2001-09-20 05:08:56 +08:00
|
|
|
#include <osg/Matrix>
|
2001-09-22 10:42:08 +08:00
|
|
|
#include <osg/Quat>
|
2001-09-20 05:08:56 +08:00
|
|
|
#include <osg/Notify>
|
2001-09-22 10:42:08 +08:00
|
|
|
#include <osg/Types>
|
2001-10-15 23:50:55 +08:00
|
|
|
#include <osg/Math>
|
2001-01-11 00:32:10 +08:00
|
|
|
|
2001-09-27 17:44:55 +08:00
|
|
|
#include <stdlib.h>
|
|
|
|
|
2001-01-11 00:32:10 +08:00
|
|
|
using namespace osg;
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
#define DEG2RAD(x) ((x)*M_PI/180.0)
|
|
|
|
#define RAD2DEG(x) ((x)*180.0/M_PI)
|
2001-01-11 00:32:10 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
#define SET_ROW(row, v1, v2, v3, v4 ) \
|
|
|
|
_mat[(row)][0] = (v1); \
|
|
|
|
_mat[(row)][1] = (v2); \
|
|
|
|
_mat[(row)][2] = (v3); \
|
|
|
|
_mat[(row)][3] = (v4);
|
2001-01-11 00:32:10 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
#define INNER_PRODUCT(a,b,r,c) \
|
|
|
|
((a)._mat[r][0] * (b)._mat[0][c]) \
|
|
|
|
+((a)._mat[r][1] * (b)._mat[1][c]) \
|
|
|
|
+((a)._mat[r][2] * (b)._mat[2][c]) \
|
|
|
|
+((a)._mat[r][3] * (b)._mat[3][c])
|
2001-01-11 00:32:10 +08:00
|
|
|
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
Matrix::Matrix() : Object(), fully_realized(false) {}
|
2001-01-11 00:32:10 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
Matrix::Matrix( const Matrix& other ) : Object()
|
2001-09-20 05:08:56 +08:00
|
|
|
{
|
2001-10-15 23:50:55 +08:00
|
|
|
set( (const float *) other._mat );
|
2001-09-20 05:08:56 +08:00
|
|
|
}
|
|
|
|
|
2001-10-15 23:50:55 +08:00
|
|
|
Matrix::Matrix( const float * def )
|
2001-09-22 10:42:08 +08:00
|
|
|
{
|
|
|
|
set( def );
|
2001-09-20 05:08:56 +08:00
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
Matrix::Matrix( float a00, float a01, float a02, float a03,
|
|
|
|
float a10, float a11, float a12, float a13,
|
|
|
|
float a20, float a21, float a22, float a23,
|
|
|
|
float a30, float a31, float a32, float a33)
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
SET_ROW(0, a00, a01, a02, a03 )
|
|
|
|
SET_ROW(1, a10, a11, a12, a13 )
|
|
|
|
SET_ROW(2, a20, a21, a22, a23 )
|
|
|
|
SET_ROW(3, a30, a31, a32, a33 )
|
2001-01-11 00:32:10 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
fully_realized = true;
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
Matrix& Matrix::operator = (const Matrix& other ) {
|
|
|
|
if( &other == this ) return *this;
|
|
|
|
set((const float*)other._mat);
|
|
|
|
return *this;
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
void Matrix::set( float const * const def ) {
|
|
|
|
memcpy( _mat, def, sizeof(_mat) );
|
|
|
|
fully_realized = true;
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-09-20 05:08:56 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
void Matrix::set( float a00, float a01, float a02, float a03,
|
|
|
|
float a10, float a11, float a12, float a13,
|
|
|
|
float a20, float a21, float a22, float a23,
|
|
|
|
float a30, float a31, float a32, float a33)
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
SET_ROW(0, a00, a01, a02, a03 )
|
|
|
|
SET_ROW(1, a10, a11, a12, a13 )
