Simplified the osgdepthpartion example to use the osgView::View::setUpDepthPartition(..) feature

This commit is contained in:
Robert Osfield 2011-06-08 09:24:29 +00:00
parent 9aa7010ded
commit ccfac57f20
6 changed files with 28 additions and 910 deletions

View File

@ -1,7 +1,4 @@
#this file is automatically generated SET(TARGET_SRC osgdepthpartition.cpp )
SET(TARGET_SRC DepthPartitionNode.cpp DistanceAccumulator.cpp osgdepthpartition.cpp )
SET(TARGET_H DepthPartitionNode.h DistanceAccumulator.h )
#### end var setup ### #### end var setup ###
SETUP_EXAMPLE(osgdepthpartition) SETUP_EXAMPLE(osgdepthpartition)

View File

@ -1,272 +0,0 @@
/* OpenSceneGraph example, osgdepthpartion.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "DepthPartitionNode.h"
#include <osgUtil/CullVisitor>
using namespace osg;
#define CURRENT_CLASS DepthPartitionNode
CURRENT_CLASS::CURRENT_CLASS()
{
_distAccumulator = new DistanceAccumulator;
init();
}
CURRENT_CLASS::CURRENT_CLASS(const CURRENT_CLASS& dpn, const osg::CopyOp& copyop)
: osg::Group(dpn, copyop),
_active(dpn._active),
_renderOrder(dpn._renderOrder),
_clearColorBuffer(dpn._clearColorBuffer)
{
_distAccumulator = new DistanceAccumulator;
_numCameras = 0;
}
CURRENT_CLASS::~CURRENT_CLASS() {}
void CURRENT_CLASS::init()
{
_active = true;
_numCameras = 0;
setCullingActive(false);
_renderOrder = osg::Camera::POST_RENDER;
_clearColorBuffer = true;
}
void CURRENT_CLASS::setActive(bool active)
{
if(_active == active) return;
_active = active;
}
void CURRENT_CLASS::setClearColorBuffer(bool clear)
{
_clearColorBuffer = clear;
// Update the render order for the first Camera if it exists
if(!_cameraList.empty())
{
if(clear)
_cameraList[0]->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
else
_cameraList[0]->setClearMask(GL_DEPTH_BUFFER_BIT);
}
}
void CURRENT_CLASS::setRenderOrder(osg::Camera::RenderOrder order)
{
_renderOrder = order;
// Update the render order for existing Cameras
unsigned int numCameras = _cameraList.size();
for(unsigned int i = 0; i < numCameras; i++)
{
_cameraList[i]->setRenderOrder(_renderOrder);
}
}
void CURRENT_CLASS::traverse(osg::NodeVisitor &nv)
{
// If the scene hasn't been defined then don't do anything
unsigned int numChildren = _children.size();
if(numChildren == 0) return;
// If the node is not active then don't analyze it
if(!_active)
{
// Traverse the graph as usual
Group::traverse(nv);
return;
}
// If the visitor is not a cull visitor, pass it directly onto the scene.
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(&nv);
if(!cv)
{
Group::traverse(nv);
return;
}
// We are in the cull traversal, so first collect information on the
// current modelview and projection matrices and viewport.
osg::RefMatrix& modelview = *(cv->getModelViewMatrix());
osg::RefMatrix& projection = *(cv->getProjectionMatrix());
osg::Viewport* viewport = cv->getViewport();
// Prepare for scene traversal.
_distAccumulator->setMatrices(modelview, projection);
_distAccumulator->setNearFarRatio(cv->getNearFarRatio());
_distAccumulator->reset();
// Step 1: Traverse the children, collecting the near/far distances.
unsigned int i;
for(i = 0; i < numChildren; i++)
{
_children[i]->accept(*(_distAccumulator.get()));
}
// Step 2: Compute the near and far distances for every Camera that
// should be used to render the scene.
_distAccumulator->computeCameraPairs();
// Step 3: Create the Cameras, and add them as children.
DistanceAccumulator::PairList& camPairs = _distAccumulator->getCameraPairs();
_numCameras = camPairs.size(); // Get the number of cameras
// Create the Cameras, and add them as children.
if(_numCameras > 0)
{
osg::Camera *currCam;
DistanceAccumulator::DistancePair currPair;
