*** empty log message ***

This commit is contained in:
Robert Osfield 2001-09-25 17:56:56 +00:00
parent 7ae58df42a
commit 9fd1706e3c
4 changed files with 0 additions and 1560 deletions

View File

@ -1,225 +0,0 @@
#ifndef OSG_Matrix
#define OSG_Matrix 1
#include <osg/Object>
#include <osg/Vec3>
#include <osg/Vec4>
//#include <osg/Quat>
#ifdef OSG_USE_IO_DOT_H
#include <iostream.h>
#else
#include <iostream>
using namespace std;
#endif
namespace osg {
class Quat;
class SG_EXPORT Matrix : public Object
{
// private:
public:
float _mat[4][4];
bool fully_realized;
public:
// const char* name() { return "My Matrix "; }
META_Object(Matrix);
Matrix();
Matrix( const Matrix& other );
explicit Matrix( float const * const def );
Matrix( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);
virtual ~Matrix() {}
Matrix& operator = (const Matrix& );
int compare(const Matrix& m) const { return memcmp(_mat,m._mat,sizeof(_mat)); }
bool operator < (const Matrix& m) const { return compare(m)<0; }
bool operator == (const Matrix& m) const { return compare(m)==0; }
bool operator != (const Matrix& m) const { return compare(m)!=0; }
inline float& operator()(int col, int row) { return _mat[col][row]; }
inline float operator()(int col, int row) const { return _mat[col][row]; }
void set( float const * const );
void set( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);
const float * values() { return (const float *)_mat; }
void makeIdent();
void makeScale( const Vec3& );
void makeScale( float, float, float );
void makeTrans( const Vec3& );
void makeTrans( float, float, float );
//TODO: original preTrans was optimized (M=Tr*M)
// but also has the assumption that M (this) is an affine transformation Matrix
// can I still do something to optimize the same case now?
void makeRot( const Vec3& from, const Vec3& to );
void makeRot( float angle, const Vec3& orientation );
void makeRot( float angle, float x, float y, float z );
void makeRot( const Quat& );
void makeRot( float, float, float ); //Euler angles
bool invert( const Matrix& );
bool invertAffine( const Matrix& );
//basic utility functions to create new matrices or vectors
static Matrix scale( const Vec3& );
static Matrix scale( float, float, float );
static Matrix trans( const Vec3& );
static Matrix trans( float, float, float );
static Matrix rotate( const Vec3&, const Vec3& );
static Matrix rotate( float, float, float, float );
static Matrix rotate( const Quat& );
inline Vec3 preMult( const Vec3& v ) const;
inline Vec3 postMult( const Vec3& v ) const;
inline Vec3 operator* ( const Vec3& v ) const;
inline Vec4 preMult( const Vec4& v ) const;
inline Vec4 postMult( const Vec4& v ) const;
inline Vec4 operator* ( const Vec4& v ) const;
//start of Deprecated methods
void copy( const Matrix& );
void preScale( float sx, float sy, float sz, const Matrix& m );
void postScale( const Matrix& m, float sx, float sy, float sz );
void preScale( float sx, float sy, float sz );
void postScale( float sx, float sy, float sz );
void preTrans( float tx, float ty, float tz, const Matrix& m );
void postTrans( const Matrix& m, float tx, float ty, float tz );
void preTrans( float tx, float ty, float tz);
void postTrans( float tx, float ty, float tz );
void preRot( float deg, float x, float y, float z, const Matrix& m );
void postRot( const Matrix& m, float deg, float x, float y, float z );
void preRot( float deg, float x, float y, float z );
void postRot( float deg, float x, float y, float z );
/** apply apply an 3x3 transform of v*M[0..2,0..2] */
inline static Vec3 transform3x3(const Vec3& v,const Matrix& m);
/** apply apply an 3x3 transform of M[0..2,0..2]*v */
inline static Vec3 transform3x3(const Matrix& m,const Vec3& v);
//end of Deprecated methods
// basic matrix multiplication, our workhorse methods.
void mult( const Matrix&, const Matrix& );
void preMult( const Matrix& );
void postMult( const Matrix& );
// Helper class to optimize product expressions somewhat
class MatrixProduct {
public:
const Matrix& A;
const Matrix& B;
MatrixProduct( const Matrix& lhs, const Matrix& rhs ) : A(lhs), B(rhs) {}
};
inline MatrixProduct operator * ( const Matrix& other ) const
{ return MatrixProduct(*this, other); }
inline void operator *= ( const Matrix& other )
{ if( this == &other ) {
Matrix temp(other);
postMult( temp );
}
else postMult( other );
}
inline void operator = ( const MatrixProduct& p )
{
if( this == &(p.A)) postMult(p.B);
else if( this == &(p.B)) preMult(p.A);
else mult( p.A, p.B );
}
Matrix( const MatrixProduct& p ) //allows implicit evaluation of the product
{ mult( p.A, p.B ); }
};
inline Vec3 Matrix::postMult ( const Vec3& v ) const {
float d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
}
inline Vec3 Matrix::preMult (const Vec3& v ) const {
float d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
}
inline Vec3 Matrix::operator* (const Vec3& v) const {
return postMult(v);
}
inline Vec3 operator* (const Vec3& v, const Matrix& m ) {
return m.preMult(v);
}
inline Vec4 Matrix::postMult(const Vec4& v) const {
return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
(_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
}
/*
inline Vec4 Matrix::preMult(const Vec4& v,const Matrix& m) {
return Vec4( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z() + m._mat[3][0]*v.w()),
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z() + m._mat[3][1]*v.w()),
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z() + m._mat[3][2]*v.w()),
(m._mat[0][3]*v.x() + m._mat[1][3]*v.y() + m._mat[2][3]*v.z() + m._mat[3][3]*v.w()));
}
*/
inline Vec4 Matrix::operator* (const Vec4& v) const {
return postMult(v);
}
inline Vec4 operator* (const Vec4& v, const Matrix& m ) {
return m.preMult(v);
}
inline Vec3 Matrix::transform3x3(const Vec3& v,const Matrix& m)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
}
inline Vec3 Matrix::transform3x3(const Matrix& m,const Vec3& v)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
(m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
(m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
}
inline ostream& operator<< (ostream& os, const Matrix& m ) {
os << "{";
for(int row=0; row<4; ++row) {
os << "\t";
for(int col=0; col<4; ++col)
os << m(col,row) << " ";
os << endl;
}
os << "}" << endl;
return os;
}
}; //namespace osg
#endif

View File

@ -1,190 +0,0 @@
#ifndef OSG_MATRIX
#define OSG_MATRIX 1
#include <osg/Object>
#include <osg/Vec3>
#include <osg/Vec4>
#ifdef OSG_USE_IO_DOT_H
#include <iostream.h>
#else
#include <iostream>
using namespace std;
#endif
namespace osg {
/** 4x4 Matrix for storage & manipulation of transformations in scene graph.