|
|
|
|
SET_ROW(2, a20, a21, a22, a23 )
|
|
|
|
SET_ROW(3, a30, a31, a32, a33 )
|
2001-09-20 05:08:56 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
fully_realized = true;
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
void Matrix::setTrans( float tx, float ty, float tz )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-29 17:37:43 +08:00
|
|
|
ensureRealized();
|
|
|
|
|
2001-01-11 00:32:10 +08:00
|
|
|
_mat[3][0] = tx;
|
|
|
|
_mat[3][1] = ty;
|
|
|
|
_mat[3][2] = tz;
|
|
|
|
}
|
|
|
|
|
2001-09-20 05:08:56 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
void Matrix::setTrans( const Vec3& v )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
#ifdef WARN_DEPRECATED
|
2001-09-27 17:44:55 +08:00
|
|
|
notify(NOTICE) << "Matrix::setTrans is deprecated."<<endl;
|
2001-09-22 10:42:08 +08:00
|
|
|
#endif
|
|
|
|
_mat[3][0] = v[0];
|
|
|
|
_mat[3][1] = v[1];
|
|
|
|
_mat[3][2] = v[2];
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
void Matrix::makeIdent()
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
SET_ROW(0, 1, 0, 0, 0 )
|
|
|
|
SET_ROW(1, 0, 1, 0, 0 )
|
|
|
|
SET_ROW(2, 0, 0, 1, 0 )
|
|
|
|
SET_ROW(3, 0, 0, 0, 1 )
|
|
|
|
|
|
|
|
fully_realized = true;
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
void Matrix::makeScale( const Vec3& v )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
makeScale(v[0], v[1], v[2] );
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
void Matrix::makeScale( float x, float y, float z )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
SET_ROW(0, x, 0, 0, 0 )
|
|
|
|
SET_ROW(1, 0, y, 0, 0 )
|
|
|
|
SET_ROW(2, 0, 0, z, 0 )
|
|
|
|
SET_ROW(3, 0, 0, 0, 1 )
|
|
|
|
|
|
|
|
fully_realized = true;
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-12-13 04:29:10 +08:00
|
|
|
void Matrix::makeTranslate( const Vec3& v )
|
2001-09-20 05:08:56 +08:00
|
|
|
{
|
2001-12-13 04:29:10 +08:00
|
|
|
makeTranslate( v[0], v[1], v[2] );
|
2001-09-20 05:08:56 +08:00
|
|
|
}
|
|
|
|
|
2001-12-13 04:29:10 +08:00
|
|
|
void Matrix::makeTranslate( float x, float y, float z )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
SET_ROW(0, 1, 0, 0, 0 )
|
|
|
|
SET_ROW(1, 0, 1, 0, 0 )
|
|
|
|
SET_ROW(2, 0, 0, 1, 0 )
|
|
|
|
SET_ROW(3, x, y, z, 1 )
|
2001-01-11 00:32:10 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
fully_realized = true;
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-12-13 04:29:10 +08:00
|
|
|
void Matrix::makeRotate( const Vec3& from, const Vec3& to )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-12-12 23:09:11 +08:00
|
|
|
Quat quat;
|
2001-12-13 04:29:10 +08:00
|
|
|
quat.makeRotate(from,to);
|
2001-12-12 23:09:11 +08:00
|
|
|
quat.get(*this);
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-12-13 04:29:10 +08:00
|
|
|
void Matrix::makeRotate( float angle, const Vec3& axis )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-12-12 23:09:11 +08:00
|
|
|
Quat quat;
|
2001-12-13 04:29:10 +08:00
|
|
|
quat.makeRotate( angle, axis);
|
2001-12-12 23:09:11 +08:00
|
|
|
quat.get(*this);
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-12-13 04:29:10 +08:00
