OpenSceneGraph/examples/osgshaderterrain/osgshaderterrain.cpp

824 lines
25 KiB
C++
Raw Normal View History

2005-08-15 21:54:25 +08:00
#include <osg/AlphaFunc>
#include <osg/Billboard>
#include <osg/BlendFunc>
#include <osg/Depth>
#include <osg/Geode>
#include <osg/Geometry>
#include <osg/GL2Extensions>
2005-08-15 21:54:25 +08:00
#include <osg/Material>
#include <osg/Math>
#include <osg/MatrixTransform>
#include <osg/PolygonOffset>
#include <osg/Program>
2005-08-15 21:54:25 +08:00
#include <osg/Projection>
#include <osg/Shader>
2005-08-15 21:54:25 +08:00
#include <osg/ShapeDrawable>
#include <osg/StateSet>
#include <osg/Switch>
#include <osg/Texture2D>
#include <osg/Uniform>
2005-08-15 21:54:25 +08:00
#include <osgDB/ReadFile>
#include <osgDB/FileUtils>
#include <osgUtil/IntersectVisitor>
#include <osgUtil/SmoothingVisitor>
#include <osgText/Text>
#include <osgProducer/Viewer>
// for the grid data..
#include "../osghangglide/terrain_coords.h"
// class to create the forest and manage the movement between various techniques.
class ForestTechniqueManager : public osg::Referenced
{
public:
ForestTechniqueManager() {}
class Tree : public osg::Referenced
{
public:
Tree():
_color(255,255,255,255),
_width(1.0f),
_height(1.0f),
_type(0) {}
Tree(const osg::Vec3& position, const osg::Vec4ub& color, float width, float height, unsigned int type):
_position(position),
_color(color),
_width(width),
_height(height),
_type(type) {}
osg::Vec3 _position;
osg::Vec4ub _color;
float _width;
float _height;
unsigned int _type;
};
typedef std::vector< osg::ref_ptr<Tree> > TreeList;
class Cell : public osg::Referenced
{
public:
typedef std::vector< osg::ref_ptr<Cell> > CellList;
Cell():_parent(0) {}
Cell(osg::BoundingBox& bb):_parent(0), _bb(bb) {}
void addCell(Cell* cell) { cell->_parent=this; _cells.push_back(cell); }
void addTree(Tree* tree) { _trees.push_back(tree); }
void addTrees(const TreeList& trees) { _trees.insert(_trees.end(),trees.begin(),trees.end()); }
void computeBound();
bool contains(const osg::Vec3& position) const { return _bb.contains(position); }
bool divide(unsigned int maxNumTreesPerCell=10);
bool devide(bool xAxis, bool yAxis, bool zAxis);
void bin();
Cell* _parent;
osg::BoundingBox _bb;
CellList _cells;
TreeList _trees;
};
float random(float min,float max) { return min + (max-min)*(float)rand()/(float)RAND_MAX; }
int random(int min,int max) { return min + (int)((float)(max-min)*(float)rand()/(float)RAND_MAX); }
osg::Geode* createTerrain(const osg::Vec3& origin, const osg::Vec3& size);
void createTreeList(osg::Node* terrain,const osg::Vec3& origin, const osg::Vec3& size,unsigned int numTreesToCreate,TreeList& trees);
osg::Geometry* createOrthogonalQuadsNoColor( const osg::Vec3& pos, float w, float h );
osg::Node* createShaderGraph(Cell* cell,osg::StateSet* stateset);
osg::Node* createScene(unsigned int numTreesToCreates);
};
// event handler to capture keyboard events and use them to advance the technique used for rendering
void ForestTechniqueManager::Cell::computeBound()
{
_bb.init();
for(CellList::iterator citr=_cells.begin();
citr!=_cells.end();
++citr)
{
(*citr)->computeBound();
_bb.expandBy((*citr)->_bb);
}
for(TreeList::iterator titr=_trees.begin();
titr!=_trees.end();
++titr)
{
_bb.expandBy((*titr)->_position);
}
}
bool ForestTechniqueManager::Cell::divide(unsigned int maxNumTreesPerCell)
{
if (_trees.size()<=maxNumTreesPerCell) return false;
computeBound();
float radius = _bb.radius();
float divide_distance = radius*0.7f;
if (devide((_bb.xMax()-_bb.xMin())>divide_distance,(_bb.yMax()-_bb.yMin())>divide_distance,(_bb.zMax()-_bb.zMin())>divide_distance))
{
// recusively divide the new cells till maxNumTreesPerCell is met.
