#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef std::vector< osg::ref_ptr > ImageList; // example ReadOperator // struct ReadOperator // { // inline void luminance(float l) const { rgba(l,l,l,1.0f); } // inline void alpha(float a) const { rgba(1.0f,1.0f,1.0f,a); } // inline void luminance_alpha(float l,float a) const { rgba(l,l,l,a); } // inline void rgb(float r,float g,float b) const { rgba(r,g,b,1.0f); } // inline void rgba(float r,float g,float b,float a) const { std::cout<<"pixel("< void _readRow(unsigned int num, GLenum pixelFormat, T* data,float scale, const O& operation) { switch(pixelFormat) { case(GL_LUMINANCE): { for(unsigned int i=0;i void readRow(unsigned int num, GLenum pixelFormat, GLenum dataType, unsigned char* data, const O& operation) { switch(dataType) { case(GL_BYTE): _readRow(num,pixelFormat, (char*)data, 1.0f/128.0f, operation); break; case(GL_UNSIGNED_BYTE): _readRow(num,pixelFormat, (unsigned char*)data, 1.0f/255.0f, operation); break; case(GL_SHORT): _readRow(num,pixelFormat, (short*) data, 1.0f/32768.0f, operation); break; case(GL_UNSIGNED_SHORT): _readRow(num,pixelFormat, (unsigned short*)data, 1.0f/65535.0f, operation); break; case(GL_INT): _readRow(num,pixelFormat, (int*) data, 1.0f/2147483648.0f, operation); break; case(GL_UNSIGNED_INT): _readRow(num,pixelFormat, (unsigned int*) data, 1.0f/4294967295.0f, operation); break; case(GL_FLOAT): _readRow(num,pixelFormat, (float*) data, 1.0f, operation); break; } } template void readImage(osg::Image* image, const O& operation) { if (!image) return; for(int r=0;rr();++r) { for(int t=0;tt();++t) { readRow(image->s(), image->getPixelFormat(), image->getDataType(), image->data(0,t,r), operation); } } } // example ModifyOperator // struct ModifyOperator // { // inline void luminance(float& l) const {} // inline void alpha(float& a) const {} // inline void luminance_alpha(float& l,float& a) const {} // inline void rgb(float& r,float& g,float& b) const {} // inline void rgba(float& r,float& g,float& b,float& a) const {} // }; template void _modifyRow(unsigned int num, GLenum pixelFormat, T* data,float scale, const M& operation) { float inv_scale = 1.0f/scale; switch(pixelFormat) { case(GL_LUMINANCE): { for(unsigned int i=0;i void modifyRow(unsigned int num, GLenum pixelFormat, GLenum dataType, unsigned char* data, const M& operation) { switch(dataType) { case(GL_BYTE): _modifyRow(num,pixelFormat, (char*)data, 1.0f/128.0f, operation); break; case(GL_UNSIGNED_BYTE): _modifyRow(num,pixelFormat, (unsigned char*)data, 1.0f/255.0f, operation); break; case(GL_SHORT): _modifyRow(num,pixelFormat, (short*) data, 1.0f/32768.0f, operation); break; case(GL_UNSIGNED_SHORT): _modifyRow(num,pixelFormat, (unsigned short*)data, 1.0f/65535.0f, operation); break; case(GL_INT): _modifyRow(num,pixelFormat, (int*) data, 1.0f/2147483648.0f, operation); break; case(GL_UNSIGNED_INT): _modifyRow(num,pixelFormat, (unsigned int*) data, 1.0f/4294967295.0f, operation); break; case(GL_FLOAT): _modifyRow(num,pixelFormat, (float*) data, 1.0f, operation); break; } } template void modifyImage(osg::Image* image, const M& operation) { if (!image) return; for(int r=0;rr();++r) { for(int t=0;tt();++t) { modifyRow(image->s(), image->getPixelFormat(), image->getDataType(), image->data(0,t,r), operation); } } } struct PassThroughTransformFunction { unsigned char operator() (unsigned char c) const { return c; } }; struct ProcessRow { virtual ~ProcessRow() {} virtual void operator() (unsigned int num, GLenum source_pixelFormat, unsigned char* source, GLenum dest_pixelFormat, unsigned char* dest) const { switch(source_pixelFormat) { case(GL_LUMINANCE): case(GL_ALPHA): switch(dest_pixelFormat) { case(GL_LUMINANCE): case(GL_ALPHA): A_to_A(num, source, dest); break; case(GL_LUMINANCE_ALPHA): A_to_LA(num, source, dest); break; case(GL_RGB): A_to_RGB(num, source, dest); break; case(GL_RGBA): A_to_RGBA(num, source, dest); break; } break; case(GL_LUMINANCE_ALPHA): switch(dest_pixelFormat) { case(GL_LUMINANCE): case(GL_ALPHA): LA_to_A(num, source, dest); break; case(GL_LUMINANCE_ALPHA): LA_to_LA(num, source, dest); break; case(GL_RGB): LA_to_RGB(num, source, dest); break; case(GL_RGBA): LA_to_RGBA(num, source, dest); break; } break; case(GL_RGB): switch(dest_pixelFormat) { case(GL_LUMINANCE): case(GL_ALPHA): RGB_to_A(num, source, dest); break; case(GL_LUMINANCE_ALPHA): RGB_to_LA(num, source, dest); break; case(GL_RGB): RGB_to_RGB(num, source, dest); break; case(GL_RGBA): RGB_to_RGBA(num, source, dest); break; } break; case(GL_RGBA): switch(dest_pixelFormat) { case(GL_LUMINANCE): case(GL_ALPHA): RGBA_to_A(num, source, dest); break; case(GL_LUMINANCE_ALPHA): RGBA_to_LA(num, source, dest); break; case(GL_RGB): RGBA_to_RGB(num, source, dest); break; case(GL_RGBA): RGBA_to_RGBA(num, source, dest); break; } break; } } /////////////////////////////////////////////////////////////////////////////// // alpha