/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield * * This library is open source and may be redistributed and/or modified under * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or * (at your option) any later version. The full license is in LICENSE file * included with this distribution, and on the openscenegraph.org website. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * OpenSceneGraph Public License for more details. */ #ifndef OSG_MATRIXD #define OSG_MATRIXD 1 #include #include #include #include #include #include #include namespace osg { class Matrixf; class SG_EXPORT Matrixd { public: typedef double value_type; inline Matrixd() { makeIdentity(); } inline Matrixd( const Matrixd& mat) { set(mat.ptr()); } Matrixd( const Matrixf& mat ); inline explicit Matrixd( float const * const ptr ) { set(ptr); } inline explicit Matrixd( double const * const ptr ) { set(ptr); } inline explicit Matrixd( const Quat& quat ) { set(quat); } Matrixd( value_type a00, value_type a01, value_type a02, value_type a03, value_type a10, value_type a11, value_type a12, value_type a13, value_type a20, value_type a21, value_type a22, value_type a23, value_type a30, value_type a31, value_type a32, value_type a33); ~Matrixd() {} int compare(const Matrixd& m) const { return memcmp(_mat,m._mat,sizeof(_mat)); } bool operator < (const Matrixd& m) const { return compare(m)<0; } bool operator == (const Matrixd& m) const { return compare(m)==0; } bool operator != (const Matrixd& m) const { return compare(m)!=0; } inline value_type& operator()(int row, int col) { return _mat[row][col]; } inline value_type operator()(int row, int col) const { return _mat[row][col]; } inline bool valid() const { return !isNaN(); } inline bool isNaN() const { return osg::isNaN(_mat[0][0]) || osg::isNaN(_mat[0][1]) || osg::isNaN(_mat[0][2]) || osg::isNaN(_mat[0][3]) || osg::isNaN(_mat[1][0]) || osg::isNaN(_mat[1][1]) || osg::isNaN(_mat[1][2]) || osg::isNaN(_mat[1][3]) || osg::isNaN(_mat[2][0]) || osg::isNaN(_mat[2][1]) || osg::isNaN(_mat[2][2]) || osg::isNaN(_mat[2][3]) || osg::isNaN(_mat[3][0]) || osg::isNaN(_mat[3][1]) || osg::isNaN(_mat[3][2]) || osg::isNaN(_mat[3][3]); } inline Matrixd& operator = (const Matrixd& rhs) { if( &rhs == this ) return *this; set(rhs.ptr()); return *this; } inline Matrixd& operator = (const Matrixf& other); inline void set(const Matrixd& rhs) { set(rhs.ptr()); } void set(const Matrixf& rhs); inline void set(float const * const ptr) { value_type* local_ptr = (value_type*)_mat; for(int i=0;i<16;++i) local_ptr[i]=(value_type)ptr[i]; } inline void set(double const * const ptr) { value_type* local_ptr = (value_type*)_mat; for(int i=0;i<16;++i) local_ptr[i]=(value_type)ptr[i]; } void set( value_type a00, value_type a01, value_type a02, value_type a03, value_type a10, value_type a11, value_type a12, value_type a13, value_type a20, value_type a21, value_type a22, value_type a23, value_type a30, value_type a31, value_type a32, value_type a33); void set(const Quat& q); void get(Quat& q) const; value_type * ptr() { return (value_type*)_mat; } const value_type * ptr() const { return (const value_type *)_mat; } void makeIdentity(); void makeScale( const Vec3& ); void makeScale( value_type, value_type, value_type ); void makeTranslate( const Vec3& ); void makeTranslate( value_type, value_type, value_type ); void makeRotate( const Vec3& from, const Vec3& to ); void makeRotate( value_type angle, const Vec3& axis ); void makeRotate( value_type angle, value_type x, value_type y, value_type z ); void makeRotate( const Quat& ); void makeRotate( value_type angle1, const Vec3& axis1, value_type angle2, const Vec3& axis2, value_type angle3, const Vec3& axis3); /** Set to a orthographic projection. See glOrtho for further details.*/ void makeOrtho(double left, double right, double bottom, double top, double zNear, double zFar); /** Get the othorgraphic settings of the orthographic projection matrix. * Note, if matrix is not an orthographic matrix then invalid values will be returned.*/ bool getOrtho(double& left, double& right, double& bottom, double& top, double& zNear, double& zFar) const; /** Set to a 2D orthographic projection. See glOrtho2D for further details.*/ inline void makeOrtho2D(double left, double right, double bottom, double top) { makeOrtho(left,right,bottom,top,-1.0,1.0); } /** Set to a perspective projection. See glFrustum for further details.*/ void makeFrustum(double left, double right, double bottom, double top, double zNear, double zFar); /** Get the frustum setting of a perspective projection matrix. * Note, if matrix is not an perspective matrix then invalid values will be returned.*/ bool getFrustum(double& left, double& right, double& bottom, double& top, double& zNear, double& zFar) const; /** Set to a symmetrical perspective projection, See gluPerspective for further details. * Aspect ratio is defined as width/height.