273 lines
7.6 KiB
C++
273 lines
7.6 KiB
C++
|
#include "osg/Quat"
|
||
|
#include "osg/Vec4"
|
||
|
#include "osg/Vec3"
|
||
|
#include "osg/Types"
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
/// Good introductions to Quaternions at:
|
||
|
/// http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
|
||
|
/// http://mathworld.wolfram.com/Quaternion.html
|
||
|
|
||
|
using namespace osg;
|
||
|
|
||
|
/// Default constructor is empty
|
||
|
Quat::Quat( void )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/// Constructor with four floats - just call the constructor for the Vec4
|
||
|
Quat::Quat( const float x, const float y, const float z, const float w )
|
||
|
{
|
||
|
_fv = Vec4( x, y, z, w );
|
||
|
}
|
||
|
|
||
|
/// Constructor with a Vec4
|
||
|
Quat::Quat( const Vec4& vec )
|
||
|
{
|
||
|
_fv = vec;
|
||
|
}
|
||
|
|
||
|
/// Set the elements of the Quat to represent a rotation of angle
|
||
|
/// (radians) around the axis (x,y,z)
|
||
|
void Quat::makeRot( const float angle,
|
||
|
const float x,
|
||
|
const float y,
|
||
|
const float z )
|
||
|
{
|
||
|
float inversenorm = 1.0/sqrt( x*x + y*y + z*z );
|
||
|
float coshalfangle = cos( 0.5*angle );
|
||
|
float sinhalfangle = sin( 0.5*angle );
|
||
|
|
||
|
_fv[0] = x * sinhalfangle * inversenorm;
|
||
|
_fv[1] = y * sinhalfangle * inversenorm;
|
||
|
_fv[2] = z * sinhalfangle * inversenorm;
|
||
|
_fv[3] = coshalfangle;
|
||
|
}
|
||
|
|
||
|
void Quat::makeRot( const float angle, const Vec3& vec )
|
||
|
{
|
||
|
makeRot( angle, vec[0], vec[1], vec[2] );
|
||
|
}
|
||
|
|
||
|
// Make a rotation Quat which will rotate vec1 to vec2
|
||
|
// Generally take adot product to get the angle between these
|
||
|
// and then use a cross product to get the rotation axis
|
||
|
// Watch out for the two special cases of when the vectors
|
||
|
// are co-incident or opposite in direction.
|
||
|
void Quat::makeRot( const Vec3& vec1, const Vec3& vec2 )
|
||
|
{
|
||
|
const float epsilon = 0.00001f;
|
||
|
|
||
|
float length1 = vec1.length();
|
||
|
float length2 = vec2.length();
|
||
|
float cosangle = vec1*vec2/(2*length1*length2); // dot product vec1*vec2
|
||
|
|
||
|
if ( fabs(cosangle - 1) < epsilon )
|
||
|
{
|
||
|
// cosangle is close to 1, so the vectors are close to being coincident
|
||
|
// Need to generate an angle of zero with any vector we like
|
||
|
// We'll choose (1,0,0)
|
||
|
makeRot( 0.0, 1.0, 0.0, 0.0 );
|
||
|
}
|
||
|
else
|
||
|
if ( fabs(cosangle + 1) < epsilon )
|
||
|
{
|
||
|
// cosangle is close to -1, so the vectors are close to being opposite
|
||
|
// The angle of rotation is going to be Pi, but around which axis?
|
||
|
// Basically, any one perpendicular to vec1 = (x,y,z) is going to work.
|
||
|
// Choose a vector to cross product vec1 with. Find the biggest
|
||
|
// in magnitude of x, y and z and then put a zero in that position.
|
||
|
float biggest = fabs(vec1[0]); int bigposn = 0;
|
||
|
if ( fabs(vec1[1]) > biggest ) { biggest=fabs(vec1[1]); bigposn = 1; }
|
||
|
if ( fabs(vec1[2]) > biggest ) { biggest=fabs(vec1[2]); bigposn = 2; }
|
||
|
Vec3 temp = Vec3( 1.0, 1.0, 1.0 );
|
||
|
temp[bigposn] = 0.0;
|
||
|
Vec3 axis = vec1^temp; // this is a cross-product to generate the
|
||
|
// axis around which to rotate
|
||
|
makeRot( (float)M_PI, axis );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// This is the usual situation - take a cross-product of vec1 and vec2
|
||
|
// and that is the axis around which to rotate.