Provides basic maths operations, IO and via osg::Object reference counting.
You can directly load the matrix with OpenGL's LoadMatrixf() function via
the public member _mat as the matrix is stored in the OpenGL format.
Caution: The disadvantage of this feature is, that the matrix access is
'transposed' if you compare it with the standard C/C++ 2d-array-access
convention . I.e. _mat[i][j] accesses the ith column of the jth row in the
4x4 matrix.
*/
class SG_EXPORT Matrix : public Object
{
public:
Matrix();
Matrix(const Matrix& matrix);
Matrix( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);
Matrix& operator = (const Matrix& matrix);
virtual ~Matrix();
virtual Object* clone() const { return new Matrix(); }
virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast<const Matrix*>(obj)!=NULL; }
virtual const char* className() const { return "Matrix"; }
int compare(const Matrix& m) const { return memcmp(_mat,m._mat,sizeof(_mat)); }
bool operator < (const Matrix& m) const { return compare(m)<0; }
bool operator == (const Matrix& m) const { return compare(m)==0; }
bool operator != (const Matrix& m) const { return compare(m)!=0; }
void makeIdent();
void set(const float* m);
void set( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);
void copy(const Matrix& matrix);
void makeScale(float sx, float sy, float sz);
void preScale( float sx, float sy, float sz, const Matrix& m );
void postScale( const Matrix& m, float sx, float sy, float sz );
void preScale( float sx, float sy, float sz );
void postScale( float sx, float sy, float sz );
void makeTrans( float tx, float ty, float tz );
void preTrans( float tx, float ty, float tz, const Matrix& m );
void postTrans( const Matrix& m, float tx, float ty, float tz );
void preTrans( float tx, float ty, float tz );
void postTrans( float tx, float ty, float tz );
/**
* Calc the rotation matrix which aligns vector \a old_vec with
* vector \a new_vec. Both \a old_vec and \a new_vec must have
* length 1.0.
*/
void makeRot( const Vec3& old_vec, const Vec3& new_vec );
void makeRot( float deg, float x, float y, float z );
void preRot( float deg, float x, float y, float z, const Matrix& m );
void postRot( const Matrix& m, float deg, float x, float y, float z );
void preRot( float deg, float x, float y, float z );
void postRot( float deg, float x, float y, float z );
void setTrans( float tx, float ty, float tz );
void setTrans( const Vec3& v );
Vec3 getTrans() const { return Vec3(_mat[3][0],_mat[3][1],_mat[3][2]); }
void preMult(const Matrix& m);
void postMult(const Matrix& m);
void mult(const Matrix& lhs,const Matrix& rhs);
Matrix operator * (const Matrix& m) const;
/** apply apply an 3x3 transform of v*M[0..2,0..2] */
inline static Vec3 transform3x3(const Vec3& v,const Matrix& m);
/** apply apply an 3x3 transform of M[0..2,0..2]*v */
inline static Vec3 transform3x3(const Matrix& m,const Vec3& v);
/** post multipy v. ie. (m*v) */
inline Vec3 operator * (const Vec3& v) const;
/** pre multipy v. ie. (v*m) */
friend inline Vec3 operator * (const Vec3& v,const Matrix& m);
/** post multipy v. ie. (m*v) */
inline Vec4 operator * (const Vec4& v) const;
/** pre multipy v. ie. (v*m) */
friend inline Vec4 operator * (const Vec4& v,const Matrix& m);
friend inline ostream& operator << (ostream& output, const Matrix& matrix);
bool invert(const Matrix& m);
public :
float _mat[4][4];
protected:
};
inline Vec3 Matrix::operator * (const Vec3& v) const
{
float d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
}
inline Vec3 operator * (const Vec3& v,const Matrix& m)
{
float d = 1.0f/(m._mat[0][3]*v.x()+m._mat[1][3]*v.y()+m._mat[2][3]*v.z()+m._mat[3][3]) ;
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z() + m._mat[3][0])*d,
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z() + m._mat[3][1])*d,
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z() + m._mat[3][2])*d);
}
inline Vec4 Matrix::operator * (const Vec4& v) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
(_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
}
inline Vec4 operator * (const Vec4& v,const Matrix& m)
{
return Vec4( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z() + m._mat[3][0]*v.w()),
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z() + m._mat[3][1]*v.w()),
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z() + m._mat[3][2]*v.w()),
