OpenSceneGraph/examples/osgforest/osgforest.cpp

561 lines
17 KiB
C++
Raw Normal View History

#include <osg/Geode>
#include <osg/ShapeDrawable>
#include <osg/Material>
#include <osg/Texture2D>
#include <osg/Billboard>
#include <osg/AlphaFunc>
#include <osg/BlendFunc>
#include <osg/StateSet>
#include <osg/Geometry>
#include <osg/MatrixTransform>
#include <osg/Switch>
#include <osgProducer/Viewer>
#include <osgDB/ReadFile>
#include <osgUtil/IntersectVisitor>
#include <osgUtil/SmoothingVisitor>
#include <osg/Math>
// for the grid data..
#include "../osghangglide/terrain_coords.h"
// class to create the forest and manage the movement between various techniques.
class ForestTechniqueManager : public osg::Referenced
{
public:
ForestTechniqueManager() {}
class Tree : public osg::Referenced
{
public:
Tree():
_color(255,255,255,255),
_width(1.0f),
_height(1.0f),
_type(0) {}
Tree(const osg::Vec3& position, const osg::UByte4& color, float width, float height, unsigned int type):
_position(position),
_color(color),
_width(width),
_height(height),
_type(type) {}
osg::Vec3 _position;
osg::UByte4 _color;
float _width;
float _height;
unsigned int _type;
};
typedef std::vector< osg::ref_ptr<Tree> > TreeList;
float random(float min,float max) { return min + (max-min)*(float)rand()/(float)RAND_MAX; }
int random(int min,int max) { return min + (int)((float)(max-min)*(float)rand()/(float)RAND_MAX); }
osg::Geode* createTerrain(const osg::Vec3& origin, const osg::Vec3& size);
void createTreeList(osg::Node* terrain,const osg::Vec3& origin, const osg::Vec3& size,unsigned int numTreesToCreate,TreeList& trees);
osg::Geometry* createSprite( float w, float h, osg::UByte4 color );
osg::Geometry* createOrthogonalQuads( const osg::Vec3& pos, float w, float h, osg::UByte4 color );
osg::Node* createScene();
void advanceToNextTechnique(int delta=1)
{
if (_techniqueSwitch.valid())
{
_currentTechnique = (_currentTechnique + delta)%_techniqueSwitch->getNumChildren();
_techniqueSwitch->setSingleChildOn(_currentTechnique);
}
}
osg::ref_ptr<osg::Switch> _techniqueSwitch;
int _currentTechnique;
};
// event handler to capture keyboard events and use them to advance the technique used for rendering
class TechniqueEventHandler : public osgGA::GUIEventHandler, public osg::NodeCallback
{
public:
TechniqueEventHandler(ForestTechniqueManager* ttm=0) { _ForestTechniqueManager = ttm; }
META_Object(osgforestApp,TechniqueEventHandler);
virtual void accept(osgGA::GUIEventHandlerVisitor& v) { v.visit(*this); }
virtual bool handle(const osgGA::GUIEventAdapter& ea,osgGA::GUIActionAdapter&);
virtual void getUsage(osg::ApplicationUsage& usage) const;
protected:
~TechniqueEventHandler() {}
TechniqueEventHandler(const TechniqueEventHandler&,const osg::CopyOp&) {}
osg::ref_ptr<ForestTechniqueManager> _ForestTechniqueManager;
};
bool TechniqueEventHandler::handle(const osgGA::GUIEventAdapter& ea,osgGA::GUIActionAdapter&)
{
switch(ea.getEventType())
{
case(osgGA::GUIEventAdapter::KEYDOWN):
{
if (ea.getKey()=='n' ||
ea.getKey()==osgGA::GUIEventAdapter::KEY_Right ||
ea.getKey()==osgGA::GUIEventAdapter::KEY_KP_Right)
{
_ForestTechniqueManager->advanceToNextTechnique(1);
return true;
}
else if (ea.getKey()=='p' ||
ea.getKey()==osgGA::GUIEventAdapter::KEY_Left ||
ea.getKey()==osgGA::GUIEventAdapter::KEY_KP_Left)
{
_ForestTechniqueManager->advanceToNextTechnique(-1);
return true;
}
return false;
}
default:
return false;
}
}
void TechniqueEventHandler::getUsage(osg::ApplicationUsage& usage) const
{
usage.addKeyboardMouseBinding("n or Left Arrow","Advance to next technique");
usage.addKeyboardMouseBinding("p or Right Array","Move to previous technique");
}
osg::Geode* ForestTechniqueManager::createTerrain(const osg::Vec3& origin, const osg::Vec3& size)
{
osg::Geode* geode = new osg::Geode();
// ---------------------------------------
// Set up a StateSet to texture the objects
// ---------------------------------------
osg::StateSet* stateset = new osg::StateSet();
osg::Image* image = osgDB::readImageFile("Images/lz.rgb");
if (image)
{
osg::Texture2D* texture = new osg::Texture2D;
texture->setImage(image);
stateset->setTextureAttributeAndModes(0,texture,osg::StateAttribute::ON);
}
geode->setStateSet( stateset );
unsigned int numColumns = 38;
unsigned int numRows = 39;
unsigned int r;
unsigned int c;
// compute z range of z values of grid data so we can scale it.