|
|
|
void Matrix::makeRotate( float angle, float x, float y, float z )
|
2001-12-12 01:00:29 +08:00
|
|
|
{
|
2001-12-12 23:09:11 +08:00
|
|
|
Quat quat;
|
2001-12-13 04:29:10 +08:00
|
|
|
quat.makeRotate( angle, x, y, z);
|
2001-12-12 23:09:11 +08:00
|
|
|
quat.get(*this);
|
2001-09-22 10:42:08 +08:00
|
|
|
}
|
|
|
|
|
2001-12-13 04:29:10 +08:00
|
|
|
void Matrix::makeRotate( const Quat& q )
|
2001-12-12 23:09:11 +08:00
|
|
|
{
|
|
|
|
q.get(*this);
|
2001-09-22 10:42:08 +08:00
|
|
|
fully_realized = true;
|
|
|
|
}
|
|
|
|
|
2001-12-13 04:29:10 +08:00
|
|
|
void Matrix::makeRotate( float yaw, float pitch, float roll)
|
2001-09-22 10:42:08 +08:00
|
|
|
{
|
|
|
|
|
|
|
|
// lifted straight from SOLID library v1.01 Quaternion.h
|
|
|
|
// available from http://www.win.tue.nl/~gino/solid/
|
|
|
|
// and also distributed under the LGPL
|
|
|
|
float cosYaw = cos(yaw / 2);
|
|
|
|
float sinYaw = sin(yaw / 2);
|
|
|
|
float cosPitch = cos(pitch / 2);
|
|
|
|
float sinPitch = sin(pitch / 2);
|
|
|
|
float cosRoll = cos(roll / 2);
|
|
|
|
float sinRoll = sin(roll / 2);
|
|
|
|
Quat q(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
|
|
|
|
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
|
|
|
|
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
|
|
|
|
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
|
2001-12-12 23:09:11 +08:00
|
|
|
|
|
|
|
q.get(*this);
|
2001-09-22 10:42:08 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void Matrix::mult( const Matrix& lhs, const Matrix& rhs )
|
|
|
|
{
|
|
|
|
// PRECONDITION: We assume neither &lhs nor &rhs == this
|
|
|
|
// if it did, use preMult or postMult instead
|
|
|
|
_mat[0][0] = INNER_PRODUCT(lhs, rhs, 0, 0);
|
|
|
|
_mat[0][1] = INNER_PRODUCT(lhs, rhs, 0, 1);
|
|
|
|
_mat[0][2] = INNER_PRODUCT(lhs, rhs, 0, 2);
|
|
|
|
_mat[0][3] = INNER_PRODUCT(lhs, rhs, 0, 3);
|
|
|
|
_mat[1][0] = INNER_PRODUCT(lhs, rhs, 1, 0);
|
|
|
|
_mat[1][1] = INNER_PRODUCT(lhs, rhs, 1, 1);
|
|
|
|
_mat[1][2] = INNER_PRODUCT(lhs, rhs, 1, 2);
|
|
|
|
_mat[1][3] = INNER_PRODUCT(lhs, rhs, 1, 3);
|
|
|
|
_mat[2][0] = INNER_PRODUCT(lhs, rhs, 2, 0);
|
|
|
|
_mat[2][1] = INNER_PRODUCT(lhs, rhs, 2, 1);
|
|
|
|
_mat[2][2] = INNER_PRODUCT(lhs, rhs, 2, 2);
|
|
|
|
_mat[2][3] = INNER_PRODUCT(lhs, rhs, 2, 3);
|
|
|
|
_mat[3][0] = INNER_PRODUCT(lhs, rhs, 3, 0);
|
|
|
|
_mat[3][1] = INNER_PRODUCT(lhs, rhs, 3, 1);
|
|
|
|
_mat[3][2] = INNER_PRODUCT(lhs, rhs, 3, 2);
|
|
|
|
_mat[3][3] = INNER_PRODUCT(lhs, rhs, 3, 3);
|
|
|
|
fully_realized = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Matrix::preMult( const Matrix& other )
|
|
|
|
{
|
|
|
|
if( !fully_realized ) {
|
|
|
|
//act as if this were an identity Matrix
|
|
|
|
set((const float*)other._mat);
|
2001-01-11 00:32:10 +08:00
|
|
|
return;
|
2001-09-22 10:42:08 +08:00
|
|
|
}
|
2001-01-11 00:32:10 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
// brute force method requiring a copy
|
|
|
|
//Matrix tmp(other* *this);
|
|
|
|
// *this = tmp;
|
|
|
|
|
|
|
|
// more efficient method just use a float[4] for temporary storage.
