OpenSceneGraph/src/osg/ShadowVolumeOccluder.cpp

260 lines
7.1 KiB
C++
Raw Normal View History

#include <osg/ShadowVolumeOccluder>
#include <osg/CullStack>
using namespace osg;
typedef std::pair<bool,Vec3> Point; // bool=true signifies a newly created point, false indicates original point.
typedef std::vector<Point> PointList;
typedef std::vector<Vec3> VertexList;
// convert a vector for Vec3 into a vector of Point's.
void convert(const VertexList& in,PointList& out)
{
out.reserve(in.size());
for(VertexList::const_iterator itr=in.begin();
itr!=in.end();
++itr)
{
out.push_back(Point(false,*itr));
}
}
// clip the convex hull 'in' to plane to generate a clipped convex hull 'out'
// return true if points remain after clipping.
unsigned int clip(const Plane& plane,const PointList& in, PointList& out)
{
std::vector<float> distance;
distance.reserve(in.size());
for(PointList::const_iterator itr=in.begin();
itr!=in.end();
++itr)
{
distance.push_back(plane.distance(itr->second));
}
out.clear();
for(unsigned int i=0;i<in.size();++i)
{
unsigned int i_1 = (i+1)%in.size(); // do the mod to wrap the index round back to the start.
if (distance[i]>=0.0f)
{
out.push_back(in[i]);
if (distance[i_1]<0.0f)
{
float r = distance[i_1]/(distance[i_1]-distance[i]);
out.push_back(Point(true,in[i].second*r+in[i_1].second*(1.0f-r)));
}
}
else if (distance[i_1]>0.0f)
{
float r = distance[i_1]/(distance[i_1]-distance[i]);
out.push_back(Point(true,in[i].second*r+in[i_1].second*(1.0f-r)));
}
}
return out.size();
}
// clip the convex hull 'in' to planeList to generate a clipped convex hull 'out'
// return true if points remain after clipping.
unsigned int clip(const Polytope::PlaneList& planeList,const VertexList& vin,PointList& out)
{
PointList in;
convert(vin,in);
for(Polytope::PlaneList::const_iterator itr=planeList.begin();
itr!=planeList.end();
++itr)
{
if (!clip(*itr,in,out)) return false;
in.swap(out);
}
in.swap(out);
return out.size();
}
void transform(PointList& points,const osg::Matrix& matrix)
{
for(PointList::iterator itr=points.begin();
itr!=points.end();
++itr)
{
itr->second = itr->second*matrix;
}
}
void transform(const PointList& in,PointList& out,const osg::Matrix& matrix)
{
for(PointList::const_iterator itr=in.begin();
itr!=in.end();
++itr)
{
out.push_back(Point(itr->first,itr->second * matrix));
}
}
void pushToFarPlane(PointList& points)
{
for(PointList::iterator itr=points.begin();
itr!=points.end();
++itr)
{
itr->second.z()=-1.0f;
}
}
void computePlanes(const PointList& front, const PointList& back, Polytope::PlaneList& planeList)
{
for(unsigned int i=0;i<front.size();++i)
{
unsigned int i_1 = (i+1)%front.size(); // do the mod to wrap the index round back to the start.
if (!front[i].first || !front[i_1].first)
{
planeList.push_back(Plane(front[i].second,front[i_1].second,back[i].second));
}
}
}
Plane computeFrontPlane(const PointList& front)
{
return Plane(front[2].second,front[1].second,front[0].second);
}
bool ShadowVolumeOccluder::computeOccluder(const NodePath& nodePath,const ConvexPlanerOccluder& occluder,CullStack& cullStack)
{
// std::cout<<" Computing Occluder"<<std::endl;
CullingSet& cullingset = cullStack.getCurrentCullingSet();
const Matrix& MV = cullStack.getModelViewMatrix();
const Matrix& P = cullStack.getProjectionMatrix();
// take a reference to the NodePath to this occluder.
_nodePath = nodePath;
// take a reference to the projection matrix.
_projectionMatrix = &P;
// compute the inverse of the projection matrix.
Matrix invP;
invP.invert(P);
// compute the transformation matrix which takes form local coords into clip space.
Matrix MVP(MV);
MVP *= P;
// for the occluder polygon and each of the holes do
// first transform occluder polygon into clipspace by multiple it by c[i] = v[i]*(MV*P)
// then push to coords to far plane by setting its coord to c[i].z = -1.
// then transform far plane polygon back into projection space, by p[i]*inv(P)
// compute orientation of front plane, if normal.z()<0 then facing away from eye pont, so reverse the polygons, or simply invert planes.
// compute volume (quality) betwen front polygon in projection space and back polygon in projection space.
const VertexList& vertices_in = occluder.getOccluder().getVertexList();
PointList points;
if (clip(cullingset.getFrustum().getPlaneList(),vertices_in,points)>=3)
{
// compute the points on the far plane.
PointList farPoints;
farPoints.reserve(points.size());
transform(points,farPoints,MVP);
pushToFarPlane(farPoints);
transform(farPoints,invP);
// move the occlude points into projection space.
transform(points,MV);
// create the sides of the occluder
computePlanes(points,farPoints,_occluderVolume.getPlaneList());
// create the front face of the occluder
Plane occludePlane = computeFrontPlane(points);
_occluderVolume.add(occludePlane);
// if the front face is pointing away from the eye point flip the whole polytope.
if (occludePlane[3]>0.0f)
{
// std::cout << " flipping polytope"<<std::endl;
_occluderVolume.flip();
}
for(Polytope::PlaneList::const_iterator itr=_occluderVolume.getPlaneList().begin();
itr!=_occluderVolume.getPlaneList().end();
++itr)
{
// std::cout << " compute plane "<<*itr<<std::endl;
}
return true;
}
else
{
// std::cout << " occluder clipped out of frustum."<<points.size()<<std::endl;
return false;
}
2002-06-12 17:22:30 +08:00
}
bool ShadowVolumeOccluder::contains(const std::vector<Vec3>& vertices)
{
if (_occluderVolume.containsAllOf(vertices))
{
for(HoleList::iterator itr=_holeList.begin();
itr!=_holeList.end();
++itr)
{
if (itr->contains(vertices)) return false;
}
return true;
}
return false;
}
bool ShadowVolumeOccluder::contains(const BoundingSphere& bound)
{
if (_occluderVolume.containsAllOf(bound))
{
for(HoleList::iterator itr=_holeList.begin();
itr!=_holeList.end();
++itr)
{
if (itr->contains(bound)) return false;
}
return true;
}
return false;
}
bool ShadowVolumeOccluder::contains(const BoundingBox& bound)
{
if (_occluderVolume.containsAllOf(bound))
{
for(HoleList::iterator itr=_holeList.begin();
itr!=_holeList.end();
++itr)
{
if (itr->contains(bound)) return false;
}
return true;
}
return false;
}