Removed the now redundent osg::Camera.

This commit is contained in:
Robert Osfield 2003-05-20 08:09:36 +00:00
parent 00e94b86d8
commit ab1b199da8
2 changed files with 0 additions and 843 deletions

View File

@ -1,338 +0,0 @@
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_CAMERA
#define OSG_CAMERA 1
#include <osg/Export>
#include <osg/ref_ptr>
#include <osg/Referenced>
#include <osg/Matrix>
#include <osg/Quat>
#include <osg/Viewport>
#include <osg/DisplaySettings>
#include <osg/Polytope>
namespace osg {
/** Camera class for encapsulating the view position and orientation and
* projection (lens) used. Creates a projection and modelview matrices
* which can be used to set OpenGL's PROJECTION and MODELVIEW matrices
* respectively.
*/
class SG_EXPORT Camera: public osg::Referenced
{
public:
Camera(DisplaySettings* ds=NULL);
Camera(const Camera&);
Camera& operator=(const Camera&);
/** Range of projection types.
* ORTHO2D is a special case of ORTHO where the near and far planes
* are equal to -1 and 1 respectively.
* PERSPECTIVE is a special case of FRUSTUM where the left & right
* and bottom and top and symmetrical.*/
enum ProjectionType
{
ORTHO,
ORTHO2D,
FRUSTUM,
PERSPECTIVE
};
/** Get the projection type set by setOtho,setOtho2D,setFrustum,
* and set perspective methods.*/
ProjectionType getProjectionType() const { return _projectionType; }
/** Set a orthographic projection. See glOrtho for further details.*/
void setOrtho(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Set a 2D orthographic projection. See gluOrtho2D for further details.*/
void setOrtho2D(double left, double right,
double bottom, double top);
/** Set a perspective projection. See glFrustum for further details.*/
void setFrustum(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Set a symmetrical perspective projection, See gluPerspective for further details.
* Aspect ratio is defined as width/height.*/
void setPerspective(double fovy,double aspectRatio,
double zNear, double zFar);
/** Set a sysmmetical perspective projection using field of view.*/
void setFOV(double fovx,double fovy,
double zNear, double zFar);
/** Set the near and far clipping planes.*/
void setNearFar(double zNear, double zFar);
/** Use in combination with adjustAspectRatio, to control
* the change in frustum clipping planes to account for
* changes in windows aspect ratio,*/
enum AdjustAspectRatioMode
{
ADJUST_VERTICAL,
ADJUST_HORIZONTAL,
ADJUST_NONE
};
/** Set the way that the vertical or horizontal dimensions of the window
* are adjusted on a resize. */
void setAdjustAspectRatioMode(AdjustAspectRatioMode aam) { _adjustAspectRatioMode = aam; }
/** Get the way that the vertical or horizontal dimensions of the window
* are adjusted on a resize. */
AdjustAspectRatioMode getAdjustAspectRatioMode() const { return _adjustAspectRatioMode; }
/** Adjust the clipping planes to account for a new window aspect ratio.
* Typically used after resizing a window. Aspect ratio is defined as
* width/height.*/
void adjustAspectRatio(double newAspectRatio)
{
adjustAspectRatio(newAspectRatio,_adjustAspectRatioMode);
}
/** Adjust the clipping planes to account for a new window aspect ratio.
* Typicall used after resizeing a window. Aspect ratio is defined as
* width/height.*/
void adjustAspectRatio(double newAspectRatio, AdjustAspectRatioMode aa);
double left() const { return _left; }
double right() const { return _right; }
double bottom() const { return _bottom; }
double top() const { return _top; }
double zNear() const { return _zNear; }
double zFar() const { return _zFar; }
/** Calculate and return the equivalent fovx for the current project setting.
* This value is only valid for when a symmetric perspective projection exists.
* i.e. getProjectionType()==PERSPECTIVE.*/
double calc_fovy() const;
/** Calculate and return the equivalent fovy for the current project setting.
* This value is only valid for when a symmetric perspective projection exists.
