To the Lua plugin added support for assigned lua functions to C++ osg::Objects via the new osg::CallbackObject mechanism. To invoke the scripts function from C++ one must get the CallbackObject and call run on it.
Renamed ScriptCallback to ScriptNodeCallback to avoid possibly confusion between osg::CallbackObject and the ScriptNodeCallback.
One solution is naturally to create a new class that would inherit the osg::ComputeBoundVisitor, and use that. I don't like that idea as the ComputeBoundVisitor does actually have what I need - it is only hidden in a protected function.
I am therefor suggesting a slight generalization of the ComputeBoundVisitor with the attached patch, which is tested.
The patch has two parts:
we add applyBBox() so that one can use that in a customized traverse-function and add a bbox to the visitor. I considered calling this function expandByBBox(), but I though applyBBox was better.
The MatrixStack is made available to the outside world. That enables a traverse-function to do whatever it wishes.
I do actually only need one of the two, as I can implement what I wish either way, but adding getMatrixStack() will make more generic expansions possible.
"
From Robert Osfield, changed the name of the new applyBBox(..) method to applyBoundingBox(..) to keep it's naming more consistent with the rest of the OSG.
Added new WindowSystemInterface::setDisplaySettings() method to provide a mechanism for passing settings onto the WindowSystemInterface so it can then set up the system appropriately.
Added assignment of the DisplaySettings to the WindowSystemInterface in Viewer/ComppsiteViewer::realize().
To make easier "lazy apply" on the customer OpenGL shaders, the easiest way was to add an accessor to current OSG state's UniformMap.
I've also added accessors for modes and texture, since it could be usefull in the same way.
All methods are const, so I think there is no side-effects."
Provided are lua, python and V8 (for javascript) plugins that just open up enough of a link to the respective libs to run a script, there is no scene graph <-> script communication in current implementation.
But for glPrograms, in order to get all osg's uniform management system to work, I had to subclass osg::program::PerContextProgram.
Here is a modified version of this class, which add some "virtual" method to allow easy subclassing."
OpenSceneGraph/include\osg/BufferObject(701): warning C4138: '*/' found outside of comment (E:\osg\osgSvn\OpenSceneGraph\src\osg\Array.cpp)
adding a space before /* fixes the problem
void removeClient(osg::Object * /*client*/) { --_numClients; }
"
"The idea of this new OpenGL feature is :
- set RestartIndex = "n"
- draw elements strip
-> when the index is "n", the strip is "stopped" and restarted
It's very usefull for drawing tiles with a single strip and a "restart" at the end of each row.
The idea a an OSG StateAttribute is :
Usually we use to build geometry from code, because software modelers rarely support it (and 3d file formats doesn't support it) :
-RootNode <= "PrimitiveRestartIndex=0" // So now, we know that our restart index is 0 for all drawables under this node
|
- Drawable 1 : triangles => as usual
|
- Drawable 2 : triangles strip => as usual
|
- Drawable 3 : triangles strip + "GL_PRIMITIVE_RESTART" mode = ON => use the restart index
|
- Drawable 4 : triangles strip + "GL_PRIMITIVE_RESTART" mode = ON => use the restart index
|
- Drawable 5 : triangles strip => as usual
With a StateAttribute, it's easy for the developper to say "0 will be my restart index for all this object" and then activate the mode only on some nodes.
The main problem is if you set and restart index value which is not included in the vertex array (for exemple set restart index = 100 but you have only 50 vertex). There is no problem with OpenGL, but some OSG algorithms will try to access the vertex[100] and will segfault.
To solve this, I think there is two ways :
1/ add restart index in osg::PrimitiveSet and use this value in all algorithms. It's a lot of work, maybe dangerous, and it concern only a few situations : developpers who use this extension should be aware of advanced OpenGL (and OSG) data management
2/ use a StateAttribute, and choose a "correct" restart index. In my applications, I always use "0" as a restart index and duplicate the first vertex (vertex[0] = vertex[1]). So there is no difference for OpenGL and all OSG algorithms works properly.
"
"The attached file contains:
- a per-context read counter in GLBufferObject::BufferEntry
- a global client counter in BufferData
- the glue between Texture* and Image client counter
"
I think this is necessary on OpenGL 3.2+ since this is no more "default" locations in the OpenGL specs.
The default behaviour stay the same.
There is a few new methods on osg::State :
- resetVertexAttributeAlias : reset all vertex alias to osg's default ones
- set**Alias : set a vertex attribute alias configuration
- setAttributeBindingList : set the attribute binding list (allow to specify an empty list if you're using "layout" qualifier in glsl code to specify the bindings. This save some CPU operations)"
following in the qopengl.h header:
# include <QtGui/qopengles2ext.h>
# ifndef GL_DOUBLE
# define GL_DOUBLE GL_FLOAT
# endif
# ifndef GLdouble
typedef GLfloat GLdouble;
# endif
Unfortunately, when building for normal OpenGL (not GL/ES!) on Windows
with MSVC2012, GLdouble is not defined (it is not a macro but typedef)
and the code above produces a conflicting definition, making the
compile fail. I am attaching a bit hackish workaround for this problem
in osg/GL "
New methods osg::Geometry::containsDeprecatedData() and osg::Geometry::fixDeprecatedData() provide a means for converting geometries that still use the array indices and BIND_PER_PRIMITIVE across to complient
versions.
Cleaned up the rest of the OSG where use of array indices and BIND_PER_PRIMITIVE were accessed or used.
GeometryNew is only temporary and will be renamed to Geometry on the completion of refactoring work and feedback from community.
Ported osggeometry across to use GeometryNew.
TextureBuffer objects may use osg::Texture::bindToImageUnit(), so GLSL shaders are able to use not only texelFetch() function , but also functions defined in GL_ARB_shader_image_load_store extension : imageLoad(), imageStore(), imageAtomicAdd() etc."
second email: "After a while I found that osg::Texture::applyTexParameters() used with TextureBuffer may cause some OpenGL errors ( applying texture filters and wraps to TextureBuffer makes no sense ) so I fixed it."