(m._mat[0][3]*v.x() + m._mat[1][3]*v.y() + m._mat[2][3]*v.z() + m._mat[3][3]*v.w()));
}
inline Vec3 Matrix::transform3x3(const Vec3& v,const Matrix& m)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
}
inline Vec3 Matrix::transform3x3(const Matrix& m,const Vec3& v)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
(m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
(m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
}
inline ostream& operator << (ostream& output, const Matrix& matrix)
{
output << "{"<<endl
<< " " << matrix._mat[0][0] << " " << matrix._mat[0][1] << " " << matrix._mat[0][2] << " " << matrix._mat[0][3] << endl
<< " " << matrix._mat[1][0] << " " << matrix._mat[1][1] << " " << matrix._mat[1][2] << " " << matrix._mat[1][3] << endl
<< " " << matrix._mat[2][0] << " " << matrix._mat[2][1] << " " << matrix._mat[2][2] << " " << matrix._mat[2][3] << endl
<< " " << matrix._mat[3][0] << " " << matrix._mat[3][1] << " " << matrix._mat[3][2] << " " << matrix._mat[3][3] << endl
<< "}" << endl;
return output; // to enable cascading
}
};
#endif

View File

@ -1,577 +0,0 @@
#include <osg/Matrix>
#include <osg/Quat>
#include <osg/Notify>
#include <cstdlib> //memcpy
#include <cmath> //acos
using namespace osg;
#define DEG2RAD(x) ((x)*M_PI/180.0)
#define RAD2DEG(x) ((x)*180.0/M_PI)
#define WARN_DEPRECATED
#define ANGLES_IN_DEGREES
Matrix::Matrix() : Object(), fully_realized(false) {}
Matrix::Matrix( const Matrix& other ) : Object() {
set( (float const * const) other._mat );
}
Matrix::Matrix( float const * const def ) {
set( def );
}
Matrix::Matrix(
float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33)
{
_mat[0][0] = a00;
_mat[0][1] = a01;
_mat[0][2] = a02;
_mat[0][3] = a03;
_mat[1][0] = a10;
_mat[1][1] = a11;
_mat[1][2] = a12;
_mat[1][3] = a13;
_mat[2][0] = a20;
_mat[2][1] = a21;
_mat[2][2] = a22;
_mat[2][3] = a23;
_mat[3][0] = a30;
_mat[3][1] = a31;
_mat[3][2] = a32;
_mat[3][3] = a33;
}
Matrix& Matrix::operator = (const Matrix& other ) {
if( &other == this ) return *this;
set((const float*)other._mat);
return *this;
}
void Matrix::set( float const * const def ) {
memcpy( _mat, def, sizeof(_mat) );
fully_realized = true;
}
void Matrix::set(
float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33)
{
_mat[0][0] = a00;
_mat[0][1] = a01;
_mat[0][2] = a02;
_mat[0][3] = a03;
_mat[1][0] = a10;
_mat[1][1] = a11;
_mat[1][2] = a12;
_mat[1][3] = a13;
_mat[2][0] = a20;
_mat[2][1] = a21;
_mat[2][2] = a22;
_mat[2][3] = a23;
_mat[3][0] = a30;
_mat[3][1] = a31;
_mat[3][2] = a32;
_mat[3][3] = a33;
}
#define SET_ROW(row, v1, v2, v3, v4 ) \
_mat[(row)][0] = (v1); \
_mat[(row)][1] = (v2); \
_mat[(row)][2] = (v3); \
_mat[(row)][3] = (v4);
void Matrix::makeIdent() {
SET_ROW(0, 1, 0, 0, 0 )
SET_ROW(1, 0, 1, 0, 0 )
SET_ROW(2, 0, 0, 1, 0 )
SET_ROW(3, 0, 0, 0, 1 )
fully_realized = true;
}
void Matrix::makeScale( const Vec3& v ) {
makeScale(v[0], v[1], v[2] );
}
void Matrix::makeScale( float x, float y, float z ) {
SET_ROW(0, x, 0, 0, 0 )
SET_ROW(1, 0, y, 0, 0 )
SET_ROW(2, 0, 0, z, 0 )
SET_ROW(3, 0, 0, 0, 1 )
fully_realized = true;
}
void Matrix::makeTrans( const Vec3& v ) {
makeTrans( v[0], v[1], v[2] );
}
void Matrix::makeTrans( float x, float y, float z ) {
SET_ROW(0, 1, 0, 0, 0 )
SET_ROW(1, 0, 1, 0, 0 )
SET_ROW(2, 0, 0, 1, 0 )
SET_ROW(3, x, y, z, 1 )
fully_realized = true;
}
void Matrix::makeRot( const Vec3& from, const Vec3& to ) {
double d = from * to; // dot product == cos( angle between from & to )
if( d < 0.9999 ) {
double angle = acos(d);
#ifdef ANGLES_IN_DEGREES
angle = RAD2DEG(angle);
#endif
Vec3 axis = to ^ from; //we know ((to) x (from)) is perpendicular to both
makeRot( angle, axis );
}
else
makeIdent();
}
void Matrix::makeRot( float angle, const Vec3& axis )
{
makeRot( angle, axis.x(), axis.y(), axis.z() );
}
void Matrix::makeRot( float angle, float x, float y, float z ) {
float d = sqrt( x*x + y*y + z*z );
if( d == 0 )
return;
#ifdef ANGLES_IN_DEGREES
angle = DEG2RAD(angle);
#endif
float sin_half = sin( angle/2 );
float cos_half = cos( angle/2 );
Quat q( sin_half * (x/d),
sin_half * (y/d),
sin_half * (z/d),
cos_half );
makeRot( q );
}
void Matrix::makeRot( const Quat& q ) {
// taken from Shoemake/ACM SIGGRAPH 89
Vec4 v = q.asVec4();
double xs = 2 * v.x(); //assume q is already normalized? assert?
