OpenSceneGraph/examples/osgvertexprogram/osgvertexprogram.cpp

420 lines
17 KiB
C++
Raw Normal View History

/* OpenSceneGraph example, osgvertexprogram.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Quat>
#include <osg/Matrix>
#include <osg/ShapeDrawable>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/Transform>
#include <osg/Material>
#include <osg/Depth>
#include <osg/CullFace>
#include <osg/TexMat>
#include <osg/TexGen>
#include <osg/TexEnv>
#include <osg/TexEnvCombine>
#include <osg/TextureCubeMap>
#include <osg/VertexProgram>
#include <osgDB/Registry>
#include <osgDB/ReadFile>
#include <osgUtil/SmoothingVisitor>
#include <osgUtil/Optimizer>
#include <osgViewer/Viewer>
#include <iostream>
float refract = 1.02; // ratio of indicies of refraction
float fresnel = 0.2; // Fresnel multiplier
const char vpstr[] =
"!!ARBvp1.0 # Refraction \n"
" \n"
"ATTRIB iPos = vertex.position; \n"
"#ATTRIB iCol = vertex.color.primary; \n"
"ATTRIB iNormal = vertex.normal; \n"
"PARAM esEyePos = { 0, 0, 0, 1 }; \n"
"PARAM const0123 = { 0, 1, 2, 3 }; \n"
"PARAM fresnel = program.local[0]; \n"
"PARAM refract = program.local[1]; \n"
"PARAM itMV[4] = { state.matrix.modelview.invtrans }; \n"
"PARAM MVP[4] = { state.matrix.mvp }; \n"
"PARAM MV[4] = { state.matrix.modelview }; \n"
"PARAM texmat[4] = { state.matrix.texture[0] }; \n"
"TEMP esPos; # position in eye-space \n"
"TEMP esNormal; # normal in eye-space \n"
"TEMP tmp, IdotN, K; \n"
"TEMP esE; # eye vector \n"
"TEMP esI; # incident vector (=-E) \n"
"TEMP esR; # first refract- then reflect-vector \n"
"OUTPUT oPos = result.position; \n"
"OUTPUT oColor = result.color; \n"
"OUTPUT oRefractMap = result.texcoord[0]; \n"
"OUTPUT oReflectMap = result.texcoord[1]; \n"
" \n"
"# transform vertex to clip space \n"
"DP4 oPos.x, MVP[0], iPos; \n"
"DP4 oPos.y, MVP[1], iPos; \n"
"DP4 oPos.z, MVP[2], iPos; \n"
"DP4 oPos.w, MVP[3], iPos; \n"
" \n"
"# Transform the normal to eye space. \n"
"DP3 esNormal.x, itMV[0], iNormal; \n"
"DP3 esNormal.y, itMV[1], iNormal; \n"
"DP3 esNormal.z, itMV[2], iNormal; \n"
" \n"
"# normalize normal \n"
"DP3 esNormal.w, esNormal, esNormal; \n"
"RSQ esNormal.w, esNormal.w; \n"
"MUL esNormal, esNormal, esNormal.w; \n"
" \n"
"# transform vertex position to eye space \n"
"DP4 esPos.x, MV[0], iPos; \n"
"DP4 esPos.y, MV[1], iPos; \n"
"DP4 esPos.z, MV[2], iPos; \n"
"DP4 esPos.w, MV[3], iPos; \n"
" \n"
"# vertex to eye vector \n"
"ADD esE, -esPos, esEyePos; \n"
"#MOV esE, -esPos; \n"
" \n"
"# normalize eye vector \n"
"DP3 esE.w, esE, esE; \n"
"RSQ esE.w, esE.w; \n"
"MUL esE, esE, esE.w; \n"
" \n"
"# calculate some handy values \n"
"MOV esI, -esE; \n"
"DP3 IdotN, esNormal, esI; \n"
" \n"
"# calculate refraction vector, Renderman style \n"
" \n"
"# k = 1-index*index*(1-(I dot N)^2) \n"
"MAD tmp, -IdotN, IdotN, const0123.y; \n"
"MUL tmp, tmp, refract.y; \n"
"ADD K.x, const0123.y, -tmp; \n"
" \n"
"# k<0, R = [0,0,0] \n"
"# k>=0, R = index*I-(index*(I dot N) + sqrt(k))*N \n"
"RSQ K.y, K.x; \n"
"RCP K.y, K.y; # K.y = sqrt(k) \n"
"MAD tmp.x, refract.x, IdotN, K.y; \n"
"MUL tmp, esNormal, tmp.x; \n"
"MAD esR, refract.x, esI, tmp; \n"
" \n"
"# transform refracted ray by cubemap transform \n"
"DP3 oRefractMap.x, texmat[0], esR; \n"
"DP3 oRefractMap.y, texmat[1], esR; \n"
"DP3 oRefractMap.z, texmat[2], esR; \n"
" \n"
"# calculate reflection vector \n"
"# R = 2*N*(N dot E)-E \n"
"MUL tmp, esNormal, const0123.z; \n"
"DP3 esR.w, esNormal, esE; \n"
"MAD esR, esR.w, tmp, -esE; \n"
" \n"
"# transform reflected ray by cubemap transform \n"
