//C++ header - Open Scene Graph - Copyright (C) 1998-2002 Robert Osfield //Distributed under the terms of the GNU Library General Public License (LGPL) //as published by the Free Software Foundation. //osgParticle - Copyright (C) 2002 Marco Jez #ifndef OSGPARTICLE_PARTICLESYSTEM_ #define OSGPARTICLE_PARTICLESYSTEM_ 1 #include #include #include #include #include #include #include #include #include #include #include #include #include namespace osgParticle { /** The heart of this class library; its purpose is to hold a set of particles and manage particle creation, update, rendering and destruction. You can add this drawable to any Geode as you usually do with other Drawable classes. Each instance of ParticleSystem is a separate set of particles; it provides the interface for creating particles and iterating through them (see the Emitter and Program classes). */ class OSGPARTICLE_EXPORT ParticleSystem: public osg::Drawable { public: ParticleSystem(); ParticleSystem(const ParticleSystem ©, const osg::CopyOp ©op = osg::CopyOp::SHALLOW_COPY); META_Object(osgParticle, ParticleSystem); /// Get the default bounding box inline const osg::BoundingBox &getDefaultBoundingBox() const; /** Set the default bounding box. The default bounding box is used when a real bounding box cannot be computed, for example because no particles has been updated yet. */ inline void setDefaultBoundingBox(const osg::BoundingBox &bbox); /// Get the double pass rendering flag. inline bool getDoublePassRendering() const; /** Set the double pass rendering flag. Double pass rendering avoids overdraw problems between particle systems and other opaque objects. If you can render all the particle systems after the opaque objects, then double pass is not necessary and can be turned off (best choice). If you set the default attributes with setDefaultAttributes, then the particle system will fall into a transparent bin. */ inline void setDoublePassRendering(bool v); /// Return true if the particle system is frozen. inline bool isFrozen() const; /** Set or reset the frozen state. When the particle system is frozen, emitters and programs won't do anything on it. */ inline void setFrozen(bool v); /// Get the number of allocated particles (alive + dead). inline int numParticles() const; /// Get the number of dead particles. inline int numDeadParticles() const; /// Get a pointer to the i-th particle. inline Particle *getParticle(int i); /// Get a const pointer to the i-th particle. inline const Particle *getParticle(int i) const; /// Create a new particle from the specified template (or the default one if ptemplate is null). inline virtual Particle *createParticle(const Particle *ptemplate); /// Destroy the i-th particle. inline virtual void destroyParticle(int i); /// Get the last frame number. inline int getLastFrameNumber() const; /// Get a reference to the default particle template. inline const Particle &getDefaultParticleTemplate() const; /// Set the default particle template (particle is copied). inline void setDefaultParticleTemplate(const Particle &p); /// Get whether the particle system can freeze when culled inline bool getFreezeOnCull() const; /// Set whether the particle system can freeze when culled (default is true) inline void setFreezeOnCull(bool v); /** A useful method to set the most common StateAttribute's in one call. If texturefile is empty, then texturing is turned off. */ void setDefaultAttributes(const std::string &texturefile = "", bool emissive_particles = true, bool lighting = false); /// (EXPERIMENTAL) Get the level of detail. inline int getLevelOfDetail() const; /** (EXPERIMENTAL) Set the level of detail. The total number of particles is divided by the detail value to get the actual number of particles to be drawn. This value must be greater than zero. */ inline void setLevelOfDetail(int v); /// Update the particles. Don't call this directly, use a ParticleSystemUpdater instead. virtual void update(double dt); inline virtual bool getStats(osg::Statistics &stats); protected: virtual ~ParticleSystem(); ParticleSystem &operator=(const ParticleSystem &) { return *this; } inline virtual const bool computeBound() const; virtual void drawImmediateMode(osg::State &state); inline void update_bounds(const osg::Vec3 &p); void single_pass_render(const osg::Matrix &modelview); private: typedef std::vector Particle_vector; typedef std::stack Death_stack; Particle_vector particles_; Death_stack deadparts_; osg::BoundingBox def_bbox_; bool doublepass_; bool frozen_; int display_list_id_; osg::Vec3 bmin_; osg::Vec3 bmax_; bool reset_bounds_flag_; bool bounds_computed_; Particle def_ptemp_; int last_frame_; bool freeze_on_cull_; int detail_; int draw_count_; }; // INLINE FUNCTIONS inline bool ParticleSystem::isFrozen() const { return frozen_; } inline void ParticleSystem::setFrozen(bool v) { frozen_ = v; } inline const osg::BoundingBox &ParticleSystem::getDefaultBoundingBox() const { return def_bbox_; } inline void ParticleSystem::setDefaultBoundingBox(const osg::BoundingBox &bbox) { def_bbox_ = bbox; } inline bool ParticleSystem::getDoublePassRendering() const { return doublepass_; } inline void ParticleSystem::setDoublePassRendering(bool v) { doublepass_ = v; } inline int ParticleSystem::numParticles() const { return static_cast(particles_.size()); } inline int ParticleSystem::numDeadParticles() const { return static_cast(deadparts_.size()); } inline Particle *ParticleSystem::getParticle(int i) { return &particles_[i]; } inline const Particle *ParticleSystem::getParticle(int i) const { return &particles_[i]; } inline void ParticleSystem::destroyParticle(int i) { particles_[i].kill(); } inline int ParticleSystem::getLastFrameNumber() const { return last_frame_; } inline const bool ParticleSystem::computeBound() const { if (!bounds_computed_) { _bbox = def_bbox_; } else { _bbox._min = bmin_; _bbox._max = bmax_; } _bbox_computed = true; return true; } inline bool ParticleSystem::getStats(osg::Statistics &stats) { stats.addNumPrims(draw_count_); return true; } inline void ParticleSystem::update_bounds(const osg::Vec3 &p) { if (reset_bounds_flag_) { reset_bounds_flag_ = false; bmin_ = p; bmax_ = p; } else { if (p.x() < bmin_.x()) bmin_.x() = p.x(); if (p.y() < bmin_.y()) bmin_.y() = p.y(); if (p.z() < bmin_.z()) bmin_.z() = p.z(); if (p.x() > bmax_.x()) bmax_.x() = p.x(); if (p.y() > bmax_.y()) bmax_.y() = p.y(); if (p.z() > bmax_.z()) bmax_.z() = p.z(); if (!bounds_computed_) bounds_computed_ = true; } } inline const Particle &ParticleSystem::getDefaultParticleTemplate() const { return def_ptemp_; } inline void ParticleSystem::setDefaultParticleTemplate(const Particle &p) { def_ptemp_ = p; } inline bool ParticleSystem::getFreezeOnCull() const { return freeze_on_cull_; } inline void ParticleSystem::setFreezeOnCull(bool v) { freeze_on_cull_ = v; } inline int ParticleSystem::getLevelOfDetail() const { return detail_; } inline void ParticleSystem::setLevelOfDetail(int v) { if (v < 1) v = 1; detail_ = v; } // I'm not sure this function should be inlined... inline Particle *ParticleSystem::createParticle(const Particle *ptemplate) { // is there any dead particle? if (!deadparts_.empty()) { // retrieve a pointer to the last dead particle Particle *P = deadparts_.top(); // create a new (alive) particle in the same place *P = Particle(ptemplate? *ptemplate: def_ptemp_); // remove the pointer from the death stack deadparts_.pop(); return P; } else { // add a new particle to the vector particles_.push_back(Particle(ptemplate? *ptemplate: def_ptemp_)); return &particles_.back(); } } } #endif