double ys = 2 * v.y(); // if not, xs = 2 * v.x() / d, ys = 2 * v.y() / d
double zs = 2 * v.z(); // and zs = 2 * v.z() /d where d = v.length2()
double xx = xs * v.x();
double xy = ys * v.x();
double xz = zs * v.x();
double yy = ys * v.y();
double yz = zs * v.y();
double zz = zs * v.z();
double wx = xs * v.w();
double wy = ys * v.w();
double wz = zs * v.w();
SET_ROW(0, 1.0-(yy+zz), xy + wz, xz - wy, 0.0 )
SET_ROW(1, xy - wz, 1.0-(xx+zz),yz + wx, 0.0 )
SET_ROW(2, xz + wz, yz - wx, 1.0-(xx+yy),0.0 )
SET_ROW(3, 0.0, 0.0, 0.0, 1.0 )
fully_realized = true;
}
void Matrix::makeRot( float yaw, float pitch, float roll)
{
#ifdef ANGLES_IN_DEGREES
yaw = DEG2RAD(yaw);
pitch = DEG2RAD(pitch);
roll = DEG2RAD(roll);
#endif
// lifted straight from SOLID library v1.01 Quaternion.h
// available from http://www.win.tue.nl/~gino/solid/
// and also distributed under the LGPL
float cosYaw = cos(yaw / 2);
float sinYaw = sin(yaw / 2);
float cosPitch = cos(pitch / 2);
float sinPitch = sin(pitch / 2);
float cosRoll = cos(roll / 2);
float sinRoll = sin(roll / 2);
Quat q(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
makeRot( q );
}
#define INNER_PRODUCT(a,b,r,c) \
((a)._mat[r][0] * (b)._mat[0][c]) \
+((a)._mat[r][1] * (b)._mat[1][c]) \
+((a)._mat[r][2] * (b)._mat[2][c]) \
+((a)._mat[r][3] * (b)._mat[3][c])
void Matrix::mult( const Matrix& lhs, const Matrix& rhs ) {
// PRECONDITION: We assume neither &lhs nor &rhs == this
// if it did, use preMult or postMult instead
_mat[0][0] = INNER_PRODUCT(lhs, rhs, 0, 0);
_mat[0][1] = INNER_PRODUCT(lhs, rhs, 0, 1);
_mat[0][2] = INNER_PRODUCT(lhs, rhs, 0, 2);
_mat[0][3] = INNER_PRODUCT(lhs, rhs, 0, 3);
_mat[1][0] = INNER_PRODUCT(lhs, rhs, 1, 0);
_mat[1][1] = INNER_PRODUCT(lhs, rhs, 1, 1);
_mat[1][2] = INNER_PRODUCT(lhs, rhs, 1, 2);
_mat[1][3] = INNER_PRODUCT(lhs, rhs, 1, 3);
_mat[2][0] = INNER_PRODUCT(lhs, rhs, 2, 0);
_mat[2][1] = INNER_PRODUCT(lhs, rhs, 2, 1);
_mat[2][2] = INNER_PRODUCT(lhs, rhs, 2, 2);
_mat[2][3] = INNER_PRODUCT(lhs, rhs, 2, 3);
_mat[3][0] = INNER_PRODUCT(lhs, rhs, 3, 0);
_mat[3][1] = INNER_PRODUCT(lhs, rhs, 3, 1);
_mat[3][2] = INNER_PRODUCT(lhs, rhs, 3, 2);
_mat[3][3] = INNER_PRODUCT(lhs, rhs, 3, 3);
fully_realized = true;
}
void Matrix::preMult( const Matrix& other ) {
float t1,t2,t3,t4;
if( !fully_realized ) {
//act as if this were an identity Matrix
set((const float*)other._mat);
return;
}
for(int col=0; col<4; ++col) {
t1 = INNER_PRODUCT( other, *this, col, 0 );
t2 = INNER_PRODUCT( other, *this, col, 1 );
t3 = INNER_PRODUCT( other, *this, col, 2 );
t4 = INNER_PRODUCT( other, *this, col, 3 );
_mat[col][0] = t1;
_mat[col][1] = t2;
_mat[col][2] = t3;
_mat[col][3] = t4;
}
}
void Matrix::postMult( const Matrix& other ) {
float t[4];
if( !fully_realized ) {
//act as if this were an identity Matrix
set((const float*)other._mat);
return;
}
for(int row=0; row<4; ++row) {
t[0] = INNER_PRODUCT( *this, other, 0, row );
t[1] = INNER_PRODUCT( *this, other, 1, row );
t[2] = INNER_PRODUCT( *this, other, 2, row );
t[3] = INNER_PRODUCT( *this, other, 3, row );
SET_ROW(row, t[0], t[1], t[2], t[3] )
}
}
#undef SET_ROW
#undef INNER_PRODUCT
bool Matrix::invert( const Matrix& _m ) {
if (&_m==this)
{
Matrix tm(_m);
return invert(tm);
}
if ( _m._mat[0][3] == 0.0
&& _m._mat[1][3] == 0.0
&& _m._mat[2][3] == 0.0
&& _m._mat[3][3] == 1.0 )
{
return invertAffine( _m );
}
// code lifted from VR Juggler.
// not cleanly added, but seems to work. RO.
const float* a = reinterpret_cast<const float*>(_m._mat);
float* b = reinterpret_cast<float*>(_mat);
int n = 4;
int i, j, k;
int r[ 4], c[ 4], row[ 4], col[ 4];
float m[ 4][ 4*2], pivot, max_m, tmp_m, fac;
/* Initialization */
for ( i = 0; i < n; i ++ )
{
r[ i] = c[ i] = 0;
row[ i] = col[ i] = 0;
}
/* Set working matrix */
for ( i = 0; i < n; i++ )
{
for ( j = 0; j < n; j++ )
{
m[ i][ j] = a[ i * n + j];
m[ i][ j + n] = ( i == j ) ? 1.0 : 0.0 ;
}
}
/* Begin of loop */
for ( k = 0; k < n; k++ )
{
/* Choosing the pivot */
for ( i = 0, max_m = 0; i < n; i++ )
{
if ( row[ i] ) continue;
for ( j = 0; j < n; j++ )
{
if ( col[ j] ) continue;
tmp_m = fabs( m[ i][j]);
if ( tmp_m > max_m)
{
max_m = tmp_m;
r[ k] = i;
c[ k] = j;
}
}
}
row[ r[k] ] = col[ c[k] ] = 1;
pivot = m[ r[ k] ][ c[ k] ];
if ( fabs( pivot) <= 1e-20)
{
notify(WARN) << "*** pivot = %f in mat_inv. ***\n";
//exit( 0);
return false;
}
/* Normalization */
for ( j = 0; j < 2*n; j++ )
{
if ( j == c[ k] )
m[ r[ k]][ j] = 1.0;
else
m[ r[ k]][ j] /=pivot;
}
/* Reduction */
for ( i = 0; i < n; i++ )
{
if ( i == r[ k] )
continue;
for ( j=0, fac = m[ i][ c[k]];j < 2*n; j++ )
{
if ( j == c[ k] )
m[ i][ j] =0.0;
else
m[ i][ j] -=fac * m[ r[k]][ j];
}
}
}
/* Assign invers to a matrix */
for ( i = 0; i < n; i++ )
for ( j = 0; j < n; j++ )
row[ i] = ( c[ j] == i ) ? r[j] : row[ i];
for ( i = 0; i < n; i++ )
for ( j = 0; j < n; j++ )
b[ i * n + j] = m[ row[ i]][j + n];
return true; // It worked
}
const double PRECISION_LIMIT = 1.0e-15;
bool Matrix::invertAffine( const Matrix& _m ) {
// adapted from Graphics Gems II.