sources.. virtual void A_to_A(unsigned int num, unsigned char* source, unsigned char* dest) const { for(unsigned int i=0;iget(); GLenum pixelFormat = image->getPixelFormat(); if (pixelFormat==GL_ALPHA || pixelFormat==GL_LUMINANCE || pixelFormat==GL_LUMINANCE_ALPHA || pixelFormat==GL_RGB || pixelFormat==GL_RGBA) { max_s = osg::maximum(image->s(), max_s); max_t = osg::maximum(image->t(), max_t); max_components = osg::maximum(osg::Image::computeNumComponents(pixelFormat), max_components); total_r += image->r(); } else { osg::notify(osg::NOTICE)<<"Image "<getFileName()<<" has unsuitable pixel format"<< std::hex<< pixelFormat << std::dec << std::endl; } } if (numComponentsDesired!=0) max_components = numComponentsDesired; GLenum desiredPixelFormat = 0; switch(max_components) { case(1): osg::notify(osg::NOTICE)<<"desiredPixelFormat = GL_LUMINANCE" << std::endl; desiredPixelFormat = GL_LUMINANCE; break; case(2): osg::notify(osg::NOTICE)<<"desiredPixelFormat = GL_LUMINANCE_ALPHA" << std::endl; desiredPixelFormat = GL_LUMINANCE_ALPHA; break; case(3): osg::notify(osg::NOTICE)<<"desiredPixelFormat = GL_RGB" << std::endl; desiredPixelFormat = GL_RGB; break; case(4): osg::notify(osg::NOTICE)<<"desiredPixelFormat = GL_RGBA" << std::endl; desiredPixelFormat = GL_RGBA; break; } if (desiredPixelFormat==0) return 0; // compute nearest powers of two for each axis. int s_nearestPowerOfTwo = 1; while(s_nearestPowerOfTwo normalmap_3d = new osg::Image; normalmap_3d->allocateImage(image_3d->s(),image_3d->t(),image_3d->r(), GL_RGBA,GL_UNSIGNED_BYTE); if (osg::getCpuByteOrder()==osg::LittleEndian) alphaOffset = sourcePixelIncrement-alphaOffset-1; for(int r=1;rr()-1;++r) { for(int t=1;tt()-1;++t) { unsigned char* ptr = image_3d->data(1,t,r)+alphaOffset; unsigned char* left = image_3d->data(0,t,r)+alphaOffset; unsigned char* right = image_3d->data(2,t,r)+alphaOffset; unsigned char* above = image_3d->data(1,t+1,r)+alphaOffset; unsigned char* below = image_3d->data(1,t-1,r)+alphaOffset; unsigned char* in = image_3d->data(1,t,r+1)+alphaOffset; unsigned char* out = image_3d->data(1,t,r-1)+alphaOffset; unsigned char* destination = (unsigned char*) normalmap_3d->data(1,t,r); for(int s=1;ss()-1;++s) { osg::Vec3 grad((float)(*left)-(float)(*right), (float)(*below)-(float)(*above), (float)(*out) -(float)(*in)); grad.normalize(); if (grad.x()==0.0f && grad.y()==0.0f && grad.z()==0.0f) { grad.set(128.0f,128.0f,128.0f); } else { grad.x() = osg::clampBetween((grad.x()+1.0f)*128.0f,0.0f,255.0f); grad.y() = osg::clampBetween((grad.y()+1.0f)*128.0f,0.0f,255.0f); grad.z() = osg::clampBetween((grad.z()+1.0f)*128.0f,0.0f,255.0f); } *(destination++) = (unsigned char)(grad.x()); // scale and bias X. *(destination++) = (unsigned char)(grad.y()); // scale and bias Y. *(destination++) = (unsigned char)(grad.z()); // scale and bias Z. *destination++ = *ptr; ptr += sourcePixelIncrement; left += sourcePixelIncrement; right += sourcePixelIncrement; above += sourcePixelIncrement; below += sourcePixelIncrement; in += sourcePixelIncrement; out += sourcePixelIncrement; } } } return normalmap_3d.release(); } osg::Node* createCube(float size,float alpha, unsigned int numSlices, float sliceEnd=1.0f) { // set up the Geometry. osg::Geometry* geom = new osg::Geometry; float halfSize = size*0.5f; float y = halfSize; float dy =-size*1.4/(float)(numSlices-1)*sliceEnd; //y = -halfSize; //dy *= 0.5; osg::Vec3Array* coords = new osg::Vec3Array(4*numSlices); geom->setVertexArray(coords); for(unsigned int i=0;isetNormalArray(normals); geom->setNormalBinding(osg::Geometry::BIND_OVERALL); osg::Vec4Array* colors = new osg::Vec4Array(1); (*colors)[0].set(1.0f,1.0f,1.0f,alpha); geom->setColorArray(colors); geom->setColorBinding(osg::Geometry::BIND_OVERALL); geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,coords->size())); osg::Billboard* billboard = new osg::Billboard; billboard->setMode(osg::Billboard::POINT_ROT_WORLD); billboard->addDrawable(geom); billboard->setPosition(0,osg::Vec3(0.0f,0.0f,0.0f)); return billboard; } class FollowMouseCallback : public osgGA::GUIEventHandler, public osg::StateSet::Callback { public: FollowMouseCallback() { _updateTransparency = false; _updateAlphaCutOff = false; _updateSampleDensity = false; } FollowMouseCallback(const FollowMouseCallback&,const osg::CopyOp&) {} META_Object(osg,FollowMouseCallback); virtual void operator() (osg::StateSet* stateset, osg::NodeVisitor* nv) { if (nv->getVisitorType()==osg::NodeVisitor::EVENT_VISITOR) { osgGA::EventVisitor* ev = dynamic_cast(nv); if (ev) { osgGA::GUIActionAdapter* aa = ev->getActionAdapter(); osgGA::EventVisitor::EventList& events = ev->getEventList(); for(osgGA::EventVisitor::EventList::iterator itr=events.begin(); itr!