#include "osg/Quat" #include "osg/Vec4" #include "osg/Vec3" #include "osg/Types" #include /// Good introductions to Quaternions at: /// http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm /// http://mathworld.wolfram.com/Quaternion.html using namespace osg; /// Set the elements of the Quat to represent a rotation of angle /// (radians) around the axis (x,y,z) void Quat::makeRot( const float angle, const float x, const float y, const float z ) { float _angle = -angle; // Convert to right handed coordinate system float inversenorm = 1.0/sqrt( x*x + y*y + z*z ); float coshalfangle = cos( 0.5*_angle ); float sinhalfangle = sin( 0.5*_angle ); _fv[0] = x * sinhalfangle * inversenorm; _fv[1] = y * sinhalfangle * inversenorm; _fv[2] = z * sinhalfangle * inversenorm; _fv[3] = coshalfangle; } void Quat::makeRot( const float angle, const Vec3& vec ) { makeRot( angle, vec[0], vec[1], vec[2] ); } // Make a rotation Quat which will rotate vec1 to vec2 // Generally take adot product to get the angle between these // and then use a cross product to get the rotation axis // Watch out for the two special cases of when the vectors // are co-incident or opposite in direction. void Quat::makeRot( const Vec3& vec1, const Vec3& vec2 ) { const float epsilon = 0.00001f; float length1 = vec1.length(); float length2 = vec2.length(); // dot product vec1*vec2 float cosangle = vec1*vec2/(length1*length2); cosangle = - cosangle; // Convert to right-handed coordinate system if ( fabs(cosangle - 1) < epsilon ) { // cosangle is close to 1, so the vectors are close to being coincident // Need to generate an angle of zero with any vector we like // We'll choose (1,0,0) makeRot( 0.0, 1.0, 0.0, 0.0 ); } else if ( fabs(cosangle + 1) < epsilon ) { // cosangle is close to -1, so the vectors are close to being opposite // The angle of rotation is going to be Pi, but around which axis? // Basically, any one perpendicular to vec1 = (x,y,z) is going to work. // Choose a vector to cross product vec1 with. Find the biggest // in magnitude of x, y and z and then put a zero in that position. float biggest = fabs(vec1[0]); int bigposn = 0; if ( fabs(vec1[1]) > biggest ) { biggest=fabs(vec1[1]); bigposn = 1; } if ( fabs(vec1[2]) > biggest ) { biggest=fabs(vec1[2]); bigposn = 2; } Vec3 temp = Vec3( 1.0, 1.0, 1.0 ); temp[bigposn] = 0.0; Vec3 axis = vec1^temp; // this is a cross-product to generate the // axis around which to rotate makeRot( (float)M_PI, axis ); } else { // This is the usual situation - take a cross-product of vec1 and vec2 // and that is the axis around which to rotate. Vec3 axis = vec1^vec2; float angle = acos( cosangle ); makeRot( angle, axis ); } } // Get the angle of rotation and axis of this Quat object. // Won't give very meaningful results if the Quat is not associated // with a rotation! void Quat::getRot( float& angle, Vec3& vec ) const { float sinhalfangle = sqrt( _fv[0]*_fv[0] + _fv[1]*_fv[1] + _fv[2]*_fv[2] ); /// float coshalfangle = _fv[3]; /// These are not checked for performance reasons ? (cop out!) /// Point for discussion - how do one handle errors in the osg? /// if ( abs(sinhalfangle) > 1.0 ) { error }; /// if ( abs(coshalfangle) > 1.0 ) { error }; // *angle = atan2( sinhalfangle, coshalfangle ); // see man atan2 // -pi < angle < pi angle = 2 * atan2( sinhalfangle, _fv[3] ); vec = Vec3(_fv[0], _fv[1], _fv[2]) / sinhalfangle; } void Quat::getRot( float& angle, float& x, float& y, float& z ) const { float sinhalfangle = sqrt( _fv[0]*_fv[0] + _fv[1]*_fv[1] + _fv[2]*_fv[2] ); angle = 2 * atan2( sinhalfangle, _fv[3] ); x = _fv[0] / sinhalfangle; y = _fv[1] / sinhalfangle; z = _fv[2] / sinhalfangle; } /// Spherical Linear Interpolation /// As t goes from 0 to 1, the Quat object goes from "from" to "to" /// Reference: Shoemake at SIGGRAPH 89 /// See also /// http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm void Quat::slerp( const float t, const Quat& from, const Quat& to ) { const double epsilon = 0.00001; double omega, cosomega, sinomega, scale_from, scale_to ; // this is a dot product cosomega = from.asVec4() * to.asVec4() ; if( (1.0 - cosomega) > epsilon ) { omega= acos(cosomega) ; // 0 <= omega <= Pi (see man acos) sinomega = sin(omega) ; // this sinomega should always be +ve so // could try sinomega=sqrt(1-cosomega*cosomega) to avoid a sin()? scale_from = sin((1.0-t)*omega)/sinomega ; scale_to = sin(t*omega)/sinomega ; } else { /* -------------------------------------------------- The ends of the vectors are very close we can use simple linear interpolation - no need to worry about the "spherical" interpolation -------------------------------------------------- */ scale_from = 1.0 - t ; scale_to = t ; } // use Vec4 arithmetic _fv = (from._fv*scale_from) + (to._fv*scale_to); // so that we get a Vec4 } #define QX _fv[0] #define QY _fv[1] #define QZ _fv[2] #define QW _fv[3] void Quat::set( const Matrix& m ) { // Source: Gamasutra, Rotating Objects Using Quaternions // //http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm float tr, s; float tq[4]; int i, j, k; int nxt[3] = {1, 2, 0}; tr = m(0,0) + m(1,1) + m(2,2); // check the diagonal if (tr > 0.0) { s = (float)sqrt (tr + 1.0); QW = s / 2.0f; s = 0.5f / s; QX = (m(1,2) - m(2,1)) * s; QY = (m(2,0) - m(0,2)) * s; QZ = (m(0,1) - m(1,0)) * s; } else { // diagonal is negative i = 0; if (m(1,1) > m(0,0)) i = 1; if (m(2,2) > m(i,i)) i = 2; j = nxt[i]; k = nxt[j]; s = (float)sqrt ((m(i,i) - (m(j,j) + m(k,k))) + 1.0); tq[i] = s * 0.5f; if (s != 0.0f) s = 0.5f / s; tq[3] = (m(j,k) - m(k,j)) * s; tq[j] = (m(i,j) + m(j,i)) * s; tq[k] = (m(i,k) + m(k,i)) * s; QX = tq[0]; QY = tq[1]; QZ = tq[2]; QW = tq[3]; } } void Quat::get( Matrix& m ) const { // Source: Gamasutra, Rotating Objects Using Quaternions // //http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2; // calculate coefficients x2 = QX + QX; y2 = QY + QY; z2 = QZ + QZ; xx = QX * x2; xy = QX * y2; xz = QX * z2; yy = QY * y2; yz = QY * z2; zz = QZ * z2; wx = QW * x2; wy = QW * y2; wz = QW * z2; m(0,0) = 1.0f - (yy + zz); m(0,1) = xy - wz; m(0,2) = xz + wy; m(0,3) = 0.0f; m(1,0) = xy + wz; m(1,1) = 1.0f - (xx + zz); m(1,2) = yz - wx; m(1,3) = 0.0f; m(2,0) = xz - wy; m(2,1) = yz + wx; m(2,2) = 1.0f - (xx + yy); m(2,3) = 0.0f; m(3,0) = 0; m(3,1) = 0; m(3,2) = 0; m(3,3) = 1; }