//
// This method treats the matrix as a block matrix and calculates
// the inverse of one submatrix, improving performance over something
// that inverts any non-singular matrix:
// -1
// -1 [ A 0 ] -1 [ A 0 ]
// M = [ ] = [ -1 ]
// [ C 1 ] [-CA 1 ]
//
// returns true if _m is nonsingular, and (*this) contains its inverse
// otherwise returns false. (*this unchanged)
// assert( this->isAffine())?
double det_1, pos, neg, temp;
pos = neg = 0.0;
#define ACCUMULATE \
{ \
if(temp < 0.0) pos += temp; \
else neg += temp; \
}
temp = _m._mat[0][0] * _m._mat[1][1] * _m._mat[2][2]; ACCUMULATE;
temp = _m._mat[0][1] * _m._mat[1][2] * _m._mat[2][0]; ACCUMULATE;
temp = _m._mat[0][2] * _m._mat[1][0] * _m._mat[2][1]; ACCUMULATE;
temp = - _m._mat[0][2] * _m._mat[1][1] * _m._mat[2][0]; ACCUMULATE;
temp = - _m._mat[0][1] * _m._mat[1][0] * _m._mat[2][2]; ACCUMULATE;
temp = - _m._mat[0][0] * _m._mat[1][2] * _m._mat[2][1]; ACCUMULATE;
det_1 = pos + neg;
if( (det_1 == 0.0) || (abs(det_1/(pos-neg)) < PRECISION_LIMIT )) {
// _m has no inverse
notify(WARN) << "Matrix::invert(): Matrix has no inverse." << endl;
return false;
}
// inverse is adj(A)/det(A)
det_1 = 1.0 / det_1;
_mat[0][0] = (_m._mat[1][1] * _m._mat[2][2] - _m._mat[1][2] * _m._mat[2][1]) * det_1;
_mat[1][0] = (_m._mat[1][0] * _m._mat[2][2] - _m._mat[1][2] * _m._mat[2][0]) * det_1;
_mat[2][0] = (_m._mat[1][0] * _m._mat[2][1] - _m._mat[1][1] * _m._mat[2][0]) * det_1;
_mat[0][1] = (_m._mat[0][1] * _m._mat[2][2] - _m._mat[0][2] * _m._mat[2][1]) * det_1;
_mat[1][1] = (_m._mat[0][0] * _m._mat[2][2] - _m._mat[0][2] * _m._mat[2][0]) * det_1;
_mat[2][1] = (_m._mat[0][0] * _m._mat[2][1] - _m._mat[0][1] * _m._mat[2][0]) * det_1;
_mat[0][2] = (_m._mat[0][1] * _m._mat[1][2] - _m._mat[0][2] * _m._mat[1][1]) * det_1;
_mat[1][2] = (_m._mat[0][0] * _m._mat[1][2] - _m._mat[0][2] * _m._mat[1][0]) * det_1;
_mat[2][2] = (_m._mat[0][0] * _m._mat[1][1] - _m._mat[0][1] * _m._mat[1][0]) * det_1;
// calculate -C * inv(A)
_mat[3][0] = -(_m._mat[3][0] * _mat[0][0] + _m._mat[3][1] * _mat[1][0] + _m._mat[3][2] * _mat[2][0] );
_mat[3][1] = -(_m._mat[3][0] * _mat[0][1] + _m._mat[3][1] * _mat[1][1] + _m._mat[3][2] * _mat[2][1] );
_mat[3][2] = -(_m._mat[3][0] * _mat[0][2] + _m._mat[3][1] * _mat[1][2] + _m._mat[3][2] * _mat[2][2] );
_mat[0][3] = 0.0;
_mat[1][3] = 0.0;
_mat[2][3] = 0.0;
_mat[3][3] = 1.0;
fully_realized = true;
return true;
}
//static utility methods
Matrix Matrix::scale(float sx, float sy, float sz) {
Matrix m;
m.makeScale(sx,sy,sz);
return m;
}
Matrix Matrix::scale(const Vec3& v ) {
return scale(v.x(), v.y(), v.z() );
}
Matrix Matrix::trans(float tx, float ty, float tz) {
Matrix m;
m.makeTrans(tx,ty,tz);
return m;
}
Matrix Matrix::trans(const Vec3& v ) {
return trans(v.x(), v.y(), v.z() );
}
Matrix Matrix::rotate( const Quat& q ) {
Matrix m;
m.makeRot( q );
return m;
}
Matrix Matrix::rotate(float angle, float x, float y, float z ) {
Matrix m;
m.makeRot(angle,x,y,z);
return m;
}
Matrix Matrix::rotate(const Vec3& from, const Vec3& to ) {
Matrix m;
m.makeRot(from,to);
return m;
}
//Deprecated methods
void Matrix::copy( const Matrix& other) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::copy is deprecated. Use = instead.";
#endif
(*this) = other;
}
void Matrix::preScale( float sx, float sy, float sz, const Matrix& m ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::preScale is deprecated. Use result = (Matrix::scale * m) instead.";
#endif
(*this) = ( scale(sx,sy,sz) * m );
}
void Matrix::postScale( const Matrix& m, float sx, float sy, float sz ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::postScale is deprecated. Use result = (m * Matrix::scale()) instead.";
#endif
(*this) = ( m * scale(sx,sy,sz) );
}
void Matrix::preScale( float sx, float sy, float sz ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::preScale is deprecated. Use M.preMult( Matrix::scale ) instead.";
#endif
preMult( scale(sx,sy,sz) );
}