float min_z = FLT_MAX;
float max_z = -FLT_MAX;
for(r=0;r<numRows;++r)
{
for(c=0;c<numColumns;++c)
{
min_z = osg::minimum(min_z,vertex[r+c*numRows][2]);
max_z = osg::maximum(max_z,vertex[r+c*numRows][2]);
}
}
float scale_z = size.z()/(max_z-min_z);
bool createGrid = false;
if (createGrid)
{
osg::Grid* grid = new osg::Grid;
grid->allocateGrid(numColumns,numRows);
grid->setOrigin(origin);
grid->setXInterval(size.x()/(float)(numColumns-1));
grid->setYInterval(size.y()/(float)(numRows-1));
for(r=0;r<numRows;++r)
{
for(c=0;c<numColumns;++c)
{
grid->setHeight(c,r,(vertex[r+c*numRows][2]-min_z)*scale_z);
}
}
geode->addDrawable(new osg::ShapeDrawable(grid));
}
else
{
osg::Geometry* geometry = new osg::Geometry;
osg::Vec3Array& v = *(new osg::Vec3Array(numColumns*numRows));
osg::Vec2Array& t = *(new osg::Vec2Array(numColumns*numRows));
osg::UByte4Array& color = *(new osg::UByte4Array(1));
color[0].set(255,255,255,255);
float rowCoordDelta = size.y()/(float)(numRows-1);
float columnCoordDelta = size.x()/(float)(numColumns-1);
float rowTexDelta = 1.0f/(float)(numRows-1);
float columnTexDelta = 1.0f/(float)(numColumns-1);
osg::Vec3 pos = origin;
osg::Vec2 tex(0.0f,0.0f);
int vi=0;
for(r=0;r<numRows;++r)
{
pos.x() = origin.x();
tex.x() = 0.0f;
for(c=0;c<numColumns;++c)
{
v[vi].set(pos.x(),pos.y(),pos.z()+(vertex[r+c*numRows][2]-min_z)*scale_z);
t[vi].set(tex.x(),tex.y());
pos.x()+=columnCoordDelta;
tex.x()+=columnTexDelta;
++vi;
}
pos.y() += rowCoordDelta;
tex.y() += rowTexDelta;
}
geometry->setVertexArray(&v);
geometry->setColorArray(&color);
geometry->setColorBinding(osg::Geometry::BIND_OVERALL);
geometry->setTexCoordArray(0,&t);
for(r=0;r<numRows-1;++r)
{
osg::DrawElementsUShort& drawElements = *(new osg::DrawElementsUShort(GL_QUAD_STRIP,2*numColumns));
geometry->addPrimitiveSet(&drawElements);
int ei=0;
for(c=0;c<numColumns;++c)
{
drawElements[ei++] = (r+1)*numColumns+c;
drawElements[ei++] = (r)*numColumns+c;
}
}
geode->addDrawable(geometry);
osgUtil::SmoothingVisitor sv;
sv.smooth(*geometry);
}
return geode;
}
void ForestTechniqueManager::createTreeList(osg::Node* terrain,const osg::Vec3& origin, const osg::Vec3& size,unsigned int numTreesToCreate,TreeList& trees)
{
float max_TreeHeight = sqrtf(size.length2()/(float)numTreesToCreate);
float max_TreeWidth = max_TreeHeight*0.5f;
float min_TreeHeight = max_TreeHeight*0.3f;
float min_TreeWidth = min_TreeHeight*0.5f;
trees.reserve(trees.size()+numTreesToCreate);
for(unsigned int i=0;i<numTreesToCreate;++i)
{
Tree* tree = new Tree;
tree->_position.set(random(origin.x(),origin.x()+size.x()),random(origin.y(),origin.y()+size.y()),origin.z());
tree->_color.set(random(128,255),random(128,255),random(128,255),255);
tree->_width = random(min_TreeWidth,max_TreeWidth);
tree->_height = random(min_TreeHeight,max_TreeHeight);
tree->_type = 0;
if (terrain)
{
osgUtil::IntersectVisitor iv;
osg::ref_ptr<osg::LineSegment> segDown = new osg::LineSegment;
segDown->set(tree->_position,tree->_position+osg::Vec3(0.0f,0.0f,size.z()));
iv.addLineSegment(segDown.get());
terrain->accept(iv);
if (iv.hits())
{
osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segDown.get());
if (!hitList.empty())
{
osg::Vec3 ip = hitList.front().getWorldIntersectPoint();
