New simplified timer implementation.

This commit is contained in:
Robert Osfield 2005-02-25 08:38:05 +00:00
parent 79833fa704
commit 96514b5077
2 changed files with 30 additions and 471 deletions

View File

@ -16,37 +16,15 @@
#include <osg/Export>
#if defined(_MSC_VER)
namespace osg {
typedef __int64 Timer_t;
}
#elif defined(__linux) || defined(__FreeBSD__) || defined(__CYGWIN__)|| defined(__MINGW32__)
namespace osg {
typedef unsigned long long Timer_t;
}
#elif defined(__sgi)
namespace osg {
typedef unsigned long long Timer_t;
}
#elif defined(unix)
namespace osg {
typedef unsigned long long Timer_t;
}
#elif defined __APPLE__ || defined macintosh
namespace osg {
typedef double Timer_t;
}
#else
#include <ctime>
namespace osg {
typedef std::clock_t Timer_t;
}
#endif
namespace osg {
/** A high resolution, low latency time stamper. */
#if defined(_MSC_VER)
typedef __int64 Timer_t;
#else
typedef unsigned long long Timer_t;
#endif
/** Time stamper. */
class SG_EXPORT Timer {
public:
@ -56,7 +34,7 @@ class SG_EXPORT Timer {
static const Timer* instance();
inline Timer_t tick() const;
Timer_t tick() const;
inline double delta_s( Timer_t t1, Timer_t t2 ) const { return (double)(t2 - t1)*_secsPerTick; }
inline double delta_m( Timer_t t1, Timer_t t2 ) const { return delta_s(t1,t2)*1e3; }
@ -67,198 +45,9 @@ class SG_EXPORT Timer {
protected :
double _secsPerTick;
bool _useStandardClock;
# ifdef __sgi
unsigned long* _clockAddress_32;
unsigned long long* _clockAddress_64;
int _cycleCntrSize;
// for SGI machines with 32 bit clocks.
mutable unsigned long _lastClockValue;
mutable unsigned long long _rollOver;
# endif
double _secsPerTick;
};
}
#if defined(_MSC_VER)
#include <time.h>
#pragma optimize("",off)
namespace osg{
inline Timer_t Timer::tick( void ) const
{
if (_useStandardClock) return clock();
volatile Timer_t ts;
volatile unsigned int HighPart;
volatile unsigned int LowPart;
_asm
{
xor eax, eax // Used when QueryPerformanceCounter()
xor edx, edx // not supported or minimal overhead
_emit 0x0f // desired
_emit 0x31 //
mov HighPart,edx
mov LowPart,eax
}
//ts = LowPart | HighPart >> 32;
*((unsigned int*)&ts) = LowPart;
*((unsigned int*)&ts+1) = HighPart;
return ts;
}
}
#pragma optimize("",on)
#elif defined(__MINGW32__)
#include <sys/time.h>
#define CLK(x) __asm__ volatile (".byte 0x0f, 0x31" : "=A" (x))
namespace osg{
inline Timer_t Timer::tick() const
{
if (_useStandardClock)
return clock();
else
{
Timer_t x;CLK(x);return x;
}
}
}
#elif defined(__linux) || defined(__FreeBSD__) || defined(__CYGWIN__)
#include <sys/time.h>
# if defined(__powerpc)
# ifndef __HAVE_POWERPC_GET_TBL
# define __HAVE_POWERPC_GET_TBL 1
static inline unsigned long get_tbl(void)
{
unsigned long tbl;
asm volatile ("mftb %0":"=r" (tbl));
return tbl;
}
# endif
# define CLK(x)\
{ \
unsigned long tb, tblu; \
do { \
tb = get_tbl(); \
__asm__ __volatile__ ("mftbu %0":"=r" (tblu)); \
} while (tb != get_tbl()); \
x = (((Timer_t) tblu) << 32) | (Timer_t) tb; \
}
# elif defined(__i386)
#define CLK(x) __asm__ volatile (".byte 0x0f, 0x31" : "=A" (x))
# endif
namespace osg{
inline Timer_t Timer::tick() const
{
# ifdef CLK
if (_useStandardClock)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return ((osg::Timer_t)tv.tv_sec)*1000000+(osg::Timer_t)tv.tv_usec;
}
else
{
Timer_t x;CLK(x);return x;
}
# else // CLK
struct timeval tv;
gettimeofday(&tv, NULL);
return ((osg::Timer_t)tv.tv_sec)*1000000+(osg::Timer_t)tv.tv_usec;
# endif // CLK
}
}
#elif defined(__sgi)
#include <sys/types.h>
#include <sys/time.h>
namespace osg{
inline Timer_t Timer::tick() const
{
if (_useStandardClock)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return ((osg::Timer_t)tv.tv_sec)*1000000+(osg::Timer_t)tv.tv_usec;
}
else
{
if ( _clockAddress_64 )
return *_clockAddress_64;
else
{
unsigned long clockValue = *_clockAddress_32;
if( _lastClockValue > clockValue )
{
# ifdef __GNUC__
_rollOver += 0x100000000LL;
#else
_rollOver += 0x100000000L;
#endif
}
_lastClockValue = clockValue;
return _rollOver + clockValue;
}
}
}
}
#elif defined (__APPLE__) || defined (macintosh)
#include <sys/time.h>
namespace osg{
inline Timer_t Timer::tick() const
{
// Always uses std::clock()
struct timeval tv;
gettimeofday(&tv, NULL);
return ((osg::Timer_t)tv.tv_sec)*1000000+(osg::Timer_t)tv.tv_usec;
}
}
#elif defined(unix)
#include <sys/time.h>
namespace osg{
inline Timer_t Timer::tick() const
{
struct timeval tv;
gettimeofday(&tv, NULL);
return ((osg::Timer_t)tv.tv_sec)*1000000+(osg::Timer_t)tv.tv_usec;
}
}
#else
// no choice, always use std::clock()
namespace osg{
inline Timer_t Timer::tick( void ) const { return std::clock(); }
}
#endif
#endif

