mat *= Matrix::scale(scale,scale,scale); mat *= Matrix::translate(center.x(),center.y(),center.z()); _camera->transformLookAt(mat); } else { // notify(DEBUG_INFO) << "Pushing forward"<getLookVector()*(dy*scale); osg::Matrix mat; mat.makeTranslate(dv.x(),dv.y(),dv.z()); _camera->transformLookAt(mat); } return true; } return false; } /* * This size should really be based on the distance from the center of * rotation to the point on the object underneath the mouse. That * point would then track the mouse as closely as possible. This is a * simple example, though, so that is left as an Exercise for the * Programmer. */ const float TRACKBALLSIZE = 0.8f; /* * Ok, simulate a track-ball. Project the points onto the virtual * trackball, then figure out the axis of rotation, which is the cross * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0) * Note: This is a deformed trackball-- is a trackball in the center, * but is deformed into a hyperbolic sheet of rotation away from the * center. This particular function was chosen after trying out * several variations. * * It is assumed that the arguments to this routine are in the range * (-1.0 ... 1.0) */ void TrackballManipulator::trackball(osg::Vec3& axis,float& angle, float p1x, float p1y, float p2x, float p2y) { /* * First, figure out z-coordinates for projection of P1 and P2 to * deformed sphere */ osg::Vec3 uv = _camera->getUpVector(); osg::Vec3 sv = _camera->getSideVector(); osg::Vec3 lv = _camera->getLookVector(); osg::Vec3 p1 = sv*p1x+uv*p1y-lv*tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y); osg::Vec3 p2 = sv*p2x+uv*p2y-lv*tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y); /* * Now, we want the cross product of P1 and P2 */ // Robert, // // This was the quick 'n' dirty fix to get the trackball doing the right // thing after fixing the Quat rotations to be right-handed. You may want // to do something more elegant. // axis = p1^p2; axis = p2^p1; axis.normalize(); /* * Figure out how much to rotate around that axis. */ float t = (p2-p1).length() / (2.0*TRACKBALLSIZE); /* * Avoid problems with out-of-control values... */ if (t > 1.0) t = 1.0; if (t < -1.0) t = -1.0; angle = inRadians(asin(t)); } /* * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet * if we are away from the center of the sphere. */ float TrackballManipulator::tb_project_to_sphere(float r, float x, float y) { float d, t, z; d = sqrt(x*x + y*y); /* Inside sphere */ if (d < r * 0.70710678118654752440) { z = sqrt(r*r - d*d); } /* On hyperbola */ else { t = r / 1.41421356237309504880; z = t*t / d; } return z; }