osg::Vec3 np = hitList.front().getWorldIntersectNormal();
tree->_position = ip;
}
}
}
trees.push_back(tree);
}
}
osg::Geometry* ForestTechniqueManager::createSprite( float w, float h, osg::UByte4 color )
{
// set up the coords
osg::Vec3Array& v = *(new osg::Vec3Array(4));
osg::Vec2Array& t = *(new osg::Vec2Array(4));
osg::UByte4Array& c = *(new osg::UByte4Array(1));
v[0].set(-w*0.5f,0.0f,0.0f);
v[1].set( w*0.5f,0.0f,0.0f);
v[2].set( w*0.5f,0.0f,h);
v[3].set(-w*0.5f,0.0f,h);
c[0] = color;
t[0].set(0.0f,0.0f);
t[1].set(1.0f,0.0f);
t[2].set(1.0f,1.0f);
t[3].set(0.0f,1.0f);
osg::Geometry *geom = new osg::Geometry;
geom->setVertexArray( &v );
geom->setTexCoordArray( 0, &t );
geom->setColorArray( &c );
geom->setColorBinding( osg::Geometry::BIND_OVERALL );
geom->addPrimitiveSet( new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,4) );
return geom;
}
osg::Geometry* ForestTechniqueManager::createOrthogonalQuads( const osg::Vec3& pos, float w, float h, osg::UByte4 color )
{
// set up the coords
osg::Vec3Array& v = *(new osg::Vec3Array(8));
osg::Vec2Array& t = *(new osg::Vec2Array(8));
osg::UByte4Array& c = *(new osg::UByte4Array(1));
float rotation = random(0.0f,osg::PI/2.0f);
float sw = sinf(rotation)*w*0.5f;
float cw = cosf(rotation)*w*0.5f;
v[0].set(pos.x()-sw,pos.y()-cw,pos.z()+0.0f);
v[1].set(pos.x()+sw,pos.y()+cw,pos.z()+0.0f);
v[2].set(pos.x()+sw,pos.y()+cw,pos.z()+h);
v[3].set(pos.x()-sw,pos.y()-cw,pos.z()+h);
v[4].set(pos.x()-cw,pos.y()+sw,pos.z()+0.0f);
v[5].set(pos.x()+cw,pos.y()-sw,pos.z()+0.0f);
v[6].set(pos.x()+cw,pos.y()-sw,pos.z()+h);
v[7].set(pos.x()-cw,pos.y()+sw,pos.z()+h);
c[0] = color;
t[0].set(0.0f,0.0f);
t[1].set(1.0f,0.0f);
t[2].set(1.0f,1.0f);
t[3].set(0.0f,1.0f);
t[4].set(0.0f,0.0f);
t[5].set(1.0f,0.0f);
t[6].set(1.0f,1.0f);
t[7].set(0.0f,1.0f);
osg::Geometry *geom = new osg::Geometry;
geom->setVertexArray( &v );
geom->setTexCoordArray( 0, &t );
geom->setColorArray( &c );
geom->setColorBinding( osg::Geometry::BIND_OVERALL );
geom->addPrimitiveSet( new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,8) );
return geom;
}
osg::Node* ForestTechniqueManager::createScene()
{
osg::Vec3 origin(0.0f,0.0f,0.0f);
osg::Vec3 size(1000.0f,1000.0f,200.0f);
unsigned int numTreesToCreates = 10000;
osg::ref_ptr<osg::Node> terrain = createTerrain(origin,size);
TreeList trees;
createTreeList(terrain.get(),origin,size,numTreesToCreates,trees);
osg::Texture2D *tex = new osg::Texture2D;
tex->setImage(osgDB::readImageFile("Images/tree0.rgba"));
osg::StateSet *dstate = new osg::StateSet;
{
dstate->setTextureAttributeAndModes(0, tex, osg::StateAttribute::ON );
dstate->setTextureAttribute(0, new osg::TexEnv );
dstate->setAttributeAndModes( new osg::BlendFunc, osg::StateAttribute::ON );
osg::AlphaFunc* alphaFunc = new osg::AlphaFunc;
alphaFunc->setFunction(osg::AlphaFunc::GEQUAL,0.05f);
dstate->setAttributeAndModes( alphaFunc, osg::StateAttribute::ON );
dstate->setMode( GL_LIGHTING, osg::StateAttribute::OFF );
dstate->setRenderingHint( osg::StateSet::TRANSPARENT_BIN );
}
_techniqueSwitch = new osg::Switch;
{
osg::Billboard* billboard = new osg::Billboard;
billboard->setStateSet(dstate);
for(TreeList::iterator itr=trees.begin();
itr!=trees.end();
++itr)