=events.end(); ++itr) { handle(*(*itr), *aa, stateset, ev); } } } } virtual bool handle(const osgGA::GUIEventAdapter& ea,osgGA::GUIActionAdapter&, osg::Object* object, osg::NodeVisitor*) { osg::StateSet* stateset = dynamic_cast(object); if (!stateset) return false; switch(ea.getEventType()) { case(osgGA::GUIEventAdapter::MOVE): case(osgGA::GUIEventAdapter::DRAG): { float v = ea.getY()*0.5f+0.5f; osg::Uniform* uniform = 0; if (_updateTransparency && (uniform = stateset->getUniform("transparency"))) uniform->set(v); if (_updateAlphaCutOff && (uniform = stateset->getUniform("alphaCutOff"))) uniform->set(v); if (_updateSampleDensity && (uniform = stateset->getUniform("sampleDensity"))) uniform->set(powf(v,5)); break; } case(osgGA::GUIEventAdapter::KEYDOWN): { if (ea.getKey()=='t') _updateTransparency = true; if (ea.getKey()=='a') _updateAlphaCutOff = true; if (ea.getKey()=='d') _updateSampleDensity = true; break; } case(osgGA::GUIEventAdapter::KEYUP): { if (ea.getKey()=='t') _updateTransparency = false; if (ea.getKey()=='a') _updateAlphaCutOff = false; if (ea.getKey()=='d') _updateSampleDensity = false; break; } default: break; } return false; } virtual void accept(osgGA::GUIEventHandlerVisitor& v) { v.visit(*this); } bool _updateTransparency; bool _updateAlphaCutOff; bool _updateSampleDensity; }; osg::Node* createShaderModel(osg::ref_ptr& image_3d, osg::ref_ptr& /*normalmap_3d*/, osg::Texture::InternalFormatMode internalFormatMode, float /*xSize*/, float /*ySize*/, float /*zSize*/, float /*xMultiplier*/, float /*yMultiplier*/, float /*zMultiplier*/, unsigned int /*numSlices*/=500, float /*sliceEnd*/=1.0f, float alphaFuncValue=0.02f) { osg::Geode* geode = new osg::Geode; osg::StateSet* stateset = geode->getOrCreateStateSet(); stateset->setEventCallback(new FollowMouseCallback); // set up the 3d texture itself, // note, well set the filtering up so that mip mapping is disabled, // gluBuild3DMipsmaps doesn't do a very good job of handled the // inbalanced dimensions of the 256x256x4 texture. osg::Texture3D* texture3D = new osg::Texture3D; texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR); texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR); texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP); texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP); texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP); if (image_3d->getPixelFormat()==GL_ALPHA || image_3d->getPixelFormat()==GL_LUMINANCE) { texture3D->setInternalFormatMode(osg::Texture3D::USE_USER_DEFINED_FORMAT); texture3D->setInternalFormat(GL_INTENSITY); } else { texture3D->setInternalFormatMode(internalFormatMode); } texture3D->setImage(image_3d.get()); stateset->setTextureAttributeAndModes(0,texture3D,osg::StateAttribute::ON); osg::Program* program = new osg::Program; stateset->setAttribute(program); // get shaders from source std::string vertexShaderFile = osgDB::findDataFile("volume.vert"); if (!vertexShaderFile.empty()) { program->addShader(osg::Shader::readShaderFile(osg::Shader::VERTEX, vertexShaderFile)); } else { char vertexShaderSource[] = "varying vec3 texcoord;\n" "varying vec3 deltaTexCoord;\n" "\n" "void main(void)\n" "{\n" " texcoord = gl_MultiTexCoord0.xyz;\n" " gl_Position = ftransform(); \n" " deltaTexCoord = normalize(gl_ModelViewMatrixInverse * vec4(0,0,0,1) - gl_Vertex);\n" "}\n"; osg::Shader* vertex_shader = new osg::Shader(osg::Shader::VERTEX, vertexShaderSource); program->addShader(vertex_shader); } std::string fragmentShaderFile = osgDB::findDataFile("volume.frag"); if (!fragmentShaderFile.empty()) { program->addShader(osg::Shader::readShaderFile(osg::Shader::FRAGMENT, fragmentShaderFile)); } else { ////////////////////////////////////////////////////////////////// // fragment shader // char fragmentShaderSource[] = "uniform sampler3D baseTexture;\n" "uniform float sampleDensity;\n" "uniform float transparency;\n" "uniform float alphaCutOff;\n" "\n" "varying vec3 deltaTexCoord;\n" "varying vec3 texcoord;\n" "void main(void) \n" "{ \n" " vec3 deltaTexCoord2 = normalize(deltaTexCoord)*sampleDensity; \n" "\n" " gl_FragColor = vec4(0.0, 0.0, 0.0, 0.0); \n" " \n" " while (texcoord.x>=0.0 && texcoord.x<=1.0 &&\n" " texcoord.y>=0.0 && texcoord.y<=1.0 &&\n" " texcoord.z>=0.0 && texcoord.z<=1.0)\n" " {\n" " vec4 color = texture3D( baseTexture, texcoord);\n" " float r = color[3]*transparency;\n" " if (r>alphaCutOff)\n" " {\n" " gl_FragColor.xyz = gl_FragColor.xyz*(1.0-r)+color.xyz*r;\n" " gl_FragColor.w += r;\n" " }\n" " texcoord += deltaTexCoord2; \n" " }\n" " if (gl_FragColor.w>1.0) gl_FragColor.w = 1.0; \n" "}\n"; osg::Shader* fragment_shader = new