"DP3 oReflectMap.x, texmat[0], esR; \n"
"DP3 oReflectMap.y, texmat[1], esR; \n"
"DP3 oReflectMap.z, texmat[2], esR; \n"
" \n"
"# Fresnel approximation = fresnel*(1-(N dot I))^2 \n"
"ADD tmp.x, const0123.y, -IdotN; \n"
"MUL tmp.x, tmp.x, tmp.x; \n"
"MUL oColor, tmp.x, fresnel; \n"
" \n"
"END \n";
osg::TextureCubeMap* readCubeMap()
{
osg::TextureCubeMap* cubemap = new osg::TextureCubeMap;
//#define CUBEMAP_FILENAME(face) "nvlobby_" #face ".png"
//#define CUBEMAP_FILENAME(face) "Cubemap_axis/" #face ".png"
#define CUBEMAP_FILENAME(face) "Cubemap_snow/" #face ".jpg"
osg::Image* imagePosX = osgDB::readImageFile(CUBEMAP_FILENAME(posx));
osg::Image* imageNegX = osgDB::readImageFile(CUBEMAP_FILENAME(negx));
osg::Image* imagePosY = osgDB::readImageFile(CUBEMAP_FILENAME(posy));
osg::Image* imageNegY = osgDB::readImageFile(CUBEMAP_FILENAME(negy));
osg::Image* imagePosZ = osgDB::readImageFile(CUBEMAP_FILENAME(posz));
osg::Image* imageNegZ = osgDB::readImageFile(CUBEMAP_FILENAME(negz));
if (imagePosX && imageNegX && imagePosY && imageNegY && imagePosZ && imageNegZ)
{
cubemap->setImage(osg::TextureCubeMap::POSITIVE_X, imagePosX);
cubemap->setImage(osg::TextureCubeMap::NEGATIVE_X, imageNegX);
cubemap->setImage(osg::TextureCubeMap::POSITIVE_Y, imagePosY);
cubemap->setImage(osg::TextureCubeMap::NEGATIVE_Y, imageNegY);
cubemap->setImage(osg::TextureCubeMap::POSITIVE_Z, imagePosZ);
cubemap->setImage(osg::TextureCubeMap::NEGATIVE_Z, imageNegZ);
cubemap->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE);
cubemap->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE);
cubemap->setWrap(osg::Texture::WRAP_R, osg::Texture::CLAMP_TO_EDGE);
cubemap->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR_MIPMAP_LINEAR);
cubemap->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
}
return cubemap;
}
// Update texture matrix for cubemaps
struct TexMatCallback : public osg::NodeCallback
{
public:
TexMatCallback(osg::TexMat& tm) :
_texMat(tm)
{
}
virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);
if (cv)
{
const osg::Matrix& MV = *(cv->getModelViewMatrix());
const osg::Matrix R = osg::Matrix::rotate( osg::DegreesToRadians(112.0f), 0.0f,0.0f,1.0f)*
osg::Matrix::rotate( osg::DegreesToRadians(90.0f), 1.0f,0.0f,0.0f);
osg::Quat q = MV.getRotate();
const osg::Matrix C = osg::Matrix::rotate( q.inverse() );
_texMat.setMatrix( C*R );
}
traverse(node,nv);
}
osg::TexMat& _texMat;
};
class MoveEarthySkyWithEyePointTransform : public osg::Transform
{
public:
/** Get the transformation matrix which moves from local coords to world coords.*/
virtual bool computeLocalToWorldMatrix(osg::Matrix& matrix,osg::NodeVisitor* nv) const
{
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);
if (cv)
{
osg::Vec3 eyePointLocal = cv->getEyeLocal();
From Mathias Froehlich, "This is a generic optimization that does not depend on any cpu or instruction set. The optimization is based on the observation that matrix matrix multiplication with a dense matrix 4x4 is 4^3 Operations whereas multiplication with a transform, or scale matrix is only 4^2 operations. Which is a gain of a *FACTOR*4* for these special cases. The change implements these special cases, provides a unit test for these implementation and converts uses of the expensiver dense matrix matrix routine with the specialized versions. Depending on the transform nodes in the scenegraph this change gives a noticable improovement. For example the osgforest code using the MatrixTransform is about 20% slower than the same codepath