for(CellList::iterator citr=_cells.begin();
citr!=_cells.end();
++citr)
{
(*citr)->divide(maxNumTreesPerCell);
}
return true;
}
else
{
return false;
}
}
bool ForestTechniqueManager::Cell::devide(bool xAxis, bool yAxis, bool zAxis)
{
if (!(xAxis || yAxis || zAxis)) return false;
if (_cells.empty())
_cells.push_back(new Cell(_bb));
if (xAxis)
{
unsigned int numCellsToDivide=_cells.size();
for(unsigned int i=0;i<numCellsToDivide;++i)
{
Cell* orig_cell = _cells[i].get();
Cell* new_cell = new Cell(orig_cell->_bb);
float xCenter = (orig_cell->_bb.xMin()+orig_cell->_bb.xMax())*0.5f;
orig_cell->_bb.xMax() = xCenter;
new_cell->_bb.xMin() = xCenter;
_cells.push_back(new_cell);
}
}
if (yAxis)
{
unsigned int numCellsToDivide=_cells.size();
for(unsigned int i=0;i<numCellsToDivide;++i)
{
Cell* orig_cell = _cells[i].get();
Cell* new_cell = new Cell(orig_cell->_bb);
float yCenter = (orig_cell->_bb.yMin()+orig_cell->_bb.yMax())*0.5f;
orig_cell->_bb.yMax() = yCenter;
new_cell->_bb.yMin() = yCenter;
_cells.push_back(new_cell);
}
}
if (zAxis)
{
unsigned int numCellsToDivide=_cells.size();
for(unsigned int i=0;i<numCellsToDivide;++i)
{
Cell* orig_cell = _cells[i].get();
Cell* new_cell = new Cell(orig_cell->_bb);
float zCenter = (orig_cell->_bb.zMin()+orig_cell->_bb.zMax())*0.5f;
orig_cell->_bb.zMax() = zCenter;
new_cell->_bb.zMin() = zCenter;
_cells.push_back(new_cell);
}
}
bin();
return true;
}
void ForestTechniqueManager::Cell::bin()
{
// put trees in apprpriate cells.
TreeList treesNotAssigned;
for(TreeList::iterator titr=_trees.begin();
titr!=_trees.end();
++titr)
{
Tree* tree = titr->get();
bool assigned = false;
for(CellList::iterator citr=_cells.begin();
citr!=_cells.end() && !assigned;
++citr)
{
if ((*citr)->contains(tree->_position))
{
(*citr)->addTree(tree);
assigned = true;
}
}
if (!assigned) treesNotAssigned.push_back(tree);
}
// put the unassigned trees back into the original local tree list.
_trees.swap(treesNotAssigned);
// prune empty cells.
CellList cellsNotEmpty;
for(CellList::iterator citr=_cells.begin();
citr!=_cells.end();
++citr)
{
if (!((*citr)->_trees.empty()))
{
cellsNotEmpty.push_back(*citr);
}
}
_cells.swap(cellsNotEmpty);
}
void ForestTechniqueManager::createTreeList(osg::Node* terrain,const osg::Vec3& origin, const osg::Vec3& size,unsigned int numTreesToCreate,TreeList& trees)
{
float max_TreeHeight = sqrtf(size.length2()/(float)numTreesToCreate);
float max_TreeWidth = max_TreeHeight*0.5f;
float min_TreeHeight = max_TreeHeight*0.3f;
float min_TreeWidth = min_TreeHeight*0.5f;
trees.reserve(trees.size()+numTreesToCreate);
for(unsigned int i=0;i<numTreesToCreate;++i)
{
Tree* tree = new Tree;
tree->_position.set(random(origin.x(),origin.x()+size.x()),random(origin.y(),origin.y()+size.y()),origin.z());
tree->_color.set(random(128,255),random(128,255),random(128,255),255);
tree->_width = random(min_TreeWidth,max_TreeWidth);
tree->_height = random(min_TreeHeight,max_TreeHeight);
tree->_type = 0;
if (terrain)
{
osgUtil::IntersectVisitor iv;
osg::ref_ptr<osg::LineSegment> segDown = new osg::LineSegment;
segDown->set(tree->_position,tree->_position+osg::Vec3(0.0f,0.0f,size.z()));
iv.addLineSegment(segDown.get());
terrain->accept(iv);
if (iv.hits())
{
osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segDown.get());
if (!hitList.empty())
{
osg::Vec3 ip = hitList.front().getWorldIntersectPoint();