*/ void makePerspective(double fovy,double aspectRatio, double zNear, double zFar); /** Get the frustum setting of a symetric perspective projection matrix. * Returns false if matrix is not a perspective matrix, where parameter values are undefined. * Note, if matrix is not a symetric perspective matrix then the shear will be lost. * Asymetric metrices occur when stereo, power walls, caves and reality center display are used. * In these configuration one should use the AsFrustum method instead.*/ bool getPerspective(double& fovy,double& aspectRatio, double& zNear, double& zFar) const; /** Set to the position and orientation modelview matrix, using the same convention as gluLookAt. */ void makeLookAt(const Vec3& eye,const Vec3& center,const Vec3& up); /** Get to the position and orientation of a modelview matrix, using the same convention as gluLookAt. */ void getLookAt(Vec3& eye,Vec3& center,Vec3& up,value_type lookDistance=1.0f) const; /** invert the matrix rhs. */ bool invert( const Matrixd& rhs); /** full 4x4 matrix invert. */ bool invert_4x4_orig( const Matrixd& ); /** full 4x4 matrix invert. */ bool invert_4x4_new( const Matrixd& ); //basic utility functions to create new matrices inline static Matrixd identity( void ); inline static Matrixd scale( const Vec3& sv); inline static Matrixd scale( value_type sx, value_type sy, value_type sz); inline static Matrixd translate( const Vec3& dv); inline static Matrixd translate( value_type x, value_type y, value_type z); inline static Matrixd rotate( const Vec3& from, const Vec3& to); inline static Matrixd rotate( value_type angle, value_type x, value_type y, value_type z); inline static Matrixd rotate( value_type angle, const Vec3& axis); inline static Matrixd rotate( value_type angle1, const Vec3& axis1, value_type angle2, const Vec3& axis2, value_type angle3, const Vec3& axis3); inline static Matrixd rotate( const Quat& quat); inline static Matrixd inverse( const Matrixd& matrix); /** Create a orthographic projection. See glOrtho for further details.*/ inline static Matrixd ortho(double left, double right, double bottom, double top, double zNear, double zFar); /** Create a 2D orthographic projection. See glOrtho for further details.*/ inline static Matrixd ortho2D(double left, double right, double bottom, double top); /** Create a perspective projection. See glFrustum for further details.*/ inline static Matrixd frustum(double left, double right, double bottom, double top, double zNear, double zFar); /** Create a symmetrical perspective projection, See gluPerspective for further details. * Aspect ratio is defined as width/height.*/ inline static Matrixd perspective(double fovy,double aspectRatio, double zNear, double zFar); /** Create the position and orientation as per a camera, using the same convention as gluLookAt. */ inline static Matrixd lookAt(const Vec3& eye,const Vec3& center,const Vec3& up); inline Vec3 preMult( const Vec3& v ) const; inline Vec3 postMult( const Vec3& v ) const; inline Vec3 operator* ( const Vec3& v ) const; inline Vec4 preMult( const Vec4& v ) const; inline Vec4 postMult( const Vec4& v ) const; inline Vec4 operator* ( const Vec4& v ) const; void setTrans( value_type tx, value_type ty, value_type tz ); void setTrans( const Vec3& v ); inline Vec3 getTrans() const { return Vec3(_mat[3][0],_mat[3][1],_mat[3][2]); } inline Vec3 getScale() const { return Vec3(_mat[0][0],_mat[1][1],_mat[2][2]); } /** apply apply an 3x3 transform of v*M[0..2,0..2] */ inline static Vec3 transform3x3(const Vec3& v,const Matrixd& m); /** apply apply an 3x3 transform of M[0..2,0..2]*v */ inline static Vec3 transform3x3(const Matrixd& m,const Vec3& v); // basic Matrixd multiplication, our workhorse methods. void mult( const Matrixd&, const Matrixd& ); void preMult( const Matrixd& ); void postMult( const Matrixd& ); inline void operator *= ( const Matrixd& other ) { if( this == &other ) { Matrixd temp(other); postMult( temp ); } else postMult( other ); } inline Matrixd operator * ( const Matrixd &m ) const { osg::Matrixd r; r.mult(*this,m); return r; } protected: value_type _mat[4][4]; }; class RefMatrixd : public Object, public Matrixd { public: RefMatrixd():Matrixd() {} RefMatrixd( const Matrixd& other) : Matrixd(other) {} RefMatrixd( const Matrixf& other) : Matrixd(other) {} RefMatrixd( const RefMatrixd& other) : Object(other), Matrixd(other) {} explicit RefMatrixd( Matrixd::value_type const * const def ):Matrixd(def) {} RefMatrixd( Matrixd::value_type a00, Matrixd::value_type a01, Matrixd::value_type a02, Matrixd::value_type a03, Matrixd::value_type a10, Matrixd::value_type a11, Matrixd::value_type a12, Matrixd::value_type a13, Matrixd::value_type a20, Matrixd::value_type a21, Matrixd::value_type a22, Matrixd::value_type a23, Matrixd::value_type a30, Matrixd::value_type a31, Matrixd::value_type a32, Matrixd::value_type a33): Matrixd(a00, a01, a02, a03, a10, a11, a12, a13, a20, a21, a22, a23, a30, a31, a32, a33) {} virtual Object* cloneType() const { return new RefMatrixd(); } virtual Object* clone(const CopyOp&) const { return new RefMatrixd(*this); } virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast(obj)!