void Matrix::postScale( float sx, float sy, float sz ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::postScale is deprecated. Use M.postMult( Matrix::scale ) instead.";
#endif
postMult( scale(sx,sy,sz) );
}
void Matrix::preTrans( float tx, float ty, float tz, const Matrix& m ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::preTrans is deprecated. Use result = Matrix::trans * m instead.";
#endif
(*this) = trans(tx,ty,tz) * m;
}
void Matrix::postTrans( const Matrix& m, float tx, float ty, float tz ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::postTrans is deprecated. Use result = m * Matrix::trans instead.";
#endif
(*this) = m * trans(tx,ty,tz);
}
void Matrix::preTrans( float sx, float sy, float sz ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::preTrans is deprecated. Use result = Matrix::trans * m instead.";
#endif
preMult( trans(sx,sy,sz) );
}
void Matrix::postTrans( float sx, float sy, float sz ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::postTrans is deprecated. Use result = m * Matrix::trans instead.";
#endif
postMult( trans(sx,sy,sz) );
}
void Matrix::preRot( float deg, float x, float y, float z, const Matrix& m ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::preRot is deprecated. Use result = Matrix::rot * m instead.";
#endif
(*this) = rotate(deg,x,y,z) * m;
}
void Matrix::postRot( const Matrix& m, float deg, float x, float y, float z ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::postRot is deprecated. Use result = m * Matrix::rotate instead.";
#endif
(*this) = m * rotate(deg,x,y,z);
}
void Matrix::preRot( float deg, float x, float y, float z ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::preRot is deprecated. Use m.preMult( Matrix::rotate ) instead.";
#endif
preMult( rotate(deg,x,y,z) );
}
void Matrix::postRot( float deg, float x, float y, float z ) {
#ifdef WARN_DEPRECATED
notify(NOTICE) << "Matrix::postRot is deprecated. Use m.postMult( Matrix::rotate ) instead.";
#endif
postMult( rotate(deg,x,y,z) );
}

View File

@ -1,568 +0,0 @@
#include <math.h>
#include <string.h>
#include <osg/Types>
#include <osg/Matrix>
#include <osg/Notify>
#include <osg/ref_ptr>
#define square(x) ((x)*(x))
#define DEG2RAD(x) ((x)*M_PI/180.0)
#define RAD2DEG(x) ((x)*180.0/M_PI)
using namespace osg;
typedef struct quaternion_
{
double x ;
double y ;
double z ;
double w ;
} quaternion ;
/* C = a(row).b(row) */
#define matrix_inner_product( a, b, row, col, C ) \
{ \
(C)[row][col] = (a)[row][0] * (b)[0][col] + \
(a)[row][1] * (b)[1][col] + \
(a)[row][2] * (b)[2][col] + \
(a)[row][3] * (b)[3][col]; \
}
/* C = a.b */
#define matrix_mult( a, b, C ) \
{ \
matrix_inner_product( a, b, 0, 0, C ); \
matrix_inner_product( a, b, 0, 1, C ); \
matrix_inner_product( a, b, 0, 2, C ); \
matrix_inner_product( a, b, 0, 3, C ); \
matrix_inner_product( a, b, 1, 0, C ); \
matrix_inner_product( a, b, 1, 1, C ); \
matrix_inner_product( a, b, 1, 2, C ); \
matrix_inner_product( a, b, 1, 3, C ); \
matrix_inner_product( a, b, 2, 0, C ); \
matrix_inner_product( a, b, 2, 1, C ); \
matrix_inner_product( a, b, 2, 2, C ); \
matrix_inner_product( a, b, 2, 3, C ); \
matrix_inner_product( a, b, 3, 0, C ); \
matrix_inner_product( a, b, 3, 1, C ); \
matrix_inner_product( a, b, 3, 2, C ); \
matrix_inner_product( a, b, 3, 3, C ); \
}
static void quaternion_matrix( quaternion *q, double mat[4][4] )
{
/* copied from Shoemake/ACM SIGGRAPH 89 */
double xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz ;
xs = q->x + q->x;
ys = q->y + q->y;
zs = q->z + q->z;
wx = q->w * xs ; wy = q->w * ys ; wz = q->w * zs ;
xx = q->x * xs ; xy = q->x * ys ; xz = q->x * zs ;
yy = q->y * ys ; yz = q->y * zs ; zz = q->z * zs ;
mat[0][0] = 1.0 - ( yy + zz ) ;
mat[0][1] = xy - wz ;
mat[0][2] = xz + wy ;
mat[1][0] = xy + wz ;
mat[1][1] = 1.0 - ( xx + zz ) ;
mat[1][2] = yz - wx ;
mat[2][0] = xz - wy ;
mat[2][1] = yz + wx ;
mat[2][2] = 1.0 - ( xx + yy ) ;
mat[0][3] = 0.0;
mat[1][3] = 0.0;
mat[2][3] = 0.0;
mat[3][0] = 0.0;
mat[3][1] = 0.0;