osg::Vec3 np = hitList.front().getWorldIntersectNormal();
tree->_position = ip;
}
}
}
trees.push_back(tree);
}
}
osg::Geometry* ForestTechniqueManager::createOrthogonalQuadsNoColor( const osg::Vec3& pos, float w, float h)
{
// set up the coords
osg::Vec3Array& v = *(new osg::Vec3Array(8));
osg::Vec2Array& t = *(new osg::Vec2Array(8));
float rotation = random(0.0f,osg::PI/2.0f);
float sw = sinf(rotation)*w*0.5f;
float cw = cosf(rotation)*w*0.5f;
v[0].set(pos.x()-sw,pos.y()-cw,pos.z()+0.0f);
v[1].set(pos.x()+sw,pos.y()+cw,pos.z()+0.0f);
v[2].set(pos.x()+sw,pos.y()+cw,pos.z()+h);
v[3].set(pos.x()-sw,pos.y()-cw,pos.z()+h);
v[4].set(pos.x()-cw,pos.y()+sw,pos.z()+0.0f);
v[5].set(pos.x()+cw,pos.y()-sw,pos.z()+0.0f);
v[6].set(pos.x()+cw,pos.y()-sw,pos.z()+h);
v[7].set(pos.x()-cw,pos.y()+sw,pos.z()+h);
t[0].set(0.0f,0.0f);
t[1].set(1.0f,0.0f);
t[2].set(1.0f,1.0f);
t[3].set(0.0f,1.0f);
t[4].set(0.0f,0.0f);
t[5].set(1.0f,0.0f);
t[6].set(1.0f,1.0f);
t[7].set(0.0f,1.0f);
osg::Geometry *geom = new osg::Geometry;
geom->setVertexArray( &v );
geom->setTexCoordArray( 0, &t );
geom->addPrimitiveSet( new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,8) );
return geom;
}
class ShaderGeometry : public osg::Drawable
{
public:
ShaderGeometry() { setUseDisplayList(false); }
/** Copy constructor using CopyOp to manage deep vs shallow copy.*/
ShaderGeometry(const ShaderGeometry& ShaderGeometry,const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY):
osg::Drawable(ShaderGeometry,copyop) {}
META_Object(osg,ShaderGeometry)
typedef std::vector<osg::Vec4> PositionSizeList;
virtual void drawImplementation(osg::State& state) const
{
for(PositionSizeList::const_iterator itr = _trees.begin();
itr != _trees.end();
++itr)
{
glColor4fv(itr->ptr());
_geometry->draw(state);
}
}
virtual osg::BoundingBox computeBound() const
{
osg::BoundingBox geom_box = _geometry->getBound();
osg::BoundingBox bb;
for(PositionSizeList::const_iterator itr = _trees.begin();
itr != _trees.end();
++itr)
{
bb.expandBy(geom_box.corner(0)*(*itr)[3] +
osg::Vec3( (*itr)[0], (*itr)[1], (*itr)[2] ));
bb.expandBy(geom_box.corner(7)*(*itr)[3] +
osg::Vec3( (*itr)[0], (*itr)[1], (*itr)[2] ));
}
return bb;
}
void setGeometry(osg::Geometry* geometry)
{
_geometry = geometry;
}
void addTree(ForestTechniqueManager::Tree& tree)
{
_trees.push_back(osg::Vec4(tree._position.x(), tree._position.y(), tree._position.z(), tree._height));
}
osg::ref_ptr<osg::Geometry> _geometry;
PositionSizeList _trees;
protected:
virtual ~ShaderGeometry() {}
};
osg::Geometry* shared_geometry = 0;
osg::Node* ForestTechniqueManager::createShaderGraph(Cell* cell,osg::StateSet* stateset)
{
if (shared_geometry==0)
{
shared_geometry = createOrthogonalQuadsNoColor(osg::Vec3(0.0f,0.0f,0.0f),1.0f,1.0f);
//shared_geometry->setUseDisplayList(false);
}
bool needGroup = !(cell->_cells.empty());
bool needTrees = !(cell->_trees.empty());
osg::Geode* geode = 0;
osg::Group* group = 0;
if (needTrees)
{
geode = new osg::Geode;
ShaderGeometry* shader_geometry = new ShaderGeometry;
shader_geometry->setGeometry(shared_geometry);
for(TreeList::iterator itr=cell->_trees.begin();
itr!=cell->_trees.end();
++itr)
{
Tree& tree = **itr;
shader_geometry->addTree(tree);
}
geode->setStateSet(stateset);
geode->addDrawable(shader_geometry);
}
if (needGroup)
{
group = new osg::Group;
for(Cell::CellList::iterator itr=cell->_cells.begin();
itr!=cell->_cells.end();
++itr)
