CullVisitor/SceneView:
*Feature: This version supports multiple clearnodes in the graph, one per renderstage.
Text:
*Feature: Performance Enhancement when calling SetBackdropColor
Material:
*Fix: OpenGL calls are now made according to the OpenGL Standard
"
enhanced version of PolytopeIntersector.
New features of PolytopeIntersector :
* Dimension mask: The user may specify the dimensions of the
primitives to be tested. Checking polytope-triangle and
polytope-quad intersections is rather slow so this can
be turned off.
* Reference plane: The resulting intersections are sorted
by the distance to this plane.
New memebers of PolytopeIntersector::Intersection :
* distance: Distance of localIntersectionPoint to the reference plane
* maxDistance: Maximum distance of all intersectionPoints to the
reference plane.
* intersectionPoints: The points intersecting the planes of the polytope
or points completely inside the polytope.
* localIntersectionPoint: arithmetic mean of all intersection points
* primitiveIndex: Index of the primitive that intersected
I added some more output to the example osgkeyboardmouse."
stereo format to work. It's a good thing I tested these on a TV
before submitting them since I did indeed have a bug. One thing I
did not test was to see how this would work in windowed mode. Does
the interlaced stereo code have support for 'absolute' positions?
For example a given pixel on the screen is always shown in a given
eye no matter where the graphics context is placed?
"
Created a new GraphicsThread subclass from OperationThread which allows the
GraphicsContext specific calls to be moved out of the base OperationThread class.
Updated the rest of the OSG to respect these changes.
Added and cleaned up DeleteHandler calls in osgViewer to help avoid crashes on exit.
Changed DatabasePager across to dynamically checcking osg::getCompileContext(..)
Updated wrappers.
I added _preDrawCallback member and neccessary access methods plus modified osgUtil RenderStage.cpp to invoke it before all drawInner calls are made. I tried to maintain symmetry with postDrawCallback but you know better where is a proper place for this call ;-)
"
that has greater than unsigned short number of vertexes. An object
called vertexPtrToIndexMap contains vertexes and their indexes. This
std::map object can obviously hold a quantity that is greater than
unsigned short, however osg::DrawElementsUShort objects were being
created to reference these vertexes and their indexes.
osg::DrawElementsUShort can only hold indexes that are 16-bit
quantities.
...
proposed_patch_2\tessellator.cpp. This solution examines the size of
vertexPtrToIndexMap and selects 1 of 3 possible osg::DrawElements
objects: DrawElementsUByte, DrawElementsUShort, or DrawElementsUInt.
The main drawback of this particular solution is the code duplication.
However, the repair is straightforward."
"Since we desperately needed a means for picking Lines
and Points I implemented (hopefully!) proper geometrical tests
for the PolytopeIntersector.
First of all I implemented a new "GenericPrimiteFunctor"
which is basically an extended copy TriangleFunctor which also
handles Points, Lines and Quads through suitable overloads of
operator(). I would have liked to call it "PrimitiveFunctor"
but that name was already used...
I used a template method to remove redundancy in the
drawElements method overloads. If you know of platforms where
this will not work I can change it to the style used
in TriangleFunctor.
In PolytopeIntersector.cpp I implemented a
"PolytopePrimitiveIntersector" which provides the needed
overloads for Points, Lines, Triangles and Quads to
the GenericPrimitiveFunctor. This is then used in the
intersect method of PolytopeIntersector.
Implementation summary:
- Points: Check distance to all planes
- Lines: Check distance of both ends against each plane.
If both are outside -> line is out
If both are in -> continue checking
One is in, one is out -> compute intersection point (candidate)
Then check all candidates against all other polytope
planes. The remaining candidates are the proper
intersection points of the line with the polytope.
- Triangles: Perform Line-Checks for all edges of the
triangle as above. If there is an proper intersection
-> done.
In the case where there are more than 2 polytope
plane to check against we have to check for the case
where the triangle encloses the polytope.
In that case the intersection lines of the polytope
planes are computed and checked against the triangle.
- Quads: handled as two triangles.
This is implementation is certainly not the fastest.
There are certainly ways and strategies to improve it.
I also enabled the code for PolytopeIntersector
in osgkeyboardmouse and added keybindings to
switch the type of intersector ('p') and the picking
coordinate system ('c') on the fly. Since the
PolytopeIntersector does not have a canonical
ordering for its intersections (as opposed to
the LineSegementIntersector) I chaged the
implementation to toggle all hit geometries.
I tested the functionality with osgkeyboardmouse
and several models and it seems to work for
polygonal models. Special nodes such as billboards
do not work.
The next thing on my todo-list is to implement
a an improved Intersection-Structure for the
PolytopeIntersector. We need to know
which primitives where hit (and where).
"