=NULL; } virtual const char* libraryName() const { return "osg"; } virtual const char* className() const { return "Matrix"; } protected: virtual ~RefMatrixd() {} }; //static utility methods inline Matrixd Matrixd::identity(void) { Matrixd m; m.makeIdentity(); return m; } inline Matrixd Matrixd::scale(value_type sx, value_type sy, value_type sz) { Matrixd m; m.makeScale(sx,sy,sz); return m; } inline Matrixd Matrixd::scale(const Vec3& v ) { return scale(v.x(), v.y(), v.z() ); } inline Matrixd Matrixd::translate(value_type tx, value_type ty, value_type tz) { Matrixd m; m.makeTranslate(tx,ty,tz); return m; } inline Matrixd Matrixd::translate(const Vec3& v ) { return translate(v.x(), v.y(), v.z() ); } inline Matrixd Matrixd::rotate( const Quat& q ) { return Matrixd(q); } inline Matrixd Matrixd::rotate(value_type angle, value_type x, value_type y, value_type z ) { Matrixd m; m.makeRotate(angle,x,y,z); return m; } inline Matrixd Matrixd::rotate(value_type angle, const Vec3& axis ) { Matrixd m; m.makeRotate(angle,axis); return m; } inline Matrixd Matrixd::rotate( value_type angle1, const Vec3& axis1, value_type angle2, const Vec3& axis2, value_type angle3, const Vec3& axis3) { Matrixd m; m.makeRotate(angle1,axis1,angle2,axis2,angle3,axis3); return m; } inline Matrixd Matrixd::rotate(const Vec3& from, const Vec3& to ) { Matrixd m; m.makeRotate(from,to); return m; } inline Matrixd Matrixd::inverse( const Matrixd& matrix) { Matrixd m; m.invert(matrix); return m; } inline Matrixd Matrixd::ortho(double left, double right, double bottom, double top, double zNear, double zFar) { Matrixd m; m.makeOrtho(left,right,bottom,top,zNear,zFar); return m; } inline Matrixd Matrixd::ortho2D(double left, double right, double bottom, double top) { Matrixd m; m.makeOrtho2D(left,right,bottom,top); return m; } inline Matrixd Matrixd::frustum(double left, double right, double bottom, double top, double zNear, double zFar) { Matrixd m; m.makeFrustum(left,right,bottom,top,zNear,zFar); return m; } inline Matrixd Matrixd::perspective(double fovy,double aspectRatio, double zNear, double zFar) { Matrixd m; m.makePerspective(fovy,aspectRatio,zNear,zFar); return m; } inline Matrixd Matrixd::lookAt(const Vec3& eye,const Vec3& center,const Vec3& up) { Matrixd m; m.makeLookAt(eye,center,up); return m; } inline Vec3 Matrixd::postMult( const Vec3& v ) const { value_type d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ; return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d, (_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d, (_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ; } inline Vec3 Matrixd::preMult( const Vec3& v ) const { value_type d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ; return Vec3( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d, (_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d, (_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d); } inline Vec4 Matrixd::postMult( const Vec4& v ) const { return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()), (_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()), (_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()), (_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ; } inline Vec4 Matrixd::preMult( const Vec4& v ) const { return Vec4( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0]*v.w()), (_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1]*v.w()), (_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2]*v.w()), (_mat[0][3]*v.x() + _mat[1][3]*v.y() + _mat[2][3]*v.z() + _mat[3][3]*v.w())); } inline Vec3 Matrixd::transform3x3(const Vec3& v,const Matrixd& m) { return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()), (m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()), (m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z())); } inline Vec3 Matrixd::transform3x3(const Matrixd& m,const Vec3& v) { return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()), (m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()), (m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ; } inline Vec3 operator* (const Vec3& v, const Matrixd& m ) { return m.preMult(v); } inline Vec4 operator* (const Vec4& v, const Matrixd& m ) { return m.preMult(v); } inline Vec3 Matrixd::operator* (const Vec3& v) const { return postMult(v); } inline Vec4 Matrixd::operator* (const Vec4& v) const { return postMult(v); } inline std::ostream& operator<< (std::ostream& os, const Matrixd& m ) { os << "{"<