#include #include #include #include using namespace osg; using namespace osgGA; TerrainManipulator::TerrainManipulator() { _modelScale = 0.01f; _minimumZoomScale = 0.0005f; _thrown = false; _distance = 1.0f; } TerrainManipulator::~TerrainManipulator() { } void TerrainManipulator::setNode(osg::Node* node) { _node = node; if (_node.get()) { const osg::BoundingSphere& boundingSphere=_node->getBound(); _modelScale = boundingSphere._radius; } } const osg::Node* TerrainManipulator::getNode() const { return _node.get(); } osg::Node* TerrainManipulator::getNode() { return _node.get(); } void TerrainManipulator::home(const GUIEventAdapter& ,GUIActionAdapter& us) { if(_node.get()) { const osg::BoundingSphere& boundingSphere=_node->getBound(); computePosition(boundingSphere._center+osg::Vec3( 0.0,-3.5f * boundingSphere._radius,0.0f), boundingSphere._center, osg::Vec3(0.0f,0.0f,1.0f)); us.requestRedraw(); } } void TerrainManipulator::init(const GUIEventAdapter& ,GUIActionAdapter& ) { flushMouseEventStack(); } void TerrainManipulator::getUsage(osg::ApplicationUsage& usage) const { usage.addKeyboardMouseBinding("Trackball: Space","Reset the viewing position to home"); usage.addKeyboardMouseBinding("Trackball: +","When in stereo, increase the fusion distance"); usage.addKeyboardMouseBinding("Trackball: -","When in stereo, reduse the fusion distance"); } bool TerrainManipulator::handle(const GUIEventAdapter& ea,GUIActionAdapter& us) { switch(ea.getEventType()) { case(GUIEventAdapter::PUSH): { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; return true; } case(GUIEventAdapter::RELEASE): { if (ea.getButtonMask()==0) { if (isMouseMoving()) { if (calcMovement()) { us.requestRedraw(); us.requestContinuousUpdate(true); _thrown = true; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } } else { flushMouseEventStack(); addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; } return true; } case(GUIEventAdapter::DRAG): { addMouseEvent(ea); if (calcMovement()) us.requestRedraw(); us.requestContinuousUpdate(false); _thrown = false; return true; } case(GUIEventAdapter::MOVE): { return false; } case(GUIEventAdapter::KEYDOWN): if (ea.getKey()==' ') { flushMouseEventStack(); _thrown = false; home(ea,us); us.requestRedraw(); us.requestContinuousUpdate(false); return true; } return false; case(GUIEventAdapter::FRAME): if (_thrown) { if (calcMovement()) us.requestRedraw(); } return false; default: return false; } } bool TerrainManipulator::isMouseMoving() { if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; static const float velocity = 0.1f; float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized(); float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized(); float len = sqrtf(dx*dx+dy*dy); float dt = _ga_t0->time()-_ga_t1->time(); return (len>dt*velocity); } void TerrainManipulator::flushMouseEventStack() { _ga_t1 = NULL; _ga_t0 = NULL; } void TerrainManipulator::addMouseEvent(const GUIEventAdapter& ea) { _ga_t1 = _ga_t0; _ga_t0 = &ea; } void TerrainManipulator::setByMatrix(const osg::Matrixd& matrix) { osg::Vec3 lookVector(- matrix(2,0),-matrix(2,1),-matrix(2,2)); osg::Vec3 eye(matrix(3,0),matrix(3,1),matrix(3,2)); osg::notify(INFO)<<"eye point "<getBound(); float distance = (eye-bs.center()).length() + _node->getBound().radius(); osg::Vec3 start_segment = eye; osg::Vec3 end_segment = eye + lookVector*distance; osg::notify(INFO)<<"start="< segLookVector = new osg::LineSegment; segLookVector->set(start_segment,end_segment); iv.addLineSegment(segLookVector.get()); _node->accept(iv); bool hitFound = false; if (iv.hits()) { osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segLookVector.get()); if (!hitList.empty()) { notify(INFO) << "Hit terrain ok"<< std::endl; osg::Vec3 ip = hitList.front().getWorldIntersectPoint(); _coordinateFrame = getCoordinateFrame( ip.x(), ip.y(), ip.z()); _distance = (eye-ip).length(); osg::Matrix rotation_matrix = osg::Matrixd::translate(0.0,0.0,-_distance)* matrix* osg::Matrixd::inverse(_coordinateFrame); rotation_matrix.get(_rotation); hitFound = true; } } if (!hitFound) { CoordinateFrame eyePointCoordFrame = getCoordinateFrame( eye.x(), eye.y(), eye.z()); // clear the intersect visitor ready for a new test iv.reset(); osg::ref_ptr segDowVector = new osg::LineSegment; segLookVector->set(eye+getUpVector(eyePointCoordFrame)*distance, eye-getUpVector(eyePointCoordFrame)*distance); iv.addLineSegment(segLookVector.get()); _node->accept(iv); hitFound = false; if (iv.hits()) { osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segLookVector.get()); if (!hitList.empty()) { notify(INFO) << "Hit terrain ok"<< std::endl; osg::Vec3 ip = hitList.front().getWorldIntersectPoint(); _coordinateFrame = getCoordinateFrame( ip.x(), ip.y(), ip.z()); _distance = (eye-ip).length(); _rotation.set(0,0,0,1); hitFound = true; } } } } osg::Matrixd TerrainManipulator::getMatrix() const { return osg::Matrixd::translate(0.0,0.0,_distance)*osg::Matrixd::rotate(_rotation)*_coordinateFrame; } osg::Matrixd TerrainManipulator::getInverseMatrix() const { return osg::Matrixd::inverse(_coordinateFrame)*osg::Matrixd::rotate(_rotation.inverse())*osg::Matrixd::translate(0.0,0.0,-_distance); } void TerrainManipulator::computePosition(const osg::Vec3& eye,const osg::Vec3& center,const osg::Vec3& up) { // compute rotation matrix osg::Vec3 lv(center-eye); _distance = lv.length(); // compute the itersection with the scene. osgUtil::IntersectVisitor iv; osg::ref_ptr segLookVector = new osg::LineSegment; segLookVector->set(eye,center); iv.addLineSegment(segLookVector.get()); _node->accept(iv); bool hitFound = false; if (iv.hits()) { osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segLookVector.get()); if (!hitList.empty()) { osg::notify(osg::INFO) << "Hit terrain ok"<< std::endl; osg::Vec3 ip = hitList.front().getWorldIntersectPoint(); osg::Vec3 np = hitList.front().getWorldIntersectNormal(); _coordinateFrame = getCoordinateFrame( ip.x(), ip.y(), ip.z()); _distance = (ip-eye).length(); hitFound = true; } } if (!hitFound) { // ?? _coordinateFrame = getCoordinateFrame( center.x(), center.y(), center.z()); } // note LookAt = inv(CF)*inv(RM)*inv(T) which is equivilant to: // inv(R) = CF*LookAt. osg::Matrixd rotation_matrix = _coordinateFrame*osg::Matrixd::lookAt(eye,center,up); rotation_matrix.get(_rotation); _rotation = _rotation.inverse(); } bool TerrainManipulator::calcMovement() { // return if less then two events have been added. if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false; float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized(); float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized(); // return if there is no movement. if (dx==0 && dy==0) return false; unsigned int buttonMask = _ga_t1->getButtonMask(); if (buttonMask==GUIEventAdapter::LEFT_MOUSE_BUTTON) { // rotate camera. osg::Vec3 axis; float angle; float px0 = _ga_t0->getXnormalized(); float py0 = _ga_t0->getYnormalized(); float px1 = _ga_t1->getXnormalized(); float py1 = _ga_t1->getYnormalized(); trackball(axis,angle,px1,py1,px0,py0); osg::Quat new_rotate; new_rotate.makeRotate(angle,axis); _rotation = _rotation*new_rotate; return true; } else if (buttonMask==GUIEventAdapter::MIDDLE_MOUSE_BUTTON || buttonMask==(GUIEventAdapter::LEFT_MOUSE_BUTTON|GUIEventAdapter::RIGHT_MOUSE_BUTTON)) { // pan model. float scale = -0.5f*_distance; osg::Matrix