using the PositionAttitudeTransform instead of the MatrixTransform with this patch applied. If I remember right, the sse type optimizations did *not* provide a factor 4 improovement. Also these changes are totally independent of any cpu or instruction set architecture. So I would prefer to have this current kind of change instead of some hand coded and cpu dependent assembly stuff. If we need that hand tuned stuff, these can go on top of this changes which must provide than hand optimized additional variants for the specialized versions to give a even better result in the end. An other change included here is a change to rotation matrix from quaterion code. There is a sqrt call which couold be optimized away. Since we divide in effect by sqrt(length)*sqrt(length) which is just length ... "
2008-09-18 00:14:28 +08:00
matrix.preMultTranslate(eyePointLocal);
}
return true;
}
/** Get the transformation matrix which moves from world coords to local coords.*/
virtual bool computeWorldToLocalMatrix(osg::Matrix& matrix,osg::NodeVisitor* nv) const
{
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);
if (cv)
{
osg::Vec3 eyePointLocal = cv->getEyeLocal();
From Mathias Froehlich, "This is a generic optimization that does not depend on any cpu or instruction set. The optimization is based on the observation that matrix matrix multiplication with a dense matrix 4x4 is 4^3 Operations whereas multiplication with a transform, or scale matrix is only 4^2 operations. Which is a gain of a *FACTOR*4* for these special cases. The change implements these special cases, provides a unit test for these implementation and converts uses of the expensiver dense matrix matrix routine with the specialized versions. Depending on the transform nodes in the scenegraph this change gives a noticable improovement. For example the osgforest code using the MatrixTransform is about 20% slower than the same codepath using the PositionAttitudeTransform instead of the MatrixTransform with this patch applied. If I remember right, the sse type optimizations did *not* provide a factor 4 improovement. Also these changes are totally independent of any cpu or instruction set architecture. So I would prefer to have this current kind of change instead of some hand coded and cpu dependent assembly stuff. If we need that hand tuned stuff, these can go on top of this changes which must provide than hand optimized additional variants for the specialized versions to give a even better result in the end. An other change included here is a change to rotation matrix from quaterion code. There is a sqrt call which couold be optimized away. Since we divide in effect by sqrt(length)*sqrt(length) which is just length ... "
2008-09-18 00:14:28 +08:00
matrix.postMultTranslate(-eyePointLocal);
}
return true;
}
};
osg::Node* createSkyBox()
{
osg::StateSet* stateset = new osg::StateSet();
osg::TexEnv* te = new osg::TexEnv;
te->setMode(osg::TexEnv::REPLACE);
stateset->setTextureAttributeAndModes(0, te, osg::StateAttribute::ON);
osg::TexGen *tg = new osg::TexGen;
tg->setMode(osg::TexGen::NORMAL_MAP);
stateset->setTextureAttributeAndModes(0, tg, osg::StateAttribute::ON);
osg::TexMat *tm = new osg::TexMat;
stateset->setTextureAttribute(0, tm);
osg::TextureCubeMap* skymap = readCubeMap();
stateset->setTextureAttributeAndModes(0, skymap, osg::StateAttribute::ON);
stateset->setMode( GL_LIGHTING, osg::StateAttribute::OFF );
stateset->setMode( GL_CULL_FACE, osg::StateAttribute::OFF );
// clear the depth to the far plane.