|
|
|
|
float t[4];
|
|
|
|
for(int col=0; col<4; ++col) {
|
|
|
|
t[0] = INNER_PRODUCT( other, *this, 0, col );
|
|
|
|
t[1] = INNER_PRODUCT( other, *this, 1, col );
|
|
|
|
t[2] = INNER_PRODUCT( other, *this, 2, col );
|
|
|
|
t[3] = INNER_PRODUCT( other, *this, 3, col );
|
|
|
|
_mat[0][col] = t[0];
|
|
|
|
_mat[1][col] = t[1];
|
|
|
|
_mat[2][col] = t[2];
|
|
|
|
_mat[3][col] = t[3];
|
|
|
|
}
|
2001-09-20 05:08:56 +08:00
|
|
|
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
void Matrix::postMult( const Matrix& other )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
if( !fully_realized ) {
|
|
|
|
//act as if this were an identity Matrix
|
|
|
|
set((const float*)other._mat);
|
|
|
|
return;
|
2001-09-20 05:08:56 +08:00
|
|
|
}
|
2001-09-22 10:42:08 +08:00
|
|
|
// brute force method requiring a copy
|
|
|
|
//Matrix tmp(*this * other);
|
|
|
|
// *this = tmp;
|
|
|
|
|
|
|
|
// more efficient method just use a float[4] for temporary storage.
|
|
|
|
float t[4];
|
|
|
|
for(int row=0; row<4; ++row)
|
2001-09-20 05:08:56 +08:00
|
|
|
{
|
2001-09-22 10:42:08 +08:00
|
|
|
t[0] = INNER_PRODUCT( *this, other, row, 0 );
|
|
|
|
t[1] = INNER_PRODUCT( *this, other, row, 1 );
|
|
|
|
t[2] = INNER_PRODUCT( *this, other, row, 2 );
|
|
|
|
t[3] = INNER_PRODUCT( *this, other, row, 3 );
|
|
|
|
SET_ROW(row, t[0], t[1], t[2], t[3] )
|
2001-09-20 05:08:56 +08:00
|
|
|
}
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
#undef SET_ROW
|
|
|
|
#undef INNER_PRODUCT
|
2001-09-20 05:08:56 +08:00
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
bool Matrix::invert( const Matrix& _m )
|
2001-01-11 00:32:10 +08:00
|
|
|
{
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
if (&_m==this)
|
|
|
|
{
|
|
|
|
Matrix tm(_m);
|
2001-09-20 05:08:56 +08:00
|
|
|
return invert(tm);
|
|
|
|
}
|
2001-09-22 10:42:08 +08:00
|
|
|
/*if ( _m._mat[0][3] == 0.0
|
|
|
|
&& _m._mat[1][3] == 0.0
|
|
|
|
&& _m._mat[2][3] == 0.0
|
|
|
|
&& _m._mat[3][3] == 1.0 )
|
|
|
|
{
|
|
|
|
return invertAffine( _m );
|
|
|
|
}*/
|
2001-09-20 05:08:56 +08:00
|
|
|
|
2001-01-11 00:32:10 +08:00
|
|
|
// code lifted from VR Juggler.
|
|
|
|
// not cleanly added, but seems to work. RO.
|
2001-09-22 10:42:08 +08:00
|
|
|
const float* a = reinterpret_cast<const float*>(_m._mat);
|
2001-01-11 00:32:10 +08:00
|
|
|
float* b = reinterpret_cast<float*>(_mat);
|
|
|
|
|
|
|
|
int n = 4;
|
|
|
|
int i, j, k;
|
|
|
|
int r[ 4], c[ 4], row[ 4], col[ 4];
|
|
|
|
float m[ 4][ 4*2], pivot, max_m, tmp_m, fac;
|
|
|
|
|
2001-09-20 05:08:56 +08:00
|
|
|
/* Initialization */
|
2001-01-11 00:32:10 +08:00
|
|
|
for ( i = 0; i < n; i ++ )
|
|
|
|
{
|
|
|
|
r[ i] = c[ i] = 0;
|
|
|
|
row[ i] = col[ i] = 0;
|
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
/* Set working Matrix */
|
2001-01-11 00:32:10 +08:00
|
|
|
for ( i = 0; i < n; i++ )
|
|
|
|
{
|
|
|
|
for ( j = 0; j < n; j++ )
|
|
|
|