mat[3][2] = 0.0;
mat[3][3] = 1.0;
}
Matrix::Matrix()
{
makeIdent();
}
Matrix::Matrix(const Matrix& matrix) : Object()
{
memcpy(_mat,matrix._mat,sizeof(_mat));
}
Matrix& Matrix::operator = (const Matrix& matrix)
{
if (&matrix==this) return *this;
memcpy(_mat,matrix._mat,sizeof(_mat));
return *this;
}
Matrix::Matrix(
float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33)
{
_mat[0][0] = a00;
_mat[0][1] = a01;
_mat[0][2] = a02;
_mat[0][3] = a03;
_mat[1][0] = a10;
_mat[1][1] = a11;
_mat[1][2] = a12;
_mat[1][3] = a13;
_mat[2][0] = a20;
_mat[2][1] = a21;
_mat[2][2] = a22;
_mat[2][3] = a23;
_mat[3][0] = a30;
_mat[3][1] = a31;
_mat[3][2] = a32;
_mat[3][3] = a33;
}
Matrix::~Matrix()
{
}
void Matrix::makeIdent()
{
_mat[0][0] = 1.0f;
_mat[0][1] = 0.0f;
_mat[0][2] = 0.0f;
_mat[0][3] = 0.0f;
_mat[1][0] = 0.0f;
_mat[1][1] = 1.0f;
_mat[1][2] = 0.0f;
_mat[1][3] = 0.0f;
_mat[2][0] = 0.0f;
_mat[2][1] = 0.0f;
_mat[2][2] = 1.0f;
_mat[2][3] = 0.0f;
_mat[3][0] = 0.0f;
_mat[3][1] = 0.0f;
_mat[3][2] = 0.0f;
_mat[3][3] = 1.0f;
}
void Matrix::set(const float* m)
{
_mat[0][0] = m[0];
_mat[0][1] = m[1];
_mat[0][2] = m[2];
_mat[0][3] = m[3];
_mat[1][0] = m[4];
_mat[1][1] = m[5];
_mat[1][2] = m[6];
_mat[1][3] = m[7];
_mat[2][0] = m[8];
_mat[2][1] = m[9];
_mat[2][2] = m[10];
_mat[2][3] = m[11];
_mat[3][0] = m[12];
_mat[3][1] = m[13];
_mat[3][2] = m[14];
_mat[3][3] = m[15];
}
void Matrix::set(
float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33)
{
_mat[0][0] = a00;
_mat[0][1] = a01;
_mat[0][2] = a02;
_mat[0][3] = a03;
_mat[1][0] = a10;
_mat[1][1] = a11;
_mat[1][2] = a12;
_mat[1][3] = a13;
_mat[2][0] = a20;
_mat[2][1] = a21;
_mat[2][2] = a22;
_mat[2][3] = a23;
_mat[3][0] = a30;
_mat[3][1] = a31;
_mat[3][2] = a32;
_mat[3][3] = a33;
}
void Matrix::copy(const Matrix& matrix)
{
memcpy(_mat,matrix._mat,sizeof(_mat));
}
void Matrix::makeScale(float sx, float sy, float sz)
{
makeIdent();
_mat[0][0] = sx;
_mat[1][1] = sy;
_mat[2][2] = sz;
}
void Matrix::preScale( float sx, float sy, float sz, const Matrix& m )
{
Matrix transMat;
transMat.makeScale(sx, sy, sz);
mult(transMat,m);
}
void Matrix::postScale( const Matrix& m, float sx, float sy, float sz )
{
Matrix transMat;
transMat.makeScale(sx, sy, sz);
mult(m,transMat);
}
void Matrix::preScale( float sx, float sy, float sz )
{
Matrix transMat;
transMat.makeScale(sx, sy, sz);
preMult(transMat);
}
void Matrix::postScale( float sx, float sy, float sz )
{
Matrix transMat;
transMat.makeScale(sx, sy, sz);
postMult(transMat);
}
void Matrix::makeTrans( float tx, float ty, float tz )
{
makeIdent();
_mat[3][0] = tx;
_mat[3][1] = ty;
_mat[3][2] = tz;
}
void Matrix::preTrans( float tx, float ty, float tz, const Matrix& m )
{
Matrix transMat;
transMat.makeTrans(tx, ty, tz);
mult(transMat,m);
}
void Matrix::postTrans( const Matrix& m, float tx, float ty, float tz )
{
Matrix transMat;
transMat.makeTrans(tx, ty, tz);
mult(m,transMat);
}
void Matrix::preTrans( float tx, float ty, float tz )
{
_mat[3][0] = (tx * _mat[0][0]) + (ty * _mat[1][0]) + (tz * _mat[2][0]) + _mat[3][0];
_mat[3][1] = (tx * _mat[0][1]) + (ty * _mat[1][1]) + (tz * _mat[2][1]) + _mat[3][1];
_mat[3][2] = (tx * _mat[0][2]) + (ty * _mat[1][2]) + (tz * _mat[2][2]) + _mat[3][2];
_mat[3][3] = (tx * _mat[0][3]) + (ty * _mat[1][3]) + (tz * _mat[2][3]) + _mat[3][3];
}
void Matrix::postTrans( float tx, float ty, float tz )
{
Matrix transMat;
transMat.makeTrans(tx, ty, tz);
postMult(transMat);
}
void Matrix::makeRot( const Vec3& old_vec, const Vec3& new_vec )
{
/* dot product == cos(angle old_vec<>new_vec). */
double d = new_vec * old_vec;
if ( d < 0.9999 )
{
double angle = acos( d );
Vec3 rot_axis = new_vec ^ old_vec;
makeRot( RAD2DEG(angle),
rot_axis.x(), rot_axis.y(), rot_axis.z() );
}
else
makeIdent();
}
void Matrix::makeRot( float deg, float x, float y, float z )
{
double __mat[4][4];
quaternion q;
float d = sqrtf( square(x) + square(y) + square(z) );
if( d == 0 )
return;
float sin_HalfAngle = sinf( DEG2RAD(deg/2) );