{
group->addChild(createShaderGraph(itr->get(),stateset));
}
if (geode) group->addChild(geode);
}
if (group) return group;
else return geode;
}
2005-10-24 21:46:31 +08:00
osg::Node* ForestTechniqueManager::createScene(unsigned int /*numTreesToCreates*/)
2005-08-15 21:54:25 +08:00
{
osg::Group* scene = new osg::Group;
unsigned int numColumns = 38;
unsigned int numRows = 39;
unsigned int r;
unsigned int c;
osg::Vec3 origin(0.0f,0.0f,0.0f);
osg::Vec3 size(1000.0f,1000.0f,250.0f);
osg::Vec3 scaleDown(1.0f/size.x(),1.0f/size.y(),1.0f/size.z());
// ---------------------------------------
// Set up a StateSet to texture the objects
// ---------------------------------------
osg::StateSet* stateset = new osg::StateSet();
osg::Uniform* originUniform = new osg::Uniform("terrainOrigin",origin);
stateset->addUniform(originUniform);
osg::Uniform* sizeUniform = new osg::Uniform("terrainSize",size);
stateset->addUniform(sizeUniform);
osg::Uniform* scaleDownUniform = new osg::Uniform("terrainScaleDown",scaleDown);
stateset->addUniform(scaleDownUniform);
osg::Uniform* terrainTextureSampler = new osg::Uniform("terrainTexture",0);
stateset->addUniform(terrainTextureSampler);
osg::Uniform* baseTextureSampler = new osg::Uniform("baseTexture",1);
stateset->addUniform(baseTextureSampler);
osg::Uniform* treeTextureSampler = new osg::Uniform("treeTexture",1);
stateset->addUniform(treeTextureSampler);
// compute z range of z values of grid data so we can scale it.
float min_z = FLT_MAX;
float max_z = -FLT_MAX;
for(r=0;r<numRows;++r)
{
for(c=0;c<numColumns;++c)
{
min_z = osg::minimum(min_z,vertex[r+c*numRows][2]);
max_z = osg::maximum(max_z,vertex[r+c*numRows][2]);
}
2005-08-15 21:54:25 +08:00
}
float scale_z = size.z()/(max_z-min_z);
osg::Image* terrainImage = new osg::Image;
terrainImage->allocateImage(numColumns,numRows,1,GL_LUMINANCE, GL_FLOAT);
terrainImage->setInternalTextureFormat(GL_LUMINANCE_FLOAT32_ATI);
for(r=0;r<numRows;++r)
{
for(c=0;c<numColumns;++c)
{
*((float*)(terrainImage->data(c,r))) = (vertex[r+c*numRows][2]-min_z)*scale_z;
}
2005-08-15 21:54:25 +08:00
}
osg::Texture2D* terrainTexture = new osg::Texture2D;
terrainTexture->setImage(terrainImage);
terrainTexture->setFilter(osg::Texture2D::MIN_FILTER, osg::Texture2D::NEAREST);
terrainTexture->setFilter(osg::Texture2D::MAG_FILTER, osg::Texture2D::NEAREST);
//terrainTexture->setResizeNonPowerOfTwoHint(true);
stateset->setTextureAttributeAndModes(0,terrainTexture,osg::StateAttribute::ON);
osg::Image* image = osgDB::readImageFile("Images/lz.rgb");
if (image)
{
osg::Texture2D* texture = new osg::Texture2D;
2005-08-15 21:54:25 +08:00
texture->setImage(image);
stateset->setTextureAttributeAndModes(1,texture,osg::StateAttribute::ON);
2005-08-15 21:54:25 +08:00
}
{
std::cout<<"Creating terrain...";
osg::Geode* geode = new osg::Geode();
geode->setStateSet( stateset );
{
osg::Program* program = new osg::Program;
stateset->setAttribute(program);
#if 1
// use inline shaders
///////////////////////////////////////////////////////////////////
// vertex shader using just Vec4 coefficients
char vertexShaderSource[] =
"uniform float osg_FrameTime;\n"
"uniform sampler2D terrainTexture;\n"
"uniform vec3 terrainOrigin;\n"
"uniform vec3 terrainScaleDown;\n"
"\n"
"varying vec2 texcoord;\n"
"\n"
"void main(void)\n"
"{\n"
" texcoord = gl_Vertex.xy - terrainOrigin.xy;\n"
" texcoord.x *= terrainScaleDown.x;\n"