for(i = 0; i < _numCameras; i++)
{
// Create the camera, and clamp it's projection matrix
currPair = camPairs[i]; // (near,far) pair for current camera
currCam = createOrReuseCamera(projection, currPair.first,
currPair.second, i);
// Set the modelview matrix and viewport of the camera
currCam->setViewMatrix(modelview);
currCam->setViewport(viewport);
// Redirect the CullVisitor to the current camera
currCam->accept(nv);
}
// Set the clear color for the first camera
_cameraList[0]->setClearColor(cv->getRenderStage()->getClearColor());
}
}
bool CURRENT_CLASS::addChild(osg::Node *child)
{
return insertChild(_children.size(), child);
}
bool CURRENT_CLASS::insertChild(unsigned int index, osg::Node *child)
{
if(!Group::insertChild(index, child)) return false; // Insert child
// Insert child into each Camera
unsigned int totalCameras = _cameraList.size();
for(unsigned int i = 0; i < totalCameras; i++)
{
_cameraList[i]->insertChild(index, child);
}
return true;
}
bool CURRENT_CLASS::removeChildren(unsigned int pos, unsigned int numRemove)
{
if(!Group::removeChildren(pos, numRemove)) return false; // Remove child
// Remove child from each Camera
unsigned int totalCameras = _cameraList.size();
for(unsigned int i = 0; i < totalCameras; i++)
{
_cameraList[i]->removeChildren(pos, numRemove);
}
return true;
}
bool CURRENT_CLASS::setChild(unsigned int i, osg::Node *node)
{
if(!Group::setChild(i, node)) return false; // Set child
// Set child for each Camera
unsigned int totalCameras = _cameraList.size();
for(unsigned int j = 0; j < totalCameras; j++)
{
_cameraList[j]->setChild(i, node);
}
return true;
}
osg::Camera* CURRENT_CLASS::createOrReuseCamera(const osg::Matrix& proj,
double znear, double zfar,
const unsigned int &camNum)
{
if(_cameraList.size() <= camNum) _cameraList.resize(camNum+1);
osg::Camera *camera = _cameraList[camNum].get();
if(!camera) // Create a new Camera
{
camera = new osg::Camera;
camera->setCullingActive(false);
camera->setRenderOrder(_renderOrder);
camera->setReferenceFrame(osg::Transform::ABSOLUTE_RF);
// We will compute the near/far planes ourselves
camera->setComputeNearFarMode(osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR);
camera->setCullingMode(osg::CullSettings::ENABLE_ALL_CULLING);
if(camNum == 0 && _clearColorBuffer)
camera->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
else
camera->setClearMask(GL_DEPTH_BUFFER_BIT);
// Add our children to the new Camera's children
unsigned int numChildren = _children.size();
for(unsigned int i = 0; i < numChildren; i++)
{
camera->addChild(_children[i].get());
}
_cameraList[camNum] = camera;
}
osg::Matrixd &projection = camera->getProjectionMatrix();
projection = proj;
// Slightly inflate the near & far planes to avoid objects at the
// extremes being clipped out.
znear *= 0.999;
zfar *= 1.001;
// Clamp the projection matrix z values to the range (near, far)
double epsilon = 1.0e-6;
if(fabs(projection(0,3)) < epsilon &&
fabs(projection(1,3)) < epsilon &&
fabs(projection(2,3)) < epsilon ) // Projection is Orthographic
{
epsilon = -1.0/(zfar - znear); // Used as a temp variable
projection(2,2) = 2.0*epsilon;
projection(3,2) = (zfar + znear)*epsilon;
}
else // Projection is Perspective
{
double trans_near = (-znear*projection(2,2) + projection(3,2)) /
(-znear*projection(2,3) + projection(3,3));
double trans_far = (-zfar*projection(2,2) + projection(3,2)) /
(-zfar*projection(2,3) + projection(3,3));
double ratio = fabs(2.0/(trans_near - trans_far));
double center = -0.5*(trans_near + trans_far);
projection.postMult(osg::Matrixd(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, ratio, 0.0,
0.0, 0.0, center*ratio, 1.0));
}
return camera;
}
#undef CURRENT_CLASS