osg::Depth* depth = new osg::Depth;
depth->setFunction(osg::Depth::ALWAYS);
depth->setRange(1.0,1.0);
stateset->setAttributeAndModes(depth, osg::StateAttribute::ON );
stateset->setRenderBinDetails(-1,"RenderBin");
osg::Drawable* drawable = new osg::ShapeDrawable(new osg::Sphere(osg::Vec3(0.0f,0.0f,0.0f),1));
osg::Geode* geode = new osg::Geode;
geode->setCullingActive(false);
geode->setStateSet( stateset );
geode->addDrawable(drawable);
osg::Transform* transform = new MoveEarthySkyWithEyePointTransform;
transform->setCullingActive(false);
transform->addChild(geode);
osg::ClearNode* clearNode = new osg::ClearNode;
// clearNode->setRequiresClear(false);
clearNode->setCullCallback(new TexMatCallback(*tm));
clearNode->addChild(transform);
return clearNode;
}
osg::Node* addRefractStateSet(osg::Node* node)
{
osg::StateSet* stateset = new osg::StateSet();
osg::TextureCubeMap* reflectmap = readCubeMap();
stateset->setTextureAttributeAndModes( 0, reflectmap, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
stateset->setTextureAttributeAndModes( 1, reflectmap, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
osg::TexMat* texMat = new osg::TexMat;
stateset->setTextureAttribute(0, texMat);
// ---------------------------------------------------
// Vertex Program
// ---------------------------------------------------
osg::VertexProgram* vp = new osg::VertexProgram();
vp->setVertexProgram( vpstr );
vp->setProgramLocalParameter( 0, osg::Vec4( fresnel, fresnel, fresnel, 1.0f ) );
vp->setProgramLocalParameter( 1, osg::Vec4( refract, refract*refract, 0.0f, 0.0f ) );
stateset->setAttributeAndModes( vp, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
// ---------------------------------------------------
// fragment = refraction*(1-fresnel) + reflection*fresnel
// T0 = texture unit 0, refraction map
// T1 = texture unit 1, reflection map
// C.rgb = primary color, water color
// C.a = primary color, fresnel factor
// Cp = result from previous texture environment
// ---------------------------------------------------
// REPLACE function: Arg0
// = T0
osg::TexEnvCombine *te0 = new osg::TexEnvCombine;
te0->setCombine_RGB(osg::TexEnvCombine::REPLACE);
te0->setSource0_RGB(osg::TexEnvCombine::TEXTURE0);
te0->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
// INTERPOLATE function: Arg0 * (Arg2) + Arg1 * (1-Arg2)
// = T1 * C0.a + Cp * (1-C0.a)
osg::TexEnvCombine *te1 = new osg::TexEnvCombine;
// rgb = Cp + Ct
te1->setCombine_RGB(osg::TexEnvCombine::INTERPOLATE);
te1->setSource0_RGB(osg::TexEnvCombine::TEXTURE1);
te1->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
te1->setSource1_RGB(osg::TexEnvCombine::PREVIOUS);
te1->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
te1->setSource2_RGB(osg::TexEnvCombine::PRIMARY_COLOR);
te1->setOperand2_RGB(osg::TexEnvCombine::SRC_COLOR);
stateset->setTextureAttributeAndModes(0, te0, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
stateset->setTextureAttributeAndModes(1, te1, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
osg::Group* group = new osg::Group;
group->addChild(node);
group->setCullCallback(new TexMatCallback(*texMat));
group->setStateSet( stateset );
return group;
}
int main(int argc, char *argv[])
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// construct the viewer.
osgViewer::Viewer viewer;
osg::Group* rootnode = new osg::Group;
rootnode->addChild(createSkyBox());
// load the nodes from the commandline arguments.
osg::Node* model = osgDB::readNodeFiles(arguments);
if (!model)
{
const float radius = 1.0f;
osg::Geode* geode = new osg::Geode;
geode->addDrawable(new osg::ShapeDrawable(new osg::Sphere(osg::Vec3(0.0f,0.0f,0.0f),radius)));
model = geode;
}
// run optimization over the scene graph
osgUtil::Optimizer optimzer;
optimzer.optimize(model);
// create normals.
osgUtil::SmoothingVisitor smoother;
model->accept(smoother);
rootnode->addChild( addRefractStateSet(model) );
// add a viewport to the viewer and attach the scene graph.
viewer.setSceneData(rootnode);
// create the windows and run the threads.
viewer.realize();
// now check to see if vertex program is supported.
osgViewer::Viewer::Windows windows;
viewer.getWindows(windows);
for(osgViewer::Viewer::Windows::iterator itr = windows.begin();
itr != windows.end();
++itr)
{
unsigned int contextID = (*itr)->getState()->getContextID();
osg::GLExtensions* vpExt = osg::GLExtensions::Get(contextID,false);
if (vpExt)
{
if (!vpExt->isVertexProgramSupported)
{
2003-04-11 14:50:15 +08:00
std::cout<<"Warning: ARB_vertex_program not supported by OpenGL drivers, unable to run application."<<std::endl;
return 1;
}
}
}
return viewer.run();
}