rotation_matrix; rotation_matrix.set(_rotation); osg::Vec3 dv(dx*scale,dy*scale,0.0f); // _center += dv*rotation_matrix; // need to recompute the itersection point along the look vector. _coordinateFrame = osg::Matrixd::rotate(_rotation.inverse())* osg::Matrixd::translate(dx*scale,dy*scale,0.0f)* osg::Matrixd::rotate(_rotation)* _coordinateFrame; // osg::notify(osg::INDFO)<<"\tafter "<<_coordinateFrame.getTrans()<getBound().radius(); osg::Vec3 start_segment = _coordinateFrame.getTrans() + getUpVector(_coordinateFrame) * distance; osg::Vec3 end_segment = start_segment - getUpVector(_coordinateFrame) * (2.0f*distance); //end_segment.set(0.0f,0.0f,0.0f); osg::notify(INFO)<<"start="< segLookVector = new osg::LineSegment; segLookVector->set(start_segment,end_segment); iv.addLineSegment(segLookVector.get()); _node->accept(iv); bool hitFound = false; if (iv.hits()) { osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segLookVector.get()); if (!hitList.empty()) { notify(INFO) << "Hit terrain ok"<< std::endl; osg::Vec3 ip = hitList.front().getWorldIntersectPoint(); _coordinateFrame = getCoordinateFrame( ip.x(), ip.y(), ip.z()); hitFound = true; } } if (!hitFound) { // ?? osg::notify(INFO)<<"TerrainManipulator unable to intersect with terrain."<_modelScale*_minimumZoomScale) { _distance *= scale; } return true; } return false; } /* * This size should really be based on the distance from the center of * rotation to the point on the object underneath the mouse. That * point would then track the mouse as closely as possible. This is a * simple example, though, so that is left as an Exercise for the * Programmer. */ const float TRACKBALLSIZE = 0.8f; /* * Ok, simulate a track-ball. Project the points onto the virtual * trackball, then figure out the axis of rotation, which is the cross * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0) * Note: This is a deformed trackball-- is a trackball in the center, * but is deformed into a hyperbolic sheet of rotation away from the * center. This particular function was chosen after trying out * several variations. * * It is assumed that the arguments to this routine are in the range * (-1.0 ... 1.0) */ void TerrainManipulator::trackball(osg::Vec3& axis,float& angle, float p1x, float p1y, float p2x, float p2y) { /* * First, figure out z-coordinates for projection of P1 and P2 to * deformed sphere */ osg::Matrix rotation_matrix(_rotation); osg::Vec3 uv = osg::Vec3(0.0f,1.0f,0.0f)*rotation_matrix; osg::Vec3 sv = osg::Vec3(1.0f,0.0f,0.0f)*rotation_matrix; osg::Vec3 lv = osg::Vec3(0.0f,0.0f,-1.0f)*rotation_matrix; osg::Vec3 p1 = sv*p1x+uv*p1y-lv*tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y); osg::Vec3 p2 = sv*p2x+uv*p2y-lv*tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y); /* * Now, we want the cross product of P1 and P2 */ // Robert, // // This was the quick 'n' dirty fix to get the trackball doing the right // thing after fixing the Quat rotations to be right-handed. You may want // to do something more elegant. // axis = p1^p2; axis = p2^p1; axis.normalize(); /* * Figure out how much to rotate around that axis. */ float t = (p2-p1).length() / (2.0*TRACKBALLSIZE); /* * Avoid problems with out-of-control values... */ if (t > 1.0) t = 1.0; if (t < -1.0) t = -1.0; angle = inRadians(asin(t)); } /* * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet * if we are away from the center of the sphere. */ float TerrainManipulator::tb_project_to_sphere(float r, float x, float y) { float d, t, z; d = sqrt(x*x + y*y); /* Inside sphere */ if (d < r * 0.70710678118654752440) { z = sqrt(r*r - d*d); } /* On hyperbola */ else { t = r / 1.41421356237309504880; z = t*t / d; } return z; }