* i.e. getProjectionType()==PERSPECTIVE.*/
double calc_fovx() const;
/** Calculate and return the projection aspect ratio.
* Aspect ratio is defined as width/height.*/
double calc_aspectRatio() const;
enum LookAtType
{
USE_HOME_POSITION,
USE_EYE_AND_QUATERNION,
USE_EYE_CENTER_AND_UP
};
LookAtType getLookAtType() const { return _lookAtType; }
/**
* hardwired home view for now, looking straight down the
* Z axis at the origin, with 'up' being the y axis.
*/
void home();
/**
* Set the View, the up vector should be orthogonal to the look vector.
* setView is now mapped to setLookAt(eye,center,up), and is only
* kept for backwards compatibility.
*/
void setView(const Vec3& eyePoint,
const Vec3& lookPoint,
const Vec3& upVector);
/** set the position and orientation of the camera, using the same convention as
* gluLookAt.
*/
void setLookAt(const Vec3& eye,
const Vec3& center,
const Vec3& up);
/** set the position and orientation of the camera, using the same convention as
* gluLookAt.
*/
void setLookAt(double eyeX, double eyeY, double eyeZ,
double centerX, double centerY, double centerZ,
double upX, double upY, double upZ);
/** post multiple the existing eye point and orientation by matrix.
* note, does not affect any ModelTransforms that are applied.*/
void transformLookAt(const Matrix& matrix);
void ensureOrthogonalUpVector();
/** get the eye point. */
inline const Vec3& getEyePoint() const { return _eye; }
/** get the center point. */
inline const Vec3& getCenterPoint() const { return _center; }
/** get the up vector */
inline const Vec3& getUpVector() const { return _up; }
/** calculate look vector.*/
Vec3 getLookVector() const;
/** calculate side vector.*/
Vec3 getSideVector() const;
/** calculate the look distance which is the distance between the eye and the center.*/
inline float getLookDistance() const { return (_center-_eye).length(); }
enum TransformMode
{
EYE_TO_MODEL,
MODEL_TO_EYE,
NO_ATTACHED_TRANSFORM
};
/** Attach a transform matrix which is applied after the camera look at.
* The attached matrix can work in two ways, either as transform of the eye
* into the model coordinates - EYE_TO_MODEL, or as a transform of the
* model to the eye - MODEL_TO_EYE. The former is equivalent to attaching
* a camera internal to the scene graph. The later is equivalent to adding
* a osg::Transform at root of the scene to move the scene to the eye point.
* Typical used in conjunction with the LookAt position set to home,
* in which case it is simply treated as a model view matrix.
* If the same behavior as IRIS Performer's setViewMat is desired
* then set the LookAt to be (0,0,0),(0,1,0),(0,0,1) since Performer's
* default direction is along the y axis, unlike OpenGL and the default OSG.
* If modelTransfor is NULL then do not use any model transform - just use the
* basic LookAt values.
* note: Camera internals maintains the both EYE_TO_MODEL and MODEL_TO_EYE
* internally and ensures that they are the inverse of one another.*/
void attachTransform(TransformMode mode, RefMatrix* modelTransform=0);
Matrix* getTransform(TransformMode mode);
const Matrix* getTransform(TransformMode mode) const;
enum FusionDistanceMode
{
PROPORTIONAL_TO_LOOK_DISTANCE,
PROPORTIONAL_TO_SCREEN_DISTANCE
};
/** Set the mode of the fusion distance function which in use to calculate the
* fusion distance used in stereo rendering. Default value is
* PROPORTIONAL_TO_LOOK_DISTANCE. Use in conjunction with setFusionDistanceRatio(float).*/
void setFusionDistanceMode(FusionDistanceMode mode) { _fusionDistanceMode = mode; }
/** Get the mode of the fusion distance function.*/
FusionDistanceMode getFusionDistanceMode() const { return _fusionDistanceMode; }
/** Set the ratio of the fusion distance function which in use to calculate the
* fusion distance used in stereo rendering. Default value is 1.0f
* Use in conjunction with setFusionDistanceMode(..).*/
void setFusionDistanceRatio(float ratio) { _fusionDistanceRatio = ratio; }
/** Get the ratio of the fusion distance function.*/
float getFusionDistanceRatio() const { return _fusionDistanceRatio; }
/** Calculate and return the fusion distance, using the FusionDistanceFunction.*/
float getFusionDistance() const;
/** Set the physical distance between the viewers eyes and the display system.