float cos_HalfAngle = cosf( DEG2RAD(deg/2) );
q.x = sin_HalfAngle * (x/d);
q.y = sin_HalfAngle * (y/d);
q.z = sin_HalfAngle * (z/d);
q.w = cos_HalfAngle;
quaternion_matrix( &q, __mat );
for(int i=0;i<4;++i)
{
for(int j=0;j<4;++j)
{
_mat[i][j]=__mat[i][j];
}
}
}
void Matrix::preRot( float deg, float x, float y, float z, const Matrix& m )
{
Matrix rotMat;
rotMat.makeRot( deg, x, y, z );
mult(rotMat,m);
}
void Matrix::postRot( const Matrix& m, float deg, float x, float y, float z )
{
Matrix rotMat;
rotMat.makeRot( deg, x, y, z );
mult(m,rotMat);
}
void Matrix::preRot( float deg, float x, float y, float z )
{
quaternion q;
double __mat[4][4];
float res_mat[4][4];
float d = sqrtf( square(x) + square(y) + square(z) );
if( d == 0 )
return;
float sin_HalfAngle = sinf( DEG2RAD(deg/2) );
float cos_HalfAngle = cosf( DEG2RAD(deg/2) );
q.x = sin_HalfAngle * (x/d);
q.y = sin_HalfAngle * (y/d);
q.z = sin_HalfAngle * (z/d);
q.w = cos_HalfAngle;
quaternion_matrix( &q, __mat );
matrix_mult( __mat, _mat, res_mat );
memcpy( _mat, res_mat, sizeof( _mat ) );
}
void Matrix::postRot( float deg, float x, float y, float z )
{
quaternion q;
double __mat[4][4];
float res_mat[4][4];
float d = sqrtf( square(x) + square(y) + square(z) );
if( d == 0 )
return;
float sin_HalfAngle = sinf( DEG2RAD(deg/2) );
float cos_HalfAngle = cosf( DEG2RAD(deg/2) );
q.x = sin_HalfAngle * (x/d);
q.y = sin_HalfAngle * (y/d);
q.z = sin_HalfAngle * (z/d);
q.w = cos_HalfAngle;
quaternion_matrix( &q, __mat );
matrix_mult( _mat, __mat , res_mat );
memcpy( _mat, res_mat, sizeof( _mat ) );
}
void Matrix::setTrans( float tx, float ty, float tz )
{
_mat[3][0] = tx;
_mat[3][1] = ty;
_mat[3][2] = tz;
}
void Matrix::setTrans( const Vec3& v )
{
_mat[3][0] = v[0];
_mat[3][1] = v[1];
_mat[3][2] = v[2];
}
void Matrix::preMult(const Matrix& m)
{
Matrix tm;
matrix_mult( m._mat, _mat, tm._mat );
*this = tm;
}
void Matrix::postMult(const Matrix& m)
{
Matrix tm;
matrix_mult( _mat, m._mat, tm._mat );
*this = tm;
}
void Matrix::mult(const Matrix& lhs,const Matrix& rhs)
{
if (&lhs==this || &rhs==this)
{
osg::Matrix tm;
matrix_mult( lhs._mat, rhs._mat, tm._mat );
*this = tm;
}
else
{
matrix_mult( lhs._mat, rhs._mat, _mat );
}
}
Matrix Matrix::operator * (const Matrix& m) const
{
Matrix tm;
matrix_mult( _mat,m._mat, tm._mat );
return tm;
}
bool Matrix::invert(const Matrix& invm)
{
if (&invm==this) {
Matrix tm(invm);
return invert(tm);
}
// code lifted from VR Juggler.
// not cleanly added, but seems to work. RO.
const float* a = reinterpret_cast<const float*>(invm._mat);
float* b = reinterpret_cast<float*>(_mat);
int n = 4;
int i, j, k;
int r[ 4], c[ 4], row[ 4], col[ 4];
float m[ 4][ 4*2], pivot, max_m, tmp_m, fac;
/* Initialization */
for ( i = 0; i < n; i ++ )
{
r[ i] = c[ i] = 0;
row[ i] = col[ i] = 0;
}
/* Set working matrix */
for ( i = 0; i < n; i++ )
{
for ( j = 0; j < n; j++ )
{
m[ i][ j] = a[ i * n + j];
m[ i][ j + n] = ( i == j ) ? 1.0 : 0.0 ;
}
}
/* Begin of loop */
for ( k = 0; k < n; k++ )
{
/* Choosing the pivot */
for ( i = 0, max_m = 0; i < n; i++ )
{
if ( row[ i] ) continue;
for ( j = 0; j < n; j++ )
{
if ( col[ j] ) continue;
tmp_m = fabs( m[ i][j]);
if ( tmp_m > max_m)
{
max_m = tmp_m;
r[ k] = i;
c[ k] = j;
}
}
}
row[ r[k] ] = col[ c[k] ] = 1;
pivot = m[ r[ k] ][ c[ k] ];
if ( fabs( pivot) <= 1e-20)
{
notify(WARN) << "*** pivot = %f in mat_inv. ***\n";
//exit( 0);
return false;
}
/* Normalization */
for ( j = 0; j < 2*n; j++ )
{
if ( j == c[ k] )
m[ r[ k]][ j] = 1.0;
else
m[ r[ k]][ j] /=pivot;
}
/* Reduction */
for ( i = 0; i < n; i++ )
{
if ( i == r[ k] )
continue;
for ( j=0, fac = m[ i][ c[k]];j < 2*n; j++ )
{
if ( j == c[ k] )
m[ i][ j] =0.0;
else
m[ i][ j] -=fac * m[ r[k]][ j];
}
}
}
/* Assign invers to a matrix */
for ( i = 0; i < n; i++ )
for ( j = 0; j < n; j++ )
row[ i] = ( c[ j] == i ) ? r[j] : row[ i];
for ( i = 0; i < n; i++ )
for ( j = 0; j < n; j++ )
b[ i * n + j] = m[ row[ i]][j + n];
return true; // It worked
}