osg::Shader(osg::Shader::FRAGMENT, fragmentShaderSource); program->addShader(fragment_shader); } osg::Uniform* baseTextureSampler = new osg::Uniform("baseTexture",0); stateset->addUniform(baseTextureSampler); osg::Uniform* sampleDensity = new osg::Uniform("sampleDensity", 0.01f); stateset->addUniform(sampleDensity); osg::Uniform* transpancy = new osg::Uniform("transparency",0.5f); stateset->addUniform(transpancy); osg::Uniform* alphaCutOff = new osg::Uniform("alphaCutOff",alphaFuncValue); stateset->addUniform(alphaCutOff); stateset->setMode(GL_CULL_FACE, osg::StateAttribute::ON); { osg::Geometry* geom = new osg::Geometry; osg::Vec3Array* coords = new osg::Vec3Array(8); (*coords)[0].set(0,0,0); (*coords)[1].set(1,0,0); (*coords)[2].set(1,1,0); (*coords)[3].set(0,1,0); (*coords)[4].set(0,0,1); (*coords)[5].set(1,0,1); (*coords)[6].set(1,1,1); (*coords)[7].set(0,1,1); geom->setVertexArray(coords); osg::Vec3Array* tcoords = new osg::Vec3Array(8); (*tcoords)[0].set(0,0,0); (*tcoords)[1].set(1,0,0); (*tcoords)[2].set(1,1,0); (*tcoords)[3].set(0,1,0); (*tcoords)[4].set(0,0,1); (*tcoords)[5].set(1,0,1); (*tcoords)[6].set(1,1,1); (*tcoords)[7].set(0,1,1); geom->setTexCoordArray(0,tcoords); osg::Vec4Array* colours = new osg::Vec4Array(1); (*colours)[0].set(1.0f,1.0f,1.0,1.0f); geom->setColorArray(colours); geom->setColorBinding(osg::Geometry::BIND_OVERALL); osg::DrawElementsUShort* drawElements = new osg::DrawElementsUShort(GL_QUADS); // bottom drawElements->push_back(0); drawElements->push_back(1); drawElements->push_back(2); drawElements->push_back(3); // bottom drawElements->push_back(3); drawElements->push_back(2); drawElements->push_back(6); drawElements->push_back(7); // left drawElements->push_back(0); drawElements->push_back(3); drawElements->push_back(7); drawElements->push_back(4); // right drawElements->push_back(5); drawElements->push_back(6); drawElements->push_back(2); drawElements->push_back(1); // front drawElements->push_back(1); drawElements->push_back(0); drawElements->push_back(4); drawElements->push_back(5); // top drawElements->push_back(7); drawElements->push_back(6); drawElements->push_back(5); drawElements->push_back(4); geom->addPrimitiveSet(drawElements); geode->addDrawable(geom); } return geode; } osg::Node* createModel(osg::ref_ptr& image_3d, osg::ref_ptr& normalmap_3d, osg::Texture::InternalFormatMode internalFormatMode, float xSize, float ySize, float zSize, float xMultiplier, float yMultiplier, float zMultiplier, unsigned int numSlices=500, float sliceEnd=1.0f, float alphaFuncValue=0.02f) { bool two_pass = normalmap_3d.valid() && (image_3d->getPixelFormat()==GL_RGB || image_3d->getPixelFormat()==GL_RGBA); osg::Group* group = new osg::Group; osg::TexGenNode* texgenNode_0 = new osg::TexGenNode; texgenNode_0->setTextureUnit(0); texgenNode_0->getTexGen()->setMode(osg::TexGen::EYE_LINEAR); texgenNode_0->getTexGen()->setPlane(osg::TexGen::S, osg::Vec4(xMultiplier,0.0f,0.0f,0.5f)); texgenNode_0->getTexGen()->setPlane(osg::TexGen::T, osg::Vec4(0.0f,yMultiplier,0.0f,0.5f)); texgenNode_0->getTexGen()->setPlane(osg::TexGen::R, osg::Vec4(0.0f,0.0f,zMultiplier,0.5f)); if (two_pass) { osg::TexGenNode* texgenNode_1 = new osg::TexGenNode; texgenNode_1->setTextureUnit(1); texgenNode_1->getTexGen()->setMode(osg::TexGen::EYE_LINEAR); texgenNode_1->getTexGen()->setPlane(osg::TexGen::S, texgenNode_0->getTexGen()->getPlane(osg::TexGen::S)); texgenNode_1->getTexGen()->setPlane(osg::TexGen::T, texgenNode_0->getTexGen()->getPlane(osg::TexGen::T)); texgenNode_1->getTexGen()->setPlane(osg::TexGen::R, texgenNode_0->getTexGen()->getPlane(osg::TexGen::R)); texgenNode_1->addChild(texgenNode_0); group->addChild(texgenNode_1); } else { group->addChild(texgenNode_0); } osg::BoundingBox bb(-xSize*0.5f,-ySize*0.5f,-zSize*0.5f,xSize*0.5f,ySize*0.5f,zSize*0.5f); osg::ClipNode* clipnode = new osg::ClipNode; clipnode->addChild(createCube(1.0f,1.0f, numSlices,sliceEnd)); clipnode->createClipBox(bb); { // set up the Geometry to enclose the clip volume to prevent near/far clipping from affecting billboard osg::Geometry* geom = new osg::Geometry; osg::Vec3Array* coords = new osg::Vec3Array(); coords->push_back(bb.corner(0)); coords->push_back(bb.corner(1)); coords->push_back(bb.corner(2)); coords->push_back(bb.corner(3)); coords->push_back(bb.corner(4)); coords->push_back(bb.corner(5)); coords->push_back(bb.corner(6)); coords->push_back(bb.corner(7)); geom->setVertexArray(coords); osg::Vec4Array* colors = new osg::Vec4Array(1); (*colors)[0].set(1.0f,1.0f,1.0f,1.0f); geom->setColorArray(colors); geom->setColorBinding(osg::Geometry::BIND_OVERALL); geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::POINTS,0,coords->size())); osg::Geode* geode = new osg::Geode; geode->addDrawable(geom); clipnode->addChild(geode); } texgenNode_0->addChild(clipnode); osg::StateSet* stateset = texgenNode_0->getOrCreateStateSet(); stateset->setMode(GL_LIGHTING,osg::StateAttribute::ON); stateset->setMode(GL_BLEND,osg::StateAttribute::ON); stateset->setAttribute(new osg::AlphaFunc(osg::AlphaFunc::GREATER,alphaFuncValue)); osg::Material* material = new osg::Material; material->setDiffuse(osg::Material::FRONT_AND_BACK,osg::Vec4(1.0f,1.0f,1.0f,1.0f)); stateset->setAttributeAndModes(material); osg::Vec3 lightDirection(1.0f,-1.0f,1.0f); lightDirection.normalize(); if (normalmap_3d.valid()) { if (two_pass) { // set up normal texture osg::Texture3D* bump_texture3D = new osg::Texture3D; bump_texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR); bump_texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR); bump_texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP); bump_texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP); bump_texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP); bump_texture3D->setImage(normalmap_3d.get()); bump_texture3D->setInternalFormatMode(internalFormatMode); stateset->setTextureAttributeAndModes(0,bump_texture3D,osg::StateAttribute::ON); osg::TexEnvCombine* tec = new osg::TexEnvCombine; tec->setConstantColorAsLightDirection(lightDirection); tec->setCombine_RGB(osg::TexEnvCombine::DOT3_RGB); tec->setSource0_RGB(osg::TexEnvCombine::CONSTANT); tec->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR); tec->setSource1_RGB(osg::TexEnvCombine::TEXTURE); tec->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR); tec->setCombine_Alpha(osg::TexEnvCombine::REPLACE); tec->setSource0_Alpha(osg::TexEnvCombine::PRIMARY_COLOR); tec->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA); tec->setSource1_Alpha(osg::TexEnvCombine::TEXTURE); tec->setOperand1_Alpha(osg::TexEnvCombine::SRC_ALPHA); stateset->setTextureAttributeAndModes(0, tec, osg::StateAttribute::OVERRIDE|osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_S,osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_T,osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_R,osg::StateAttribute::ON); // set up color texture osg::Texture3D* texture3D = new osg::Texture3D; texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR); texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR); texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP); texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP); texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP); if (image_3d->getPixelFormat()==GL_ALPHA || image_3d->getPixelFormat()==GL_LUMINANCE) { texture3D->setInternalFormatMode(osg::Texture3D::USE_USER_DEFINED_FORMAT); texture3D->setInternalFormat(GL_INTENSITY); } else { texture3D->setInternalFormatMode(internalFormatMode); } texture3D->setImage(image_3d.get()); stateset->setTextureAttributeAndModes(1,texture3D,osg::StateAttribute::ON); stateset->setTextureMode(1,GL_TEXTURE_GEN_S,osg::StateAttribute::ON); stateset->setTextureMode(1,GL_TEXTURE_GEN_T,osg::StateAttribute::ON); stateset->setTextureMode(1,GL_TEXTURE_GEN_R,osg::StateAttribute::ON); stateset->setTextureAttributeAndModes(1,new osg::TexEnv(),osg::StateAttribute::ON); } else { osg::ref_ptr normalmap_3d = createNormalMapTexture(image_3d.get()); osg::Texture3D* bump_texture3D = new osg::Texture3D; bump_texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR); bump_texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR); bump_texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP); bump_texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP); bump_texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP); bump_texture3D->setImage(normalmap_3d.get()); bump_texture3D->setInternalFormatMode(internalFormatMode); stateset->setTextureAttributeAndModes(0,bump_texture3D,osg::StateAttribute::ON); osg::TexEnvCombine* tec = new osg::TexEnvCombine; tec->setConstantColorAsLightDirection(lightDirection); tec->setCombine_RGB(osg::TexEnvCombine::DOT3_RGB); tec->setSource0_RGB(osg::TexEnvCombine::CONSTANT); tec->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR); tec->setSource1_RGB(osg::TexEnvCombine::TEXTURE); tec->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR); tec->setCombine_Alpha(osg::TexEnvCombine::MODULATE); tec->setSource0_Alpha(osg::TexEnvCombine::PRIMARY_COLOR); tec->setOperand0_Alpha(osg::TexEnvCombine::SRC_ALPHA); tec->setSource1_Alpha(osg::TexEnvCombine::TEXTURE); tec->setOperand1_Alpha(osg::TexEnvCombine::SRC_ALPHA); stateset->setTextureAttributeAndModes(0, tec, osg::StateAttribute::OVERRIDE|osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_S,osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_T,osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_R,osg::StateAttribute::ON); image_3d = normalmap_3d; } } else { // set up the 3d texture itself, // note, well set the