* Note, only used when rendering in stereo.*/
void setScreenDistance(float screenDistance) { _screenDistance = screenDistance; }
/** Get the physical distance between the viewers eyes and the display system.*/
float getScreenDistance() const { return _screenDistance; }
/** Get the Projection Matrix.*/
Matrix getProjectionMatrix() const;
/** Get the ModelView matrix.
* If a ModelTransform is supplied then the ModelView matrix is
* created by multiplying the current LookAt by ModelTransform.
* Otherwise it is simply created by using the current LookAt,
* equivalent to using gluLookAt.*/
Matrix getModelViewMatrix() const;
/** Get the camera view frustum.*/
inline Polytope getViewFrustum() const
{
Polytope cv;
cv.setToUnitFrustum();
cv.transformProvidingInverse(getModelViewMatrix()*
getProjectionMatrix());
return cv;
}
protected:
virtual ~Camera();
void copy(const Camera&);
// projection details.
ProjectionType _projectionType;
// how the window dimensions should be altered during a window resize.
AdjustAspectRatioMode _adjustAspectRatioMode;
// note, in Frustum/Perspective mode these values are scaled
// by the zNear from when they were initialised to ensure that
// subsequent changes in zNear do not affect them.
double _left;
double _right;
double _bottom;
double _top;
double _zNear;
double _zFar;
// look at details.
LookAtType _lookAtType;
Vec3 _eye;
Vec3 _center;
Vec3 _up;
TransformMode _attachedTransformMode;
ref_ptr<RefMatrix> _eyeToModelTransform;
ref_ptr<RefMatrix> _modelToEyeTransform;
float _screenDistance;
FusionDistanceMode _fusionDistanceMode;
float _fusionDistanceRatio;
};
}
# endif

View File

@ -1,505 +0,0 @@
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#include <osg/GL>
#include <osg/Camera>
#include <osg/Notify>
#include <osg/State>
using namespace osg;
Camera::Camera(DisplaySettings* ds)
{
_adjustAspectRatioMode = ADJUST_HORIZONTAL;
// projection details.
float fovy = 45.0f;
if (ds)
{
fovy = 2.0f*RadiansToDegrees(atan(ds->getScreenHeight()*0.5/ds->getScreenDistance()));
}
setPerspective(fovy,1.0,1.0,1000.0);
// look at details.
_lookAtType =USE_HOME_POSITION;
_eye.set(0.0f,0.0f,0.0f);
_center.set(0.0f,0.0f,-1.0f);
_up.set(0.0f,1.0f,0.0f);
_attachedTransformMode = NO_ATTACHED_TRANSFORM;
if (ds) _screenDistance = ds->getScreenDistance();
else _screenDistance = 0.33f;
_fusionDistanceMode = PROPORTIONAL_TO_LOOK_DISTANCE;
_fusionDistanceRatio = 1.0f;
}
Camera::Camera(const Camera& camera):Referenced()
{
copy(camera);
}
Camera& Camera::operator=(const Camera& camera)
{
if (&camera==this) return *this;
copy(camera);
return *this;
}
void Camera::copy(const Camera& camera)
{
_projectionType = camera._projectionType;
// how the window dimensions should be altered during a window resize.
_adjustAspectRatioMode = camera._adjustAspectRatioMode;
// note, in Frustum/Perspective mode these values are scaled
// by the zNear from when they were initialised to ensure that
// subsequent changes in zNear do not affect them.