View File

@ -1,105 +0,0 @@
/* -*-c++-*-
*
* OpenSceneGraph example, osgdepthpartion.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef _OF_DEPTHPARTITIONNODE_
#define _OF_DEPTHPARTITIONNODE_
#include "DistanceAccumulator.h"
#include <osg/Camera>
#define CURRENT_CLASS DepthPartitionNode
/**********************************************************
* Ravi Mathur
* OpenFrames API, class DepthPartitionNode
* A type of osg::Group that analyzes a scene, then partitions it into
* several segments that can be rendered separately. Each segment
* is small enough in the z-direction to avoid depth buffer problems
* for very large scenes.
**********************************************************/
class CURRENT_CLASS : public osg::Group
{
public:
CURRENT_CLASS();
CURRENT_CLASS(const CURRENT_CLASS& dpn,
const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY);
META_Node( OpenFrames, CURRENT_CLASS ); // Common Node functions
/** Set the active state. If not active, this node will simply add the
specified scene as it's child, without analyzing it at all. */
void setActive(bool active);
inline bool getActive() const { return _active; }
/** Specify whether the color buffer should be cleared before the first
Camera draws it's scene. */
void setClearColorBuffer(bool clear);
inline bool getClearColorBuffer() const { return _clearColorBuffer; }
/** Specify the render order for each Camera */
void setRenderOrder(osg::Camera::RenderOrder order);
inline osg::Camera::RenderOrder getRenderOrder() const
{ return _renderOrder; }
/** Set/get the maximum depth that the scene will be traversed to.
Defaults to UINT_MAX. */
void setMaxTraversalDepth(unsigned int depth)
{ _distAccumulator->setMaxDepth(depth); }
inline unsigned int getMaxTraversalDepth() const
{ return _distAccumulator->getMaxDepth(); }
/** Override update and cull traversals */
virtual void traverse(osg::NodeVisitor &nv);
/** Catch child management functions so the Cameras can be informed
of added or removed children. */
virtual bool addChild(osg::Node *child);
virtual bool insertChild(unsigned int index, osg::Node *child);
virtual bool removeChildren(unsigned int pos, unsigned int numRemove = 1);
virtual bool setChild(unsigned int i, osg::Node *node);
protected:
typedef std::vector< osg::ref_ptr<osg::Camera> > CameraList;
~CURRENT_CLASS();
void init();
// Creates a new Camera object with default settings
osg::Camera* createOrReuseCamera(const osg::Matrix& proj,
double znear, double zfar,
const unsigned int &camNum);
bool _active; // Whether partitioning is active on the scene
// The NodeVisitor that computes cameras for the scene
osg::ref_ptr<DistanceAccumulator> _distAccumulator;
osg::Camera::RenderOrder _renderOrder;
bool _clearColorBuffer;
// Cameras that should be used to draw the scene. These cameras
// will be reused on every frame in order to save time and memory.
CameraList _cameraList;
unsigned int _numCameras; // Number of Cameras actually being used
};
#undef CURRENT_CLASS
#endif