filtering up so that mip mapping is disabled, // gluBuild3DMipsmaps doesn't do a very good job of handled the // inbalanced dimensions of the 256x256x4 texture. osg::Texture3D* texture3D = new osg::Texture3D; texture3D->setFilter(osg::Texture3D::MIN_FILTER,osg::Texture3D::LINEAR); texture3D->setFilter(osg::Texture3D::MAG_FILTER,osg::Texture3D::LINEAR); texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP); texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP); texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP); if (image_3d->getPixelFormat()==GL_ALPHA || image_3d->getPixelFormat()==GL_LUMINANCE) { texture3D->setInternalFormatMode(osg::Texture3D::USE_USER_DEFINED_FORMAT); texture3D->setInternalFormat(GL_INTENSITY); } else { texture3D->setInternalFormatMode(internalFormatMode); } texture3D->setImage(image_3d.get()); stateset->setTextureAttributeAndModes(0,texture3D,osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_S,osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_T,osg::StateAttribute::ON); stateset->setTextureMode(0,GL_TEXTURE_GEN_R,osg::StateAttribute::ON); stateset->setTextureAttributeAndModes(0,new osg::TexEnv(),osg::StateAttribute::ON); } return group; } struct FindRangeOperator { FindRangeOperator(): _rmin(FLT_MAX), _rmax(-FLT_MAX), _gmin(FLT_MAX), _gmax(-FLT_MAX), _bmin(FLT_MAX), _bmax(-FLT_MAX), _amin(FLT_MAX), _amax(-FLT_MAX) {} mutable float _rmin, _rmax, _gmin, _gmax, _bmin, _bmax, _amin, _amax; inline void luminance(float l) const { rgb(l,l,l); } inline void alpha(float a) const { _amin = osg::minimum(a,_amin); _amax = osg::maximum(a,_amax); } inline void luminance_alpha(float l,float a) const { rgb(l,l,l); alpha(a); } inline void rgb(float r,float g,float b) const { _rmin = osg::minimum(r,_rmin); _rmax = osg::maximum(r,_rmax); _gmin = osg::minimum(g,_gmin); _gmax = osg::maximum(g,_gmax); _bmin = osg::minimum(b,_bmin); _bmax = osg::maximum(b,_bmax); } inline void rgba(float r,float g,float b,float a) const { rgb(r,g,b); alpha(a); } }; struct ScaleOperator { ScaleOperator():_scale(1.0f) {} ScaleOperator(float scale):_scale(scale) {} ScaleOperator(const ScaleOperator& so):_scale(so._scale) {} ScaleOperator& operator = (const ScaleOperator& so) { _scale = so._scale; return *this; } float _scale; inline void luminance(float& l) const { l*= _scale; } inline void alpha(float& a) const { a*= _scale; } inline void luminance_alpha(float& l,float& a) const { l*= _scale; a*= _scale; } inline void rgb(float& r,float& g,float& b) const { r*= _scale; g*=_scale; b*=_scale; } inline void rgba(float& r,float& g,float& b,float& a) const { r*= _scale; g*=_scale; b*=_scale; a*=_scale; } }; struct RecordRowOperator { RecordRowOperator(unsigned int num):_colours(num),_pos(0) {} mutable std::vector _colours; mutable unsigned int _pos; inline void luminance(float l) const { rgba(l,l,l,1.0f); } inline void alpha(float a) const { rgba(1.0f,1.0f,1.0f,a); } inline void luminance_alpha(float l,float a) const { rgba(l,l,l,a); } inline void rgb(float r,float g,float b) const { rgba(r,g,b,1.0f); } inline void rgba(float r,float g,float b,float a) const { _colours[_pos++].set(r,g,b,a); } }; struct WriteRowOperator { WriteRowOperator():_pos(0) {} WriteRowOperator(unsigned int num):_colours(num),_pos(0) {} std::vector _colours; mutable unsigned int _pos; inline void luminance(float& l) const { l = _colours[_pos++].r(); } inline void alpha(float& a) const { a = _colours[_pos++].a(); } inline void luminance_alpha(float& l,float& a) const { l = _colours[_pos].r(); a = _colours[_pos++].a(); } inline void rgb(float& r,float& g,float& b) const { r = _colours[_pos].r(); g = _colours[_pos].g(); b = _colours[_pos].b(); } inline void rgba(float& r,float& g,float& b,float& a) const { r = _colours[_pos].r(); g = _colours[_pos].g(); b = _colours[_pos].b(); a = _colours[_pos++].a(); } }; osg::Image* readRaw(int sizeX, int sizeY, int sizeZ, int numberBytesPerComponent, int numberOfComponents, const std::string& endian, const std::string& raw_filename) { std::ifstream fin(raw_filename.c_str()); if (!fin) return 0; GLenum pixelFormat; switch(numberOfComponents) { case 1 : pixelFormat = GL_LUMINANCE; break; case 2 : pixelFormat = GL_LUMINANCE_ALPHA; break; case 3 : pixelFormat = GL_RGB; break; case 4 : pixelFormat = GL_RGBA; break; default : osg::notify(osg::NOTICE)<<"Error: numberOfComponents="< image = new osg::Image; image->allocateImage(sizeS, sizeT, sizeR, pixelFormat, dataType); bool endianSwap = (osg::getCpuByteOrder()==osg::BigEndian) ? (endian!