|
||
|
Vec3 axis = vec1^vec2;
|
||
|
float angle = acos( cosangle );
|
||
|
makeRot( angle, axis );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Get the angle of rotation and axis of this Quat object.
|
||
|
// Won't give very meaningful results if the Quat is not associated
|
||
|
// with a rotation!
|
||
|
void Quat::getRot( float& angle, Vec3& vec ) const
|
||
|
{
|
||
|
float sinhalfangle = sqrt( _fv[0]*_fv[0] + _fv[1]*_fv[1] + _fv[2]*_fv[2] );
|
||
|
/// float coshalfangle = _fv[3];
|
||
|
|
||
|
/// These are not checked for performance reasons ? (cop out!)
|
||
|
/// Point for discussion - how do one handle errors in the osg?
|
||
|
/// if ( abs(sinhalfangle) > 1.0 ) { error };
|
||
|
/// if ( abs(coshalfangle) > 1.0 ) { error };
|
||
|
|
||
|
// *angle = atan2( sinhalfangle, coshalfangle ); // see man atan2
|
||
|
angle = 2 * atan2( sinhalfangle, _fv[3] ); // -pi < angle < pi
|
||
|
vec = Vec3(_fv[0], _fv[1], _fv[2]) / sinhalfangle;
|
||
|
}
|
||
|
|
||
|
void Quat::getRot( float& angle, float& x, float& y, float& z ) const
|
||
|
{
|
||
|
float sinhalfangle = sqrt( _fv[0]*_fv[0] + _fv[1]*_fv[1] + _fv[2]*_fv[2] );
|
||
|
|
||
|
angle = 2 * atan2( sinhalfangle, _fv[3] );
|
||
|
x = _fv[0] / sinhalfangle;
|
||
|
y = _fv[1] / sinhalfangle;
|
||
|
z = _fv[2] / sinhalfangle;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Spherical Linear Interpolation
|
||
|
/// As t goes from 0 to 1, the Quat object goes from "from" to "to"
|
||
|
/// Reference: Shoemake at SIGGRAPH 89
|
||
|
/// See also
|
||
|
/// http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
|
||
|
void Quat::slerp( const float t, const Quat& from, const Quat& to )
|
||
|
{
|
||
|
const double epsilon = 0.00001;
|
||
|
double omega, cosomega, sinomega, scale_from, scale_to ;
|
||
|
|
||
|
cosomega = from.asVec4() * to.asVec4() ; // this is a dot product
|
||
|
|
||
|
if( (1.0 - cosomega) > epsilon )
|
||
|
{
|
||
|
omega= acos(cosomega) ; // 0 <= omega <= Pi (see man acos)
|
||
|
sinomega = sin(omega) ; // this sinomega should always be +ve so
|
||
|
// could try sinomega=sqrt(1-cosomega*cosomega) to avoid a sin()?