_left = camera._left;
_right = camera._right;
_bottom = camera._bottom;
_top = camera._top;
_zNear = camera._zNear;
_zFar = camera._zFar;
// look at details.
_lookAtType = camera._lookAtType;
_eye = camera._eye;
_center = camera._center;
_up = camera._up;
_attachedTransformMode = camera._attachedTransformMode;
_eyeToModelTransform = camera._eyeToModelTransform;
_modelToEyeTransform = camera._modelToEyeTransform;
_screenDistance = camera._screenDistance;
_fusionDistanceMode = camera._fusionDistanceMode;
_fusionDistanceRatio = camera._fusionDistanceRatio;
}
Camera::~Camera()
{
}
/** Set a orthographics projection. See glOrtho for further details.*/
void Camera::setOrtho(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
_projectionType = ORTHO;
_left = left;
_right = right;
_bottom = bottom;
_top = top;
_zNear = zNear;
_zFar = zFar;
}
/** Set a 2D orthographics projection. See gluOrtho2D for further details.*/
void Camera::setOrtho2D(double left, double right,
double bottom, double top)
{
_projectionType = ORTHO2D;
_left = left;
_right = right;
_bottom = bottom;
_top = top;
_zNear = -1.0;
_zFar = 1.0;
}
/** Set a perspective projection. See glFrustum for further details.*/
void Camera::setFrustum(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
_projectionType = FRUSTUM;
// note, in Frustum/Perspective mode these values are scaled
// by the zNear from when they were initialised to ensure that
// subsequent changes in zNear do not affect them.
_left = left;
_right = right;
_bottom = bottom;
_top = top;
_zNear = zNear;
_zFar = zFar;
}
/** Set a sysmetical perspective projection, See gluPerspective for further details.*/
void Camera::setPerspective(double fovy,double aspectRatio,
double zNear, double zFar)
{
_projectionType = PERSPECTIVE;
// note, in Frustum/Perspective mode these values are scaled
// by the zNear from when they were initialised to ensure that
// subsequent changes in zNear do not affect them.
// calculate the appropriate left, right etc.
double tan_fovy = tan(DegreesToRadians(fovy*0.5));
_right = tan_fovy * aspectRatio * zNear;
_left = -_right;
_top = tan_fovy * zNear;
_bottom = -_top;
_zNear = zNear;
_zFar = zFar;
}
/** Set a sysmetical perspective projection using field of view.*/
void Camera::setFOV(double fovx,double fovy,
double zNear, double zFar)
{
_projectionType = PERSPECTIVE;
// note, in Frustum/Perspective mode these values are scaled
// by the zNear from when they were initialised to ensure that
// subsequent changes in zNear do not affect them.
// calculate the appropriate left, right etc.
double tan_fovx = tan(DegreesToRadians(fovx*0.5));
double tan_fovy = tan(DegreesToRadians(fovy*0.5));
_right = tan_fovx * zNear;
_left = -_right;
_top = tan_fovy * zNear;
_bottom = -_top;
_zNear = zNear;
_zFar = zFar;
}
/** Set the near and far clipping planes.*/
void Camera::setNearFar(double zNear, double zFar)
{
if (_projectionType==FRUSTUM || _projectionType==PERSPECTIVE)
{
double adjustRatio = zNear/_zNear;
_left *= adjustRatio;
_right *= adjustRatio;
_bottom *= adjustRatio;
_top *= adjustRatio;
}
_zNear = zNear;
_zFar = zFar;
if (_projectionType==ORTHO2D)
{
if (_zNear!=-1.0 || _zFar!=1.0) _projectionType = ORTHO;
}
}
/** Adjust the clipping planes to account for a new window aspcect ratio.