View File

@ -1,402 +0,0 @@
/* OpenSceneGraph example, osgdepthpartion.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "DistanceAccumulator.h"
#include <osg/Geode>
#include <osg/Transform>
#include <osg/Projection>
#include <algorithm>
#include <math.h>
#include <limits.h>
/** Function that sees whether one DistancePair should come before another in
an sorted list. Used to sort the vector of DistancePairs. */
bool precedes(const DistanceAccumulator::DistancePair &a,
const DistanceAccumulator::DistancePair &b)
{
// This results in sorting in order of descending far distances
if(a.second > b.second) return true;
else return false;
}
/** Computes distance (in z direction) betwen a point and the viewer's eye,
given by a view matrix */
double distance(const osg::Vec3 &coord, const osg::Matrix& matrix)
{
// Here we are taking only the z coordinate of the point transformed
// by the matrix, ie coord*matrix. The negative sign is because we
// want to consider into the screen as INCREASING distance.
return -( coord[0]*matrix(0,2) + coord[1]*matrix(1,2) +
coord[2]*matrix(2,2) + matrix(3,2) );
}
#define CURRENT_CLASS DistanceAccumulator
CURRENT_CLASS::CURRENT_CLASS()
: osg::NodeVisitor(TRAVERSE_ALL_CHILDREN),
_nearFarRatio(0.0005), _maxDepth(UINT_MAX)
{
setMatrices(osg::Matrix::identity(), osg::Matrix::identity());
reset();
}
CURRENT_CLASS::~CURRENT_CLASS() {}
void CURRENT_CLASS::pushLocalFrustum()
{
osg::Matrix& currMatrix = _viewMatrices.back();
// Compute the frustum in local space
osg::Polytope localFrustum;
localFrustum.setToUnitFrustum(false, false);
localFrustum.transformProvidingInverse(currMatrix*_projectionMatrices.back());
_localFrusta.push_back(localFrustum);
// Compute new bounding box corners
bbCornerPair corner;
corner.second = (currMatrix(0,2)<=0?1:0) |
(currMatrix(1,2)<=0?2:0) |
(currMatrix(2,2)<=0?4:0);
corner.first = (~corner.second)&7;
_bbCorners.push_back(corner);
}
void CURRENT_CLASS::pushDistancePair(double zNear, double zFar)
{
if(zFar > 0.0) // Make sure some of drawable is visible
{
// Make sure near plane is in front of viewpoint.
if(zNear <= 0.0)
{
zNear = zFar*_nearFarRatio;
if(zNear >= 1.0) zNear = 1.0; // 1.0 limit chosen arbitrarily!
}
// Add distance pair for current drawable
_distancePairs.push_back(DistancePair(zNear, zFar));
// Override the current nearest/farthest planes if necessary
if(zNear < _limits.first) _limits.first = zNear;
if(zFar > _limits.second) _limits.second = zFar;
}
}
/** Return true if the node should be traversed, and false if the bounding sphere
of the node is small enough to be rendered by one Camera. If the latter
is true, then store the node's near & far plane distances. */
bool CURRENT_CLASS::shouldContinueTraversal(osg::Node &node)
{
// Allow traversal to continue if we haven't reached maximum depth.
bool keepTraversing = (_currentDepth < _maxDepth);
osg::BoundingSphere bs = node.getBound();
double zNear = 0.0, zFar = 0.0;
// Make sure bounding sphere is valid
if(bs.valid())
{
// Make sure bounding sphere is within the viewing volume
if(!_localFrusta.back().contains(bs)) keepTraversing = false;
else // Compute near and far planes for this node
{
// Since the view matrix could involve complex transformations,
// we need to determine a new BoundingSphere that would encompass
// the transformed BoundingSphere.
const osg::Matrix &l2w = _viewMatrices.back();
// Get the transformed x-axis of the BoundingSphere
osg::Vec3d newX = bs._center;
newX.x() += bs._radius; // Get X-edge of bounding sphere
newX = newX * l2w;
// Get the transformed y-axis of the BoundingSphere
osg::Vec3d newY = bs._center;
newY.y() += bs._radius; // Get Y-edge of bounding sphere
newY = newY * l2w;
// Get the transformed z-axis of the BoundingSphere
osg::Vec3d newZ = bs._center;
newZ.z() += bs._radius; // Get Z-edge of bounding sphere
newZ = newZ * l2w;
// Get the transformed center of the BoundingSphere
bs._center = bs._center * l2w;
// Compute lengths of transformed x, y, and z axes
double newXLen = (newX - bs._center).length();
double newYLen = (newY - bs._center).length();
double newZLen = (newZ - bs._center).length();
// The encompassing radius is the max of the transformed lengths
bs._radius = newXLen;
if(newYLen > bs._radius) bs._radius = newYLen;
if(newZLen > bs._radius) bs._radius = newZLen;
// Now we can compute the near & far planes, noting that for
// complex view transformations (ie. involving scales) the new
// BoundingSphere may be bigger than the original one.
// Note that the negative sign on the bounding sphere center is
// because we want distance to increase INTO the screen.
zNear = -bs._center.z() - bs._radius;
zFar = -bs._center.z() + bs._radius;
// If near/far ratio is big enough, then we don't need to keep
// traversing children of this node.
if(zNear >= zFar*_nearFarRatio) keepTraversing = false;
}
}
// If traversal should stop, then store this node's (near,far) pair
if(!keepTraversing) pushDistancePair(zNear, zFar);
return keepTraversing;
}
void CURRENT_CLASS::apply(osg::Node &node)
{
if(shouldContinueTraversal(node))
{
// Traverse this node
++_currentDepth;
traverse(node);
--_currentDepth;
}
}
void CURRENT_CLASS::apply(osg::Projection &proj)
{
if(shouldContinueTraversal(proj))
{
// Push the new projection matrix view frustum
_projectionMatrices.push_back(proj.getMatrix());
pushLocalFrustum();
// Traverse the group
++_currentDepth;
traverse(proj);
--_currentDepth;
// Reload original matrix and frustum
_localFrusta.pop_back();
_bbCorners.pop_back();
_projectionMatrices.pop_back();
}
}