{
|
|
|
|
m[ i][ j] = a[ i * n + j];
|
|
|
|
m[ i][ j + n] = ( i == j ) ? 1.0 : 0.0 ;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2001-09-20 05:08:56 +08:00
|
|
|
/* Begin of loop */
|
2001-01-11 00:32:10 +08:00
|
|
|
for ( k = 0; k < n; k++ )
|
|
|
|
{
|
2001-09-20 05:08:56 +08:00
|
|
|
/* Choosing the pivot */
|
2001-01-11 00:32:10 +08:00
|
|
|
for ( i = 0, max_m = 0; i < n; i++ )
|
|
|
|
{
|
|
|
|
if ( row[ i] ) continue;
|
|
|
|
for ( j = 0; j < n; j++ )
|
|
|
|
{
|
|
|
|
if ( col[ j] ) continue;
|
|
|
|
tmp_m = fabs( m[ i][j]);
|
|
|
|
if ( tmp_m > max_m)
|
|
|
|
{
|
|
|
|
max_m = tmp_m;
|
|
|
|
r[ k] = i;
|
|
|
|
c[ k] = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
row[ r[k] ] = col[ c[k] ] = 1;
|
|
|
|
pivot = m[ r[ k] ][ c[ k] ];
|
|
|
|
|
|
|
|
if ( fabs( pivot) <= 1e-20)
|
|
|
|
{
|
2001-12-15 07:18:28 +08:00
|
|
|
notify(WARN) << "*** pivot = %f in mat_inv. ***"<<std::endl;
|
2001-09-27 17:44:55 +08:00
|
|
|
//abort( 0);
|
2001-01-11 00:32:10 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2001-09-20 05:08:56 +08:00
|
|
|
/* Normalization */
|
2001-01-11 00:32:10 +08:00
|
|
|
for ( j = 0; j < 2*n; j++ )
|
|
|
|
{
|
|
|
|
if ( j == c[ k] )
|
|
|
|
m[ r[ k]][ j] = 1.0;
|
|
|
|
else
|
|
|
|
m[ r[ k]][ j] /=pivot;
|
|
|
|
}
|
|
|
|
|
2001-09-20 05:08:56 +08:00
|
|
|
/* Reduction */
|
2001-01-11 00:32:10 +08:00
|
|
|
for ( i = 0; i < n; i++ )
|
|
|
|
{
|
|
|
|
if ( i == r[ k] )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for ( j=0, fac = m[ i][ c[k]];j < 2*n; j++ )
|
|
|
|
{
|
|
|
|
if ( j == c[ k] )
|
|
|
|
m[ i][ j] =0.0;
|
|
|
|
else
|
|
|
|
m[ i][ j] -=fac * m[ r[k]][ j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2001-09-22 10:42:08 +08:00
|
|
|
/* Assign invers to a Matrix */
|
2001-01-11 00:32:10 +08:00
|
|
|
for ( i = 0; i < n; i++ )
|
|
|
|
for ( j = 0; j < n; j++ )
|
|
|
|
row[ i] = ( c[ j] == i ) ? r[j] : row[ i];
|
|
|
|
|
|
|
|
for ( i = 0; i < n; i++ )
|
|
|
|
for ( j = 0; j < n; j++ )
|
|
|
|
b[ i * n + j] = m[ row[ i]][j + n];
|
|
|
|
|
2001-10-14 22:23:03 +08:00
|
|
|
fully_realized = true;
|
|
|
|
|
2001-09-20 05:08:56 +08:00
|
|
|
return true; // It worked
|
2001-01-11 00:32:10 +08:00
|
|
|
}
|
2001-09-22 10:42:08 +08:00
|
|
|
|
|
|
|
const double PRECISION_LIMIT = 1.0e-15;
|
|
|
|
|
|
|
|
bool Matrix::invertAffine( const Matrix& _m )
|
|
|
|
{
|
|
|
|
// adapted from Graphics Gems II.
|
|
|
|
//
|
|
|
|
// This method treats the Matrix as a block Matrix and calculates
|
|
|
|
// the inverse of one subMatrix, improving performance over something
|
|
|
|
// that inverts any non-singular Matrix:
|
|
|
|
// -1
|
|
|
|
// -1 [ A 0 ] -1 [ A 0 ]
|
|
|
|
// M = [ ] = [ -1 ]
|
|
|
|
// [ C 1 ] [-CA 1 ]
|
|
|
|
//
|
|
|
|
// returns true if _m is nonsingular, and (*this) contains its inverse
|
|
|
|
// otherwise returns false. (*this unchanged)
|
|
|
|
|
|
|
|
// assert( this->isAffine())?
