Reverted recent changes so the set(Matrix&) method.
This commit is contained in:
parent
b17d2abc87
commit
4a804ebf32
@ -284,8 +284,6 @@ class SG_EXPORT Quat
|
||||
|
||||
protected:
|
||||
|
||||
void _set(const Matrix& m );
|
||||
|
||||
}; // end of class prototype
|
||||
|
||||
inline std::ostream& operator << (std::ostream& output, const Quat& vec)
|
||||
|
@ -198,68 +198,54 @@ void Quat::slerp( float t, const Quat& from, const Quat& to )
|
||||
|
||||
void Quat::set( const Matrix& m )
|
||||
{
|
||||
// Source:
|
||||
// Source: Gamasutra, Rotating Objects Using Quaternions
|
||||
//
|
||||
// http://mccammon.ucsd.edu/~adcock/matrixfaq.html#Q55
|
||||
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
|
||||
|
||||
float x_scale = sqrtf(osg::square(m(0,0))+osg::square(m(1,0))+osg::square(m(2,0)));
|
||||
float tr, s;
|
||||
float tq[4];
|
||||
int i, j, k;
|
||||
|
||||
if (osg::absolute(x_scale-1.0f)>1e-5)
|
||||
{
|
||||
osg::Matrix new_m(m*osg::Matrix::scale(1.0f/x_scale,1.0f/x_scale,1.0f/x_scale));
|
||||
_set(new_m);
|
||||
}
|
||||
else
|
||||
{
|
||||
_set(m);
|
||||
}
|
||||
}
|
||||
int nxt[3] = {1, 2, 0};
|
||||
|
||||
void Quat::_set(const Matrix& m )
|
||||
{
|
||||
//std::cout<<"Matrix scaled "<<m<<std::endl;
|
||||
|
||||
double S;
|
||||
double tr = m(0,0) + m(1,1) + m(2,2) + 1.0;
|
||||
|
||||
//cout << "tr="<<tr<<endl;
|
||||
tr = m(0,0) + m(1,1) + m(2,2);
|
||||
|
||||
// check the diagonal
|
||||
if (tr > 2e-5/*0.00000001*/)
|
||||
if (tr > 0.0)
|
||||
{
|
||||
//cout << "path one"<<endl;
|
||||
|
||||
S = 0.5/sqrt (tr);
|
||||
QW = 0.25 / S;
|
||||
QX = (m(1,2) - m(2,1)) * S;
|
||||
QY = (m(2,0) - m(0,2)) * S;
|
||||
QZ = (m(0,1) - m(1,0)) * S;
|
||||
s = (float)sqrt (tr + 1.0);
|
||||
QW = s / 2.0f;
|
||||
s = 0.5f / s;
|
||||
QX = (m(1,2) - m(2,1)) * s;
|
||||
QY = (m(2,0) - m(0,2)) * s;
|
||||
QZ = (m(0,1) - m(1,0)) * s;
|
||||
}
|
||||
else
|
||||
{
|
||||
//cout << "path two"<<endl;
|
||||
// diagonal is negative
|
||||
i = 0;
|
||||
if (m(1,1) > m(0,0))
|
||||
i = 1;
|
||||
if (m(2,2) > m(i,i))
|
||||
i = 2;
|
||||
j = nxt[i];
|
||||
k = nxt[j];
|
||||
|
||||
if ( m(0,0) > m(1,1) && m(0,0) > m(2,2) ) { // Column 0:
|
||||
S = sqrt( 1.0 + m(0,0) - m(1,1) - m(2,2) ) * 2.0;
|
||||
QX = 0.25 * S;
|
||||
QY = (m(1,0) + m(0,1) ) / S;
|
||||
QZ = (m(0,2) + m(2,0) ) / S;
|
||||
QW = (m(2,1) - m(1,2) ) / S;
|
||||
s = (float)sqrt ((m(i,i) - (m(j,j) + m(k,k))) + 1.0);
|
||||
|
||||
} else if ( m(1,1) > m(2,2) ) { // Column 1:
|
||||
S = sqrt( 1.0 + m(1,1) - m(0,0) - m(2,2) ) * 2.0;
|
||||
QX = (m(1,0) + m(0,1) ) / S;
|
||||
QY = 0.25 * S;
|
||||
QZ = (m(2,1) + m(1,2) ) / S;
|
||||
QW = (m(0,2) - m(2,0) ) / S;
|
||||
tq[i] = s * 0.5f;
|
||||
|
||||
} else { // Column 2:
|
||||
S = sqrt( 1.0 + m(2,2) - m(0,0) - m(1,1) ) * 2.0;
|
||||
QX = (m(0,2) + m(2,0) ) / S;
|
||||
QY = (m(2,1) + m(1,2) ) / S;
|
||||
QZ = 0.25f * S;
|
||||
QW = (m(1,0) - m(0,1) ) / S;
|
||||
}
|
||||
if (s != 0.0f)
|
||||
s = 0.5f / s;
|
||||
|
||||
tq[3] = (m(j,k) - m(k,j)) * s;
|
||||
tq[j] = (m(i,j) + m(j,i)) * s;
|
||||
tq[k] = (m(i,k) + m(k,i)) * s;
|
||||
|
||||
QX = tq[0];
|
||||
QY = tq[1];
|
||||
QZ = tq[2];
|
||||
QW = tq[3];
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user