" texcoord.y *= terrainScaleDown.y;\n"
"\n"
" vec4 position;\n"
" position.x = gl_Vertex.x;\n"
" position.y = gl_Vertex.y;\n"
" position.z = texture2D(terrainTexture, texcoord).r;\n"
" \n"
" gl_Position = gl_ModelViewProjectionMatrix * position;\n"
" gl_FrontColor = vec4(1.0,1.0,1.0,1.0);\n"
"}\n";
//////////////////////////////////////////////////////////////////
// fragment shader
//
char fragmentShaderSource[] =
"uniform sampler2D baseTexture; \n"
"varying vec2 texcoord;\n"
"\n"
"void main(void) \n"
"{\n"
" gl_FragColor = texture2D( baseTexture, texcoord); \n"
"}\n";
program->addShader(new osg::Shader(osg::Shader::VERTEX, vertexShaderSource));
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, fragmentShaderSource));
#else
// get shaders from source
program->addShader(osg::Shader::readShaderFile(osg::Shader::VERTEX, osgDB::findDataFile("shaders/terrain.vert")));
program->addShader(osg::Shader::readShaderFile(osg::Shader::FRAGMENT, osgDB::findDataFile("shaders/terrain.frag")));
#endif
// get shaders from source
}
{
osg::Geometry* geometry = new osg::Geometry;
osg::Vec3Array& v = *(new osg::Vec3Array(numColumns*numRows));
osg::Vec4ubArray& color = *(new osg::Vec4ubArray(1));
color[0].set(255,255,255,255);
float rowCoordDelta = size.y()/(float)(numRows-1);
float columnCoordDelta = size.x()/(float)(numColumns-1);
float rowTexDelta = 1.0f/(float)(numRows-1);
float columnTexDelta = 1.0f/(float)(numColumns-1);
osg::Vec3 pos = origin;
osg::Vec2 tex(0.0f,0.0f);
int vi=0;
for(r=0;r<numRows;++r)
{
pos.x() = origin.x();
tex.x() = 0.0f;
for(c=0;c<numColumns;++c)
{
v[vi].set(pos.x(),pos.y(),pos.z());
2005-08-15 21:54:25 +08:00
pos.x()+=columnCoordDelta;
tex.x()+=columnTexDelta;
++vi;
}
2005-08-15 21:54:25 +08:00
pos.y() += rowCoordDelta;
tex.y() += rowTexDelta;
}
geometry->setVertexArray(&v);
geometry->setColorArray(&color);
geometry->setColorBinding(osg::Geometry::BIND_OVERALL);
for(r=0;r<numRows-1;++r)
{
osg::DrawElementsUShort& drawElements = *(new osg::DrawElementsUShort(GL_QUAD_STRIP,2*numColumns));
geometry->addPrimitiveSet(&drawElements);
int ei=0;
for(c=0;c<numColumns;++c)
{
drawElements[ei++] = (r+1)*numColumns+c;
drawElements[ei++] = (r)*numColumns+c;
}
2005-08-15 21:54:25 +08:00
}
geometry->setInitialBound(osg::BoundingBox(origin, origin+size));
geode->addDrawable(geometry);
scene->addChild(geode);
}
}
std::cout<<"done."<<std::endl;
#if 0
std::cout<<"Creating tree locations...";std::cout.flush();
TreeList trees;
createTreeList(0,origin,size,numTreesToCreates,trees);
std::cout<<"done."<<std::endl;
std::cout<<"Creating cell subdivision...";
osg::ref_ptr<Cell> cell = new Cell;
cell->addTrees(trees);
cell->divide();
std::cout<<"done."<<std::endl;
osg::Texture2D *tex = new osg::Texture2D;
tex->setWrap( osg::Texture2D::WRAP_S, osg::Texture2D::CLAMP );
tex->setWrap( osg::Texture2D::WRAP_T, osg::Texture2D::CLAMP );
tex->setImage(osgDB::readImageFile("Images/tree0.rgba"));
osg::StateSet *dstate = new osg::StateSet;
{
dstate->setTextureAttributeAndModes(1, tex, osg::StateAttribute::ON );
dstate->setAttributeAndModes( new osg::BlendFunc, osg::StateAttribute::ON );
osg::AlphaFunc* alphaFunc = new osg::AlphaFunc;
alphaFunc->setFunction(osg::AlphaFunc::GEQUAL,0.05f);
dstate->setAttributeAndModes( alphaFunc, osg::StateAttribute::ON );
dstate->setMode( GL_LIGHTING, osg::StateAttribute::OFF );
dstate->setRenderingHint( osg::StateSet::TRANSPARENT_BIN );