{
Tree& tree = **itr;
billboard->addDrawable(createSprite(tree._width,tree._height,tree._color),tree._position);
}
_techniqueSwitch->addChild(billboard);
}
{
osg::Geode* geode = new osg::Geode;
geode->setStateSet(dstate);
for(TreeList::iterator itr=trees.begin();
itr!=trees.end();
++itr)
{
Tree& tree = **itr;
geode->addDrawable(createOrthogonalQuads(tree._position,tree._width,tree._height,tree._color));
}
_techniqueSwitch->addChild(geode);
}
{
osg::Group* transform_group = new osg::Group;
//group->setStateSet(dstate);
osg::Geometry* geometry = createOrthogonalQuads(osg::Vec3(0.0f,0.0f,0.0f),1.0f,1.0f,osg::UByte4(255,255,255,255));
for(TreeList::iterator itr=trees.begin();
itr!=trees.end();
++itr)
{
Tree& tree = **itr;
osg::MatrixTransform* transform = new osg::MatrixTransform;
transform->setMatrix(osg::Matrix::scale(tree._width,tree._width,tree._height)*osg::Matrix::translate(tree._position));
osg::Geode* geode = new osg::Geode;
geode->setStateSet(dstate);
geode->addDrawable(geometry);
transform->addChild(geode);
transform_group->addChild(transform);
}
_techniqueSwitch->addChild(transform_group);
}
_currentTechnique = 0;
_techniqueSwitch->setSingleChildOn(_currentTechnique);
osg::Group* scene = new osg::Group;
scene->addChild(terrain.get());
scene->addChild(_techniqueSwitch.get());
return scene;
}
int main( int argc, char **argv )
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// set up the usage document, in case we need to print out how to use this program.
arguments.getApplicationUsage()->setDescription(arguments.getApplicationName()+" is the example which demonstrates the osg::Shape classes.");
arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] filename ...");
arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information");
// construct the viewer.
osgProducer::Viewer viewer(arguments);
// set up the value with sensible default event handlers.
viewer.setUpViewer(osgProducer::Viewer::STANDARD_SETTINGS);
osg::ref_ptr<ForestTechniqueManager> ttm = new ForestTechniqueManager;
viewer.getEventHandlerList().push_front(new TechniqueEventHandler(ttm.get()));
// get details on keyboard and mouse bindings used by the viewer.
viewer.getUsage(*arguments.getApplicationUsage());
// if user request help write it out to cout.
if (arguments.read("-h") || arguments.read("--help"))
{
arguments.getApplicationUsage()->write(std::cout);
return 1;
}
// any option left unread are converted into errors to write out later.
arguments.reportRemainingOptionsAsUnrecognized();
// report any errors if they have occured when parsing the program aguments.
if (arguments.errors())
{
arguments.writeErrorMessages(std::cout);
return 1;
}
osg::Node* node = ttm->createScene();
// add model to viewer.
viewer.setSceneData( node );
// create the windows and run the threads.
viewer.realize();
while( !viewer.done() )
{
// wait for all cull and draw threads to complete.
viewer.sync();
// update the scene by traversing it with the the update visitor which will
// call all node update callbacks and animations.
viewer.update();
// fire off the cull and draw traversals of the scene.
viewer.frame();
}
// wait for all cull and draw threads to complete before exit.
viewer.sync();
return 0;
}