* Typicall used after resizeing a window.*/
void Camera::adjustAspectRatio(double newAspectRatio, AdjustAspectRatioMode aa)
{
if (newAspectRatio<0.01f || newAspectRatio>100.0f)
{
notify(NOTICE)<<"Warning: aspect ratio out of range (0.01..100) in Camera::adjustAspectRatio("<<newAspectRatio<<","<<aa<<")"<<std::endl;
return;
}
if(aa != ADJUST_NONE) // If adjustment todo
{
double previousAspectRatio = (_right-_left)/(_top-_bottom);
double deltaRatio = newAspectRatio/previousAspectRatio;
if (aa == ADJUST_HORIZONTAL)
{
_left *= deltaRatio;
_right *= deltaRatio;
}
else // aa == ADJUST_VERTICAL
{
_bottom /= deltaRatio;
_top /= deltaRatio;
}
}
}
/** Calculate and return the equivilant fovx for the current project setting.
* This value is only valid for when a symetric persepctive projection exists.
* i.e. getProjectionType()==PERSPECTIVE.*/
double Camera::calc_fovy() const
{
// note, _right & _left are prescaled by znear so
// no need to account for it.
return RadiansToDegrees(atan(_top/_zNear)-atan(_bottom/_zNear));
}
/** Calculate and return the equivilant fovy for the current project setting.
* This value is only valid for when a symetric persepctive projection exists.
* i.e. getProjectionType()==PERSPECTIVE.*/
double Camera::calc_fovx() const
{
// note, _right & _left are prescaled by znear so
// no need to account for it.
return RadiansToDegrees(atan(_right/_zNear)-atan(_left/_zNear));
}
/** Calculate and return the projection aspect ratio.*/
double Camera::calc_aspectRatio() const
{
double delta_x = _right-_left;
double delta_y = _top-_bottom;
return delta_x/delta_y;
}
Matrix Camera::getProjectionMatrix() const
{
// set up the projection matrix.
switch(_projectionType)
{
case(ORTHO):
case(ORTHO2D):
{
return Matrix::ortho(_left,_right,_bottom,_top,_zNear,_zFar);
}
break;
case(FRUSTUM):
case(PERSPECTIVE):
{
return Matrix::frustum(_left,_right,_bottom,_top,_zNear,_zFar);
}
break;
}
// shouldn't get here if camera is set up properly.
// return identity.
return Matrix();
}
void Camera::home()
{
// OpenGL default position.
_lookAtType = USE_HOME_POSITION;
_eye.set(0.0f,0.0f,0.0f);
_center.set(0.0f,0.0f,-1.0f);
_up.set(0.0f,1.0f,0.0f);
}
void Camera::setView(const Vec3& eyePoint, const Vec3& lookPoint, const Vec3& upVector)
{
setLookAt(eyePoint,lookPoint,upVector);
}
void Camera::setLookAt(const Vec3& eye,
const Vec3& center,
const Vec3& up)
{
_lookAtType = USE_EYE_CENTER_AND_UP;
_eye = eye;
_center = center;
_up = up;
ensureOrthogonalUpVector();
}
void Camera::setLookAt(double eyeX, double eyeY, double eyeZ,
double centerX, double centerY, double centerZ,
double upX, double upY, double upZ)
{
_lookAtType = USE_EYE_CENTER_AND_UP;
_eye.set(eyeX,eyeY,eyeZ);
_center.set(centerX,centerY,centerZ);
_up.set(upX,upY,upZ);
ensureOrthogonalUpVector();
}
/** post multiple the existing eye point and orientation by matrix.