void CURRENT_CLASS::apply(osg::Transform &transform)
{
if(shouldContinueTraversal(transform))
{
// Compute transform for current node
osg::Matrix currMatrix = _viewMatrices.back();
bool pushMatrix = transform.computeLocalToWorldMatrix(currMatrix, this);
if(pushMatrix)
{
// Store the new modelview matrix and view frustum
_viewMatrices.push_back(currMatrix);
pushLocalFrustum();
}
++_currentDepth;
traverse(transform);
--_currentDepth;
if(pushMatrix)
{
// Restore the old modelview matrix and view frustum
_localFrusta.pop_back();
_bbCorners.pop_back();
_viewMatrices.pop_back();
}
}
}
void CURRENT_CLASS::apply(osg::Geode &geode)
{
// Contained drawables will only be individually considered if we are
// allowed to continue traversing.
if(shouldContinueTraversal(geode))
{
osg::Drawable *drawable;
double zNear, zFar;
// Handle each drawable in this geode
for(unsigned int i = 0; i < geode.getNumDrawables(); ++i)
{
drawable = geode.getDrawable(i);
const osg::BoundingBox &bb = drawable->getBound();
if(bb.valid())
{
// Make sure drawable will be visible in the scene
if(!_localFrusta.back().contains(bb)) continue;
// Compute near/far distances for current drawable
zNear = distance(bb.corner(_bbCorners.back().first),
_viewMatrices.back());
zFar = distance(bb.corner(_bbCorners.back().second),
_viewMatrices.back());
if(zNear > zFar) std::swap(zNear, zFar);
pushDistancePair(zNear, zFar);
}
}
}
}
void CURRENT_CLASS::setMatrices(const osg::Matrix &modelview,
const osg::Matrix &projection)
{
_modelview = modelview;
_projection = projection;
}
void CURRENT_CLASS::reset()
{
// Clear vectors & values
_distancePairs.clear();
_cameraPairs.clear();
_limits.first = DBL_MAX;
_limits.second = 0.0;
_currentDepth = 0;
// Initial transform matrix is the modelview matrix
_viewMatrices.clear();
_viewMatrices.push_back(_modelview);
// Set the initial projection matrix
_projectionMatrices.clear();
_projectionMatrices.push_back(_projection);
// Create a frustum without near/far planes, for cull computations
_localFrusta.clear();
_bbCorners.clear();
pushLocalFrustum();
}
void CURRENT_CLASS::computeCameraPairs()
{
// Nothing in the scene, so no cameras needed
if(_distancePairs.empty()) return;
// Entire scene can be handled by just one camera
if(_limits.first >= _limits.second*_nearFarRatio)
{
_cameraPairs.push_back(_limits);
return;
}
PairList::iterator i,j;
// Sort the list of distance pairs by descending far distance
std::sort(_distancePairs.begin(), _distancePairs.end(), precedes);
// Combine overlapping distance pairs. The resulting set of distance
// pairs (called combined pairs) will not overlap.
PairList combinedPairs;
DistancePair currPair = _distancePairs.front();
for(i = _distancePairs.begin(); i != _distancePairs.end(); ++i)
{
// Current distance pair does not overlap current combined pair, so
// save the current combined pair and start a new one.
if(i->second < 0.99*currPair.first)
{
combinedPairs.push_back(currPair);
currPair = *i;
}
// Current distance pair overlaps current combined pair, so expand
// current combined pair to encompass distance pair.
else
currPair.first = std::min(i->first, currPair.first);
}
combinedPairs.push_back(currPair); // Add last pair
// Compute the (near,far) distance pairs for each camera.
// Each of these distance pairs is called a "view segment".
double currNearLimit, numSegs, new_ratio;
double ratio_invlog = 1.0/log(_nearFarRatio);
unsigned int temp;
for(i = combinedPairs.begin(); i != combinedPairs.end(); ++i)
{
currPair = *i; // Save current view segment
// Compute the fractional number of view segments needed to span
// the current combined distance pair.
currNearLimit = currPair.second*_nearFarRatio;
if(currPair.first >= currNearLimit) numSegs = 1.0;
else
{
numSegs = log(currPair.first/currPair.second)*ratio_invlog;
// Compute the near plane of the last view segment
//currNearLimit *= pow(_nearFarRatio, -floor(-numSegs) - 1);
for(temp = (unsigned int)(-floor(-numSegs)); temp > 1; temp--)
{
currNearLimit *= _nearFarRatio;
}
}
// See if the closest view segment can absorb other combined pairs
for(j = i+1; j != combinedPairs.end(); ++j)
{
// No other distance pairs can be included
if(j->first < currNearLimit) break;
}
// If we did absorb another combined distance pair, recompute the
// number of required view segments.
if(i != j-1)
{
i = j-1;
currPair.first = i->first;
if(currPair.first >= currPair.second*_nearFarRatio) numSegs = 1.0;
else numSegs = log(currPair.first/currPair.second)*ratio_invlog;
}
/* Compute an integer number of segments by rounding the fractional
number of segments according to how many segments there are.
In general, the more segments there are, the more likely that the
integer number of segments will be rounded down.
The purpose of this is to try to minimize the number of view segments
that are used to render any section of the scene without violating
the specified _nearFarRatio by too much. */
if(numSegs < 10.0) numSegs = floor(numSegs + 1.0 - 0.1*floor(numSegs));
else numSegs = floor(numSegs);
// Compute the near/far ratio that will be used for each view segment
// in this section of the scene.
new_ratio = pow(currPair.first/currPair.second, 1.0/numSegs);
// Add numSegs new view segments to the camera pairs list
for(temp = (unsigned int)numSegs; temp > 0; temp--)
{
currPair.first = currPair.second*new_ratio;
_cameraPairs.push_back(currPair);
currPair.second = currPair.first;
}
}
}
void CURRENT_CLASS::setNearFarRatio(double ratio)
{
if(ratio <= 0.0 || ratio >= 1.0) return;
_nearFarRatio = ratio;
}
#undef CURRENT_CLASS