|
|
|
|
double det_1, pos, neg, temp;
|
|
|
|
|
|
|
|
pos = neg = 0.0;
|
|
|
|
|
|
|
|
#define ACCUMULATE \
|
|
|
|
{ \
|
|
|
|
if(temp >= 0.0) pos += temp; \
|
|
|
|
else neg += temp; \
|
|
|
|
}
|
|
|
|
|
|
|
|
temp = _m._mat[0][0] * _m._mat[1][1] * _m._mat[2][2]; ACCUMULATE;
|
|
|
|
temp = _m._mat[0][1] * _m._mat[1][2] * _m._mat[2][0]; ACCUMULATE;
|
|
|
|
temp = _m._mat[0][2] * _m._mat[1][0] * _m._mat[2][1]; ACCUMULATE;
|
|
|
|
|
|
|
|
temp = - _m._mat[0][2] * _m._mat[1][1] * _m._mat[2][0]; ACCUMULATE;
|
|
|
|
temp = - _m._mat[0][1] * _m._mat[1][0] * _m._mat[2][2]; ACCUMULATE;
|
|
|
|
temp = - _m._mat[0][0] * _m._mat[1][2] * _m._mat[2][1]; ACCUMULATE;
|
|
|
|
|
|
|
|
det_1 = pos + neg;
|
|
|
|
|
2001-10-31 03:23:24 +08:00
|
|
|
if( (det_1 == 0.0) || (fabs(det_1/(pos-neg)) < PRECISION_LIMIT )) {
|
2001-09-22 10:42:08 +08:00
|
|
|
// _m has no inverse
|
2001-12-15 07:18:28 +08:00
|
|
|
notify(WARN) << "Matrix::invert(): Matrix has no inverse." << std::endl;
|
2001-09-22 10:42:08 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// inverse is adj(A)/det(A)
|
|
|
|
det_1 = 1.0 / det_1;
|
|
|
|
|
|
|
|
_mat[0][0] = (_m._mat[1][1] * _m._mat[2][2] - _m._mat[1][2] * _m._mat[2][1]) * det_1;
|
|
|
|
_mat[1][0] = (_m._mat[1][0] * _m._mat[2][2] - _m._mat[1][2] * _m._mat[2][0]) * det_1;
|
|
|
|
_mat[2][0] = (_m._mat[1][0] * _m._mat[2][1] - _m._mat[1][1] * _m._mat[2][0]) * det_1;
|
|
|
|
_mat[0][1] = (_m._mat[0][1] * _m._mat[2][2] - _m._mat[0][2] * _m._mat[2][1]) * det_1;
|
|
|
|
_mat[1][1] = (_m._mat[0][0] * _m._mat[2][2] - _m._mat[0][2] * _m._mat[2][0]) * det_1;
|
|
|
|
_mat[2][1] = (_m._mat[0][0] * _m._mat[2][1] - _m._mat[0][1] * _m._mat[2][0]) * det_1;
|
|
|
|
_mat[0][2] = (_m._mat[0][1] * _m._mat[1][2] - _m._mat[0][2] * _m._mat[1][1]) * det_1;
|
|
|
|
_mat[1][2] = (_m._mat[0][0] * _m._mat[1][2] - _m._mat[0][2] * _m._mat[1][0]) * det_1;
|
|
|
|
_mat[2][2] = (_m._mat[0][0] * _m._mat[1][1] - _m._mat[0][1] * _m._mat[1][0]) * det_1;
|
|
|
|
|
|
|
|
// calculate -C * inv(A)
|
|
|
|
_mat[3][0] = -(_m._mat[3][0] * _mat[0][0] + _m._mat[3][1] * _mat[1][0] + _m._mat[3][2] * _mat[2][0] );
|
|
|
|
_mat[3][1] = -(_m._mat[3][0] * _mat[0][1] + _m._mat[3][1] * _mat[1][1] + _m._mat[3][2] * _mat[2][1] );
|
|
|
|
_mat[3][2] = -(_m._mat[3][0] * _mat[0][2] + _m._mat[3][1] * _mat[1][2] + _m._mat[3][2] * _mat[2][2] );
|
|
|
|
|
|
|
|
_mat[0][3] = 0.0;
|
|
|
|
_mat[1][3] = 0.0;
|
|
|
|
_mat[2][3] = 0.0;
|
|
|
|
_mat[3][3] = 1.0;
|
|
|
|
|
|
|
|
fully_realized = true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|