}
{
osg::StateSet* stateset = new osg::StateSet;
stateset->setTextureAttributeAndModes(0, tex, osg::StateAttribute::ON );
stateset->setRenderingHint( osg::StateSet::TRANSPARENT_BIN );
{
osg::Program* program = new osg::Program;
stateset->setAttribute(program);
// get shaders from source
program->addShader(osg::Shader::readShaderFile(osg::Shader::VERTEX, osgDB::findDataFile("shaders/forest2.vert")));
program->addShader(osg::Shader::readShaderFile(osg::Shader::FRAGMENT, osgDB::findDataFile("shaders/forest2.frag")));
}
std::cout<<"Creating billboard based forest...";
scene->addChild(createShaderGraph(cell.get(),stateset));
}
#endif
return scene;
}
int main( int argc, char **argv )
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// set up the usage document, in case we need to print out how to use this program.
arguments.getApplicationUsage()->setDescription(arguments.getApplicationName()+" is the example which demonstrates the osg::Shape classes.");
arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] filename ...");
arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information");
arguments.getApplicationUsage()->addCommandLineOption("--trees <number>","Set the number of trees to create");
// construct the viewer.
osgProducer::Viewer viewer(arguments);
float numTreesToCreates = 10000;
arguments.read("--trees",numTreesToCreates);
// set up the value with sensible default event handlers.
viewer.setUpViewer(osgProducer::Viewer::STANDARD_SETTINGS);
osg::ref_ptr<ForestTechniqueManager> ttm = new ForestTechniqueManager;
// get details on keyboard and mouse bindings used by the viewer.
viewer.getUsage(*arguments.getApplicationUsage());
// if user request help write it out to cout.
if (arguments.read("-h") || arguments.read("--help"))
{
arguments.getApplicationUsage()->write(std::cout);
return 1;
}
// any option left unread are converted into errors to write out later.
arguments.reportRemainingOptionsAsUnrecognized();
// report any errors if they have occured when parsing the program aguments.
if (arguments.errors())
{
arguments.writeErrorMessages(std::cout);
return 1;
}
osg::Node* node = ttm->createScene((unsigned int)numTreesToCreates);
// add model to viewer.
viewer.setSceneData( node );
// create the windows and run the threads.
viewer.realize();
// not all hardware can support vertex texturing, so check first.
for(unsigned int contextID = 0;
contextID<viewer.getDisplaySettings()->getMaxNumberOfGraphicsContexts();
++contextID)
{
osg::GL2Extensions* gl2ext = osg::GL2Extensions::Get(contextID,false);
if( gl2ext )
{
if( !gl2ext->isGlslSupported() )
{
std::cout<<"ERROR: GLSL not supported by OpenGL driver."<<std::endl;
return 1;
}
GLint numVertexTexUnits = 0;
glGetIntegerv( GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &numVertexTexUnits );
if( numVertexTexUnits <= 0 )
{
std::cout<<"ERROR: vertex texturing not supported by OpenGL driver."<<std::endl;
return 1;
}
}
}
2005-08-15 21:54:25 +08:00
while( !viewer.done() )
{
// wait for all cull and draw threads to complete.
viewer.sync();
// update the scene by traversing it with the the update visitor which will
// call all node update callbacks and animations.
viewer.update();
// fire off the cull and draw traversals of the scene.
viewer.frame();
}
// wait for all cull and draw threads to complete before exit.
viewer.sync();
return 0;
}