View File

@ -1,115 +0,0 @@
/* -*-c++-*-
*
* OpenSceneGraph example, osgdepthpartion.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef _OF_DISTANCEACCUMULATOR_
#define _OF_DISTANCEACCUMULATOR_
#include <osg/Group>
#include <osg/NodeVisitor>
#include <osg/Polytope>
#include <osg/fast_back_stack>
#define CURRENT_CLASS DistanceAccumulator
/**********************************************************
* Ravi Mathur
* OpenFrames API, class DistanceAccumulator
* Class that traverses the scene and computes the distance to each
* visible drawable, and splits up the scene if the drawables are
* too far away (in the z direction) from each other.
**********************************************************/
class CURRENT_CLASS : public osg::NodeVisitor
{
public:
typedef std::pair<double, double> DistancePair;
typedef std::vector<DistancePair> PairList;
CURRENT_CLASS();
virtual void apply(osg::Node &node);
virtual void apply(osg::Projection &proj);
virtual void apply(osg::Transform &transform);
virtual void apply(osg::Geode &geode);
// Specify the modelview & projection matrices
void setMatrices(const osg::Matrix &modelview,
const osg::Matrix &projection);
// Reset visitor before a new traversal
virtual void reset();
// Create a (near,far) distance pair for each camera of the specified
// distance pair list and distance limits.
void computeCameraPairs();
// Get info on the cameras that should be used for scene rendering
PairList& getCameraPairs() { return _cameraPairs; }
// Get info on the computed distance pairs
PairList& getDistancePairs() { return _distancePairs; }
// Get info on the computed nearest/farthest distances
DistancePair& getLimits() { return _limits; }
// Set/get the desired near/far ratio
void setNearFarRatio(double ratio);
inline double getNearFarRatio() const { return _nearFarRatio; }
inline void setMaxDepth(unsigned int depth) { _maxDepth = depth; }
inline unsigned int getMaxDepth() const { return _maxDepth; }
protected:
virtual ~CURRENT_CLASS();
void pushLocalFrustum();
void pushDistancePair(double zNear, double zFar);
bool shouldContinueTraversal(osg::Node &node);
// Stack of matrices accumulated during traversal
osg::fast_back_stack<osg::Matrix> _viewMatrices;
osg::fast_back_stack<osg::Matrix> _projectionMatrices;
// Main modelview/projection matrices
osg::Matrix _modelview, _projection;
// The view frusta in local coordinate space
osg::fast_back_stack<osg::Polytope> _localFrusta;
// Bounding box corners that should be used for cull computation
typedef std::pair<unsigned int, unsigned int> bbCornerPair;
osg::fast_back_stack<bbCornerPair> _bbCorners;
// Nar/far planes that should be used for each camera
PairList _cameraPairs;
// Accumulated pairs of min/max distances
PairList _distancePairs;
// The closest & farthest distances found while traversing
DistancePair _limits;
// Ratio of nearest/farthest clip plane for each section of the scene
double _nearFarRatio;
// Maximum depth to traverse to
unsigned int _maxDepth, _currentDepth;
};
#undef CURRENT_CLASS
#endif