View File

@ -15,6 +15,7 @@
#include <string.h>
#include <osg/Timer>
#include <osg/Notify>
using namespace osg;
@ -39,279 +40,48 @@ const Timer* Timer::instance()
#include <winbase.h>
Timer::Timer()
{
//_useStandardClock = false;
_useStandardClock = true;
if (_useStandardClock)
LARGE_INTEGER frequency;
if(QueryPerformanceFrequency(&frequency))
{
#if defined(__CYGWIN__)
_secsPerTick = 1e-6; // gettimeofday()'s precision.
#else
_secsPerTick = (1.0 / (double) CLOCKS_PER_SEC);
#endif
_secsPerTick = 1.0/(double)frequency.QuadPart;
}
else
{
// use a static here to ensure that the time to determine
// the cpu frequency is not incurred more than once
// per app execution.
static double _tempSecsPerClick=0.0;
if (_tempSecsPerClick==0.0)
{
// QueryPerformanceCounter under Windows 2000 Service Pack 3
// two 2.4 GHz cpus was timed to take about 70 times longer
// than the RDTSC assembly instruction sequence, but if
// that counter is available we use it to quickly determine
// the Time Stamp Counter rate, quickly as in 240 microseconds
LARGE_INTEGER frequency;
if(QueryPerformanceFrequency(&frequency))
{
//#define DEBUG_TIME_OUTPUT 1
LARGE_INTEGER QPCstart, QPCstop,
QPCstartAfter, QPCstopAfter;
Timer_t TSCstart, TSCstop;
double QPCSecsPerClock = 1.0/frequency.QuadPart;
double elapsed, last, current, bound;
QueryPerformanceCounter(&QPCstart);
TSCstart=tick();
QueryPerformanceCounter(&QPCstartAfter);
current = 0;
do
{
// store the seconds per clock
last = current;
// read the clocks
QueryPerformanceCounter(&QPCstop);
TSCstop=tick();
QueryPerformanceCounter(&QPCstopAfter);
// average before and after to approximate reading
// both clocks at the same time
elapsed = ((QPCstop.QuadPart+QPCstopAfter.QuadPart)
-(QPCstart.QuadPart+QPCstartAfter.QuadPart))/2.0
*QPCSecsPerClock;
// TSC seconds per clock
current = elapsed / (TSCstop-TSCstart);
// calculate a bound to check against
bound = current/1000000;
// break if current-bound<last && current+bound>last
}while(current-bound>last || current+bound<last);
_tempSecsPerClick = current;
#ifdef DEBUG_TIME_OUTPUT
fprintf(stderr, "current %e, last %e\n",
1.0/current, 1.0/last);
fprintf(stderr, "Total Time %e\n",
(QPCstop.QuadPart-QPCstart.QuadPart)*QPCSecsPerClock);
#endif
}
#ifndef DEBUG_TIME_OUTPUT
else
#endif
{
Timer_t start_time = tick();
Sleep (1000);
Timer_t end_time = tick();
_tempSecsPerClick = 1.0/(double)(end_time-start_time);
#ifdef DEBUG_TIME_OUTPUT
fprintf(stderr, "Sec delay rate %e\n",
1.0/_tempSecsPerClick);
#endif
}
}
_secsPerTick = _tempSecsPerClick;
_secsPerTick = 1.0;
notify(NOTICE)<<"Error: Timer::Timer() unable to use QueryPerformanceFrequency, "<<std::endl;
notify(NOTICE)<<"timing code will be wrong, Windows error code: "<<GetLastError()<<std::endl;
}
}
#elif defined(__FreeBSD__)
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/types.h>
Timer::Timer()
Timer_t Timer::tick() const
{
_useStandardClock = false;
if (_useStandardClock)
LARGE_INTEGER qpc;
if (QueryPerformanceCounter(&qpc))
{
_secsPerTick = 1e-6; // gettimeofday()'s precision.
return qpc.QuadPart;
}
else
{
int cpuspeed;
size_t len;
len = sizeof(cpuspeed);
if (sysctlbyname("machdep.tsc_freq", &cpuspeed, &len, NULL, NULL) == -1)
{
_useStandardClock = true;
perror("sysctlbyname(machdep.tsc_freq)");
return;
}
_secsPerTick = 1.0/cpuspeed;