* note, does not affect any ModelTransforms that are applied.*/
void Camera::transformLookAt(const Matrix& matrix)
{
_up = (_up+_eye)*matrix;
_eye = _eye*matrix;
_center = _center*matrix;
_up -= _eye;
_up.normalize();
_lookAtType=USE_EYE_CENTER_AND_UP;
}
Vec3 Camera::getLookVector() const
{
osg::Vec3 lv(_center-_eye);
lv.normalize();
return lv;
}
Vec3 Camera::getSideVector() const
{
osg::Vec3 lv(_center-_eye);
lv.normalize();
osg::Vec3 sv(lv^_up);
sv.normalize();
return sv;
}
void Camera::attachTransform(TransformMode mode, RefMatrix* matrix)
{
switch(mode)
{
case(EYE_TO_MODEL):
{
_eyeToModelTransform = matrix;
if (_eyeToModelTransform.valid())
{
_attachedTransformMode = mode;
if (!_modelToEyeTransform.valid()) _modelToEyeTransform = new RefMatrix;
if (!_modelToEyeTransform->invert(*_eyeToModelTransform))
{
notify(WARN)<<"Warning: Camera::attachTransform() failed to invert _modelToEyeTransform"<<std::endl;
}
}
else
{
_attachedTransformMode = NO_ATTACHED_TRANSFORM;
_modelToEyeTransform = NULL;
}
}
break;
case(MODEL_TO_EYE):
{
_modelToEyeTransform = matrix;
if (_modelToEyeTransform.valid())
{
_attachedTransformMode = mode;
if (!_eyeToModelTransform.valid()) _eyeToModelTransform = new RefMatrix;
if (!_eyeToModelTransform->invert(*_modelToEyeTransform))
{
notify(WARN)<<"Warning: Camera::attachTransform() failed to invert _modelToEyeTransform"<<std::endl;
}
}
else
{
_attachedTransformMode = NO_ATTACHED_TRANSFORM;
_eyeToModelTransform = NULL;
}
}
break;
case(NO_ATTACHED_TRANSFORM):
_attachedTransformMode = NO_ATTACHED_TRANSFORM;
_eyeToModelTransform = NULL;
_modelToEyeTransform = NULL;
break;
default:
_attachedTransformMode = NO_ATTACHED_TRANSFORM;
notify(WARN)<<"Warning: invalid TransformMode pass to osg::Camera::attachTransform(..)"<<std::endl;
notify(WARN)<<" setting Camera to NO_ATTACHED_TRANSFORM."<<std::endl;
break;
}
}
Matrix* Camera::getTransform(TransformMode mode)
{
switch(mode)
{
case(EYE_TO_MODEL): return _eyeToModelTransform.get();
case(MODEL_TO_EYE): return _modelToEyeTransform.get();
default: return NULL;
}
}
const Matrix* Camera::getTransform(TransformMode mode) const
{
switch(mode)
{
case(EYE_TO_MODEL): return _eyeToModelTransform.get();
case(MODEL_TO_EYE): return _modelToEyeTransform.get();
default: return NULL;
}
}
Matrix Camera::getModelViewMatrix() const
{
Matrix modelViewMatrix;
// set up the model view matrix.
switch(_lookAtType)
{
case(USE_HOME_POSITION):
{
if (_eyeToModelTransform.valid())
modelViewMatrix.invert(*_eyeToModelTransform);
else if (_modelToEyeTransform.valid())
modelViewMatrix = *_modelToEyeTransform;
else
modelViewMatrix.makeIdentity();
}
break;
case(USE_EYE_AND_QUATERNION): // not implemented yet, default to eye,center,up.
case(USE_EYE_CENTER_AND_UP):
default:
{
if (_eyeToModelTransform.valid())
{
modelViewMatrix.invert(*_eyeToModelTransform);
modelViewMatrix.postMult(Matrix::lookAt(_eye,_center,_up));
}
else if (_modelToEyeTransform.valid())
{
modelViewMatrix.makeLookAt(_eye,_center,_up);
modelViewMatrix.preMult(*_modelToEyeTransform);
}
else
modelViewMatrix.makeLookAt(_eye,_center,_up);
}
break;
}
return modelViewMatrix;
}
float Camera::getFusionDistance() const
{
switch(_fusionDistanceMode)
{
case(PROPORTIONAL_TO_SCREEN_DISTANCE): return _screenDistance*_fusionDistanceRatio;
case(PROPORTIONAL_TO_LOOK_DISTANCE):
default: return getLookDistance()*_fusionDistanceRatio;
}
}
void Camera::ensureOrthogonalUpVector()
{
Vec3 lv = _center-_eye;
Vec3 sv = lv^_up;
_up = sv^lv;
_up.normalize();
}