OpenSceneGraph/examples/osghangglide/osghangglide.cpp

207 lines
7.8 KiB
C++
Raw Normal View History

/* OpenSceneGraph example, osghangglide.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <osg/Group>
#include <osg/Notify>
#include <osg/Depth>
#include <osg/StateSet>
#include <osg/ClearNode>
#include <osg/Transform>
#include <osgUtil/CullVisitor>
#include <osgDB/Registry>
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include "GliderManipulator.h"
#include <iostream>
extern osg::Node *makeTerrain( void );
extern osg::Node *makeTrees( void );
extern osg::Node *makeTank( void );
extern osg::Node *makeWindsocks( void );
extern osg::Node *makeGliders( void );
extern osg::Node *makeGlider( void );
extern osg::Node *makeSky( void );
extern osg::Node *makeBase( void );
extern osg::Node *makeClouds( void );
class MoveEarthySkyWithEyePointTransform : public osg::Transform
{
public:
/** Get the transformation matrix which moves from local coords to world coords.*/
virtual bool computeLocalToWorldMatrix(osg::Matrix& matrix,osg::NodeVisitor* nv) const
{
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