notify(NOTICE)<<"Error: Timer::Timer() unable to use QueryPerformanceCounter, "<<std::endl;
notify(NOTICE)<<"timing code will be wrong, Windows error code: "<<GetLastError()<<std::endl;
return 0;
}
}
#elif defined(__linux)
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
Timer::Timer()
{
#if defined(__ia64) || defined(__x86_64__) || defined(__powerpc)
_useStandardClock = true; // set to true to avoid problems with variable CPU speeds
#else
_useStandardClock = true; // set to true to avoid problems with variable CPU speeds
#endif
if (_useStandardClock)
{
_secsPerTick = 1e-6; // gettimeofday()'s precision.
}
else
{
char buff[128];
FILE *fp = fopen( "/proc/cpuinfo", "r" );
double cpu_mhz=0.0f;
while( fgets( buff, sizeof( buff ), fp ) > 0 )
{
if( !strncmp( buff, "cpu MHz", strlen( "cpu MHz" )))
{
char *ptr = buff;
while( ptr && *ptr != ':' ) ptr++;
if( ptr )
{
ptr++;
sscanf( ptr, "%lf", &cpu_mhz );
}
break;
}
}
fclose( fp );
if (cpu_mhz==0.0f)
{
// error - no cpu_mhz found.
Timer_t start_time = tick();
sleep (1);
Timer_t end_time = tick();
_secsPerTick = 1.0/(double)(end_time-start_time);
}
else
{
_secsPerTick = 1e-6/cpu_mhz;
}
}
}
#elif defined(__sgi)
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/syssgi.h>
#include <sys/mman.h>
#include <sys/time.h>
Timer::Timer( void )
{
_useStandardClock = false; // default to false.
if (!_useStandardClock)
{
__psunsigned_t phys_addr, raddr;
unsigned int cycleval;
volatile unsigned long long *iotimer_addr;
int fd, poffmask;
poffmask = getpagesize() - 1;
phys_addr = syssgi( SGI_QUERY_CYCLECNTR, &cycleval );
raddr = phys_addr & ~poffmask;
_clockAddress_32 = 0;
_clockAddress_64 = 0;
_rollOver = 0;
_lastClockValue = 0;
if( (fd = open( "/dev/mmem", O_RDONLY )) < 0 )
{
perror( "/dev/mmem" );
_useStandardClock=true;
return;
}
iotimer_addr = (volatile unsigned long long *)mmap(
(void *)0L,
(size_t)poffmask,
(int)PROT_READ,
(int)MAP_PRIVATE, fd, (off_t)raddr);
iotimer_addr = (unsigned long long *)(
(__psunsigned_t)iotimer_addr + (phys_addr & poffmask)
);
_cycleCntrSize = syssgi( SGI_CYCLECNTR_SIZE );
// Warning: this casts away the volatile; not good
if( _cycleCntrSize > 32 )
_clockAddress_32 = 0,
_clockAddress_64 = (unsigned long long *) iotimer_addr;
else
_clockAddress_32 = (unsigned long *) iotimer_addr,
_clockAddress_64 = 0;
_secsPerTick = (double)(cycleval)* 1e-12;
#if 0 // Obsolete
// this is to force the use of the standard clock in
// instances which the realtime clock is of such a small
// size that it will loop too rapidly for proper realtime work.
// this happens on the O2 for instance.
if (_cycleCntrSize<=32) _useStandardClock=true;
#endif // Obsolete
}
if (_useStandardClock)
{
_secsPerTick = 1e-6; // gettimeofday()'s precision.
}
_secsPerTick = (1.0 / (double) 1000000);
}
#elif defined (__APPLE__) || defined (macintosh)
Timer::Timer()
Timer_t Timer::tick() const
{
_useStandardClock = true;
_secsPerTick = 1e-6; // gettimeofday()'s precision.
}
#elif defined(unix)
Timer::Timer( void )
{
_useStandardClock = true;
_secsPerTick = 1e-6; // gettimeofday()'s precision.
}
#else
// handle the rest of the OS world by just using the std::clock,
Timer::Timer( void )
{
_useStandardClock = true;
_secsPerTick = (1.0 / (double) CLOCKS_PER_SEC);
struct timeval tv;
gettimeofday(&tv, NULL);
return ((osg::Timer_t)tv.tv_sec)*1000000+(osg::Timer_t)tv.tv_usec;
}
#endif