View File

@ -24,10 +24,10 @@
#include <osg/PositionAttitudeTransform> #include <osg/PositionAttitudeTransform>
#include <osgGA/TrackballManipulator> #include <osgGA/TrackballManipulator>
#include <osgGA/StateSetManipulator>
#include <osgViewer/Viewer> #include <osgViewer/Viewer>
#include <osgViewer/ViewerEventHandlers>
#include "DepthPartitionNode.h"
const double r_earth = 6378.137; const double r_earth = 6378.137;
const double r_sun = 695990.0; const double r_sun = 695990.0;
@ -132,6 +132,12 @@ int main( int argc, char **argv )
// construct the viewer. // construct the viewer.
osgViewer::Viewer viewer; osgViewer::Viewer viewer;
// add the state manipulator
viewer.addEventHandler( new osgGA::StateSetManipulator(viewer.getCamera()->getOrCreateStateSet()) );
// add stats
viewer.addEventHandler( new osgViewer::StatsHandler() );
bool needToSetHomePosition = false; bool needToSetHomePosition = false;
// read the scene from the list of file specified commandline args. // read the scene from the list of file specified commandline args.
@ -143,24 +149,33 @@ int main( int argc, char **argv )
scene = createScene(); scene = createScene();
needToSetHomePosition = true; needToSetHomePosition = true;
} }
// Create a DepthPartitionNode to manage partitioning of the scene
osg::ref_ptr<DepthPartitionNode> dpn = new DepthPartitionNode;
dpn->addChild(scene.get());
dpn->setActive(true); // Control whether the node analyzes the scene
// pass the loaded scene graph to the viewer. // pass the loaded scene graph to the viewer.
viewer.setSceneData(dpn.get()); viewer.setSceneData(scene.get());
viewer.setCameraManipulator(new osgGA::TrackballManipulator); viewer.setCameraManipulator(new osgGA::TrackballManipulator);
if (needToSetHomePosition) if (needToSetHomePosition)
{ {
viewer.getCameraManipulator()->setHomePosition(osg::Vec3d(0.0,-5.0*r_earth,0.0),osg::Vec3d(0.0,0.0,0.0),osg::Vec3d(0.0,0.0,1.0)); viewer.getCameraManipulator()->setHomePosition(osg::Vec3d(0.0,-5.0*r_earth,0.0),osg::Vec3d(0.0,0.0,0.0),osg::Vec3d(0.0,0.0,1.0));
}
double zNear=1.0, zMid=10.0, zFar=1000.0;
if (arguments.read("--depth-partition",zNear, zMid, zFar))
{
// set up depth partitioning
osg::ref_ptr<osgViewer::DepthPartitionSettings> dps = new osgViewer::DepthPartitionSettings;
dps->_mode = osgViewer::DepthPartitionSettings::FIXED_RANGE;
dps->_zNear = zNear;
dps->_zMid = zMid;
dps->_zFar = zFar;
viewer.setUpDepthPartition(dps.get());
}
else
{
// set up depth partitioning with default settings
viewer.setUpDepthPartition();
} }
// depth partion node is only supports single window/single threaded at present.
viewer.setThreadingModel(osgViewer::Viewer::SingleThreaded);
return viewer.run(); return viewer.run();
} }