|
||
|
scale_from = sin((1.0-t)*omega)/sinomega ;
|
||
|
scale_to = sin(t*omega)/sinomega ;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* --------------------------------------------------
|
||
|
The ends of the vectors are very close
|
||
|
we can use simple linear interpolation - no need
|
||
|
to worry about the "spherical" interpolation
|
||
|
-------------------------------------------------- */
|
||
|
scale_from = 1.0 - t ;
|
||
|
scale_to = t ;
|
||
|
}
|
||
|
|
||
|
_fv = (from._fv*scale_from) + (to._fv*scale_to); // use Vec4 arithmetic
|
||
|
// so that we get a Vec4
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
#define QX _fv[0]
|
||
|
#define QY _fv[1]
|
||
|
#define QZ _fv[2]
|
||
|
#define QW _fv[3]
|
||
|
|
||
|
void Quat::set( const Matrix& m )
|
||
|
{
|
||
|
// Source: Gamasutra, Rotating Objects Using Quaternions
|
||
|
//
|
||
|
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
|
||
|
|
||
|
float tr, s;
|
||
|
float tq[4];
|
||
|
int i, j, k;
|
||
|
|
||
|
int nxt[3] = {1, 2, 0};
|
||
|
|
||
|
tr = m._mat[0][0] + m._mat[1][1] + m._mat[2][2];
|
||
|
|
||
|
// check the diagonal
|
||
|
if (tr > 0.0)
|
||
|
{
|
||
|
s = (float)sqrt (tr + 1.0);
|
||
|
QW = s / 2.0f;
|
||
|
s = 0.5f / s;
|
||
|
QX = (m._mat[1][2] - m._mat[2][1]) * s;
|
||
|
QY = (m._mat[2][0] - m._mat[0][2]) * s;
|
||
|
QZ = (m._mat[0][1] - m._mat[1][0]) * s;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// diagonal is negative
|
||
|
i = 0;
|
||
|
if (m._mat[1][1] > m._mat[0][0])
|
||
|
i = 1;
|
||
|
if (m._mat[2][2] > m._mat[i][i])
|
||
|
i = 2;
|
||
|
j = nxt[i];
|
||
|
k = nxt[j];
|
||
|
|
||
|
s = (float)sqrt ((m._mat[i][i] - (m._mat[j][j] + m._mat[k][k])) + 1.0);
|
||
|
|
||
|
tq[i] = s * 0.5f;
|
||
|
|
||
|
if (s != 0.0f)
|
||
|
s = 0.5f / s;
|
||
|
|
||
|
tq[3] = (m._mat[j][k] - m._mat[k][j]) * s;
|
||
|
tq[j] = (m._mat[i][j] + m._mat[j][i]) * s;
|
||
|
tq[k] = (m._mat[i][k] + m._mat[k][i]) * s;
|
||
|
|
||
|
QX = tq[0];
|
||
|
QY = tq[1];
|
||
|
QZ = tq[2];
|
||
|
QW = tq[3];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void Quat::get( Matrix& m ) const
|
||
|
{
|
||
|
// Source: Gamasutra, Rotating Objects Using Quaternions
|
||
|
//
|
||
|
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
|
||
|
|
||
|
float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
|
||
|
|
||
|
// calculate coefficients
|
||
|
x2 = QX + QX;
|
||
|
y2 = QY + QY;
|
||
|
z2 = QZ + QZ;
|
||
|
|
||
|
xx = QX * x2;
|
||
|
xy = QX * y2;
|
||
|
xz = QX * z2;
|
||
|
|
||
|
yy = QY * y2;
|
||
|
yz = QY * z2;
|
||
|
zz = QZ * z2;
|
||
|
|
||
|
wx = QW * x2;
|
||
|
wy = QW * y2;
|
||
|
wz = QW * z2;
|
||
|
|
||
|
m._mat[0][0] = 1.0f - (yy + zz);
|
||
|
m._mat[0][1] = xy - wz;
|
||
|
m._mat[0][2] = xz + wy;
|
||
|
m._mat[0][3] = 0.0f;
|
||
|
|
||
|
m._mat[1][0] = xy + wz;
|
||
|
m._mat[1][1] = 1.0f - (xx + zz);
|
||
|
m._mat[1][2] = yz - wx;
|
||
|
m._mat[1][3] = 0.0f;
|
||
|
|
||
|
m._mat[2][0] = xz - wy;
|
||
|
m._mat[2][1] = yz + wx;
|
||
|
m._mat[2][2] = 1.0f - (xx + yy);
|
||
|
m._mat[2][3] = 0.0f;
|
||
|
|
||
|
m._mat[3][0] = 0;
|
||
|
m._mat[3][1] = 0;
|
||
|
m._mat[3][2] = 0;
|
||
|
m._mat[3][3] = 1;
|
||
|
}
|