="big") : (endian=="big"); unsigned int r_offset = (sizeZdata(0,t,r+r_offset); for(int s=0;s new_image = new osg::Image; new_image->allocateImage(sizeS, sizeT, sizeR, pixelFormat, GL_UNSIGNED_BYTE); RecordRowOperator readOp(sizeS); WriteRowOperator writeOp; for(int r=0;rdata(0,t,r), readOp); // pass readOp's _colour array contents over to writeOp (note this is just a pointer swap). writeOp._colours.swap(readOp._colours); modifyRow(sizeS, pixelFormat, GL_UNSIGNED_BYTE, new_image->data(0,t,r), writeOp); // return readOp's _colour array contents back to its rightful owner. writeOp._colours.swap(readOp._colours); } } image = new_image; } return image.release(); } enum ColourSpaceOperation { NO_COLOUR_SPACE_OPERATION, MODULATE_ALPHA_BY_LUMINANCE, MODULATE_ALPHA_BY_COLOUR, REPLACE_ALPHA_WITH_LUMINACE }; struct ModulateAlphaByLuminanceOperator { ModulateAlphaByLuminanceOperator() {} inline void luminance(float&) const {} inline void alpha(float&) const {} inline void luminance_alpha(float& l,float& a) const { a*= l; } inline void rgb(float&,float&,float&) const {} inline void rgba(float& r,float& g,float& b,float& a) const { float l = (r+g+b)*0.3333333; a *= l;} }; struct ModulateAlphaByColourOperator { ModulateAlphaByColourOperator(const osg::Vec4& colour):_colour(colour) { _lum = _colour.length(); } osg::Vec4 _colour; float _lum; inline void luminance(float&) const {} inline void alpha(float&) const {} inline void luminance_alpha(float& l,float& a) const { a*= l*_lum; } inline void rgb(float&,float&,float&) const {} inline void rgba(float& r,float& g,float& b,float& a) const { a = (r*_colour.r()+g*_colour.g()+b*_colour.b()+a*_colour.a()); } }; struct ReplaceAlphaWithLuminanceOperator { ReplaceAlphaWithLuminanceOperator() {} inline void luminance(float&) const {} inline void alpha(float&) const {} inline void luminance_alpha(float& l,float& a) const { a= l; } inline void rgb(float&,float&,float&) const { } inline void rgba(float& r,float& g,float& b,float& a) const { float l = (r+g+b)*0.3333333; a = l; } }; void doColourSpaceConversion(ColourSpaceOperation op, osg::Image* image, osg::Vec4& colour) { switch(op) { case (MODULATE_ALPHA_BY_LUMINANCE): std::cout<<"doing conversion MODULATE_ALPHA_BY_LUMINANCE"<setDescription(arguments.getApplicationName()+" is the example which demonstrates use of 3D textures."); arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] filename ..."); arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information"); arguments.getApplicationUsage()->addCommandLineOption("-n","Create normal map for per voxel lighting."); arguments.getApplicationUsage()->addCommandLineOption("-s ","Number of slices to create."); arguments.getApplicationUsage()->addCommandLineOption("--xSize ","Relative width of rendered brick."); arguments.getApplicationUsage()->addCommandLineOption("--ySize ","Relative length of rendered brick."); arguments.getApplicationUsage()->addCommandLineOption("--zSize ","Relative height of rendered brick."); arguments.getApplicationUsage()->addCommandLineOption("--xMultiplier ","Tex coord x mulitplier."); arguments.getApplicationUsage()->addCommandLineOption("--yMultiplier ","Tex coord y mulitplier."); arguments.getApplicationUsage()->addCommandLineOption("--zMultiplier ","Tex coord z mulitplier."); arguments.getApplicationUsage()->addCommandLineOption("--clip ","clip volume as a ratio, 0.0 clip all, 1.0 clip none."); arguments.getApplicationUsage()->addCommandLineOption("--maxTextureSize ","Set the texture maximum resolution in the s,t,r (x,y,z) dimensions."); arguments.getApplicationUsage()->addCommandLineOption("--s_maxTextureSize ","Set the texture maximum resolution in the s (x) dimension."); arguments.getApplicationUsage()->addCommandLineOption("--t_maxTextureSize ","Set the texture maximum resolution in the t (y) dimension."); arguments.getApplicationUsage()->addCommandLineOption("--r_maxTextureSize ","Set the texture maximum resolution in the r (z) dimension."); arguments.getApplicationUsage()->addCommandLineOption("--compressed","Enable the usage of compressed textures."); arguments.getApplicationUsage()->addCommandLineOption("--compressed-arb","Enable the usage of OpenGL ARB compressed textures."); arguments.getApplicationUsage()->addCommandLineOption("--compressed-dxt1","Enable the usage of S3TC DXT1 compressed textures."); arguments.getApplicationUsage()->addCommandLineOption("--compressed-dxt3","Enable the usage of S3TC DXT3 compressed textures."); arguments.getApplicationUsage()->addCommandLineOption("--compressed-dxt5","Enable the usage of S3TC DXT5 compressed textures."); arguments.getApplicationUsage()->addCommandLineOption("--modulate-alpha-by-luminance","For each pixel multiple the alpha value by the luminance."); arguments.getApplicationUsage()->addCommandLineOption("--replace-alpha-with-luminance","For each pixel mSet the alpha value to the luminance."); arguments.getApplicationUsage()->addCommandLineOption("--num-components ","Set the number of components to in he target image."); // arguments.getApplicationUsage()->addCommandLineOption("--raw ","read a raw image data"); // construct the viewer. osgProducer::Viewer viewer(arguments); // set up the value with sensible default event handlers. viewer.setUpViewer(osgProducer::Viewer::STANDARD_SETTINGS); // get details on keyboard and mouse bindings used by the viewer. viewer.getUsage(*arguments.getApplicationUsage()); // if user request help write it out to cout. if (arguments.read("-h") || arguments.read("--help")) { arguments.getApplicationUsage()->write(std::cout); return 1; } std::string outputFile; while (arguments.read("-o",outputFile)) {} unsigned int numSlices=500; while (arguments.read("-s",numSlices)) {} float sliceEnd=1.0f; while (arguments.read("--clip",sliceEnd)) {} float alphaFunc=0.02f; while (arguments.read("--alphaFunc",alphaFunc)) {} bool createNormalMap = false; while (arguments.read("-n")) createNormalMap=true; float xSize=1.0f, ySize=1.0f, zSize=1.0f; while (arguments.read("--xSize",xSize)) {} while (arguments.read("--ySize",ySize)) {} while (arguments.read("--zSize",zSize)) {} float xMultiplier=1.0f, yMultiplier=1.0f, zMultiplier=1.0f; while (arguments.read("--xMultiplier",xMultiplier)) {} while (arguments.read("--yMultiplier",yMultiplier)) {} while (arguments.read("--zMultiplier",zMultiplier)) {} int s_maximumTextureSize = 256; int t_maximumTextureSize = 256; int r_maximumTextureSize = 256; int maximumTextureSize = 256; while(arguments.read("--maxTextureSize",maximumTextureSize)) { s_maximumTextureSize = maximumTextureSize; t_maximumTextureSize = maximumTextureSize; r_maximumTextureSize = maximumTextureSize; } while(arguments.read("--s_maxTextureSize",s_maximumTextureSize)) {} while(arguments.read("--t_maxTextureSize",t_maximumTextureSize)) {} while(arguments.read("--r_maxTextureSize",r_maximumTextureSize)) {} osg::Texture::InternalFormatMode internalFormatMode = osg::Texture::USE_IMAGE_DATA_FORMAT; while(arguments.read("--compressed") || arguments.read("--compressed-arb")) { internalFormatMode = osg::Texture::USE_ARB_COMPRESSION; } while(arguments.read("--compressed-dxt1")) { internalFormatMode = osg::Texture::USE_S3TC_DXT1_COMPRESSION; } while(arguments.read("--compressed-dxt3")) { internalFormatMode = osg::Texture::USE_S3TC_DXT3_COMPRESSION; } while(arguments.read("--compressed-dxt5")) { internalFormatMode = osg::Texture::USE_S3TC_DXT5_COMPRESSION; } // set up colour space operation. ColourSpaceOperation colourSpaceOperation = NO_COLOUR_SPACE_OPERATION; osg::Vec4 colourModulate(0.25f,0.25f,0.25f,0.25f); while(arguments.read("--modulate-alpha-by-luminance")) { colourSpaceOperation = MODULATE_ALPHA_BY_LUMINANCE; } while(arguments.read("--modulate-alpha-by-colour", colourModulate.x(),colourModulate.y(),colourModulate.z(),colourModulate.w() )) { colourSpaceOperation = MODULATE_ALPHA_BY_COLOUR; } while(arguments.read("--replace-alpha-with-luminance")) { colourSpaceOperation = REPLACE_ALPHA_WITH_LUMINACE; } unsigned int numComponentsDesired = 0; while(arguments.read("--num-components", numComponentsDesired)) {} bool useShader = false; while(arguments.read("--shader")) { useShader = true; } osg::ref_ptr image_3d; int sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents; std::string endian, raw_filename; while (arguments.read("--raw", sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents, endian, raw_filename)) { image_3d = readRaw(sizeX, sizeY, sizeZ, numberBytesPerComponent, numberOfComponents, endian, raw_filename); } while (arguments.read("--images")) { ImageList imageList; for(int pos=1;pos normalmap_3d = createNormalMap ? createNormalMapTexture(image_3d.get()) : 0; // create a model from the images. osg::Node* rootNode = 0; if (useShader) { rootNode = createShaderModel(image_3d, normalmap_3d, internalFormatMode, xSize, ySize, zSize, xMultiplier, yMultiplier, zMultiplier, numSlices, sliceEnd, alphaFunc); } else { rootNode = createModel(image_3d, normalmap_3d, internalFormatMode, xSize, ySize, zSize, xMultiplier, yMultiplier, zMultiplier, numSlices, sliceEnd, alphaFunc); } if (!outputFile.empty()) { std::string ext = osgDB::getFileExtension(outputFile); std::string name_no_ext = osgDB::getNameLessExtension(outputFile); if (ext=="osg") { if (image_3d.valid()) { image_3d->setFileName(name_no_ext + ".dds"); osgDB::writeImageFile(*image_3d, image_3d->getFileName()); } if (normalmap_3d.valid()) { normalmap_3d->setFileName(name_no_ext + "_normalmap.dds"); osgDB::writeImageFile(*normalmap_3d, normalmap_3d->getFileName()); } osgDB::writeNodeFile(*rootNode, outputFile); } else if (ext=="ive") { osgDB::writeNodeFile(*rootNode, outputFile); } else if (ext=="dds") { osgDB::writeImageFile(*image_3d, outputFile); } else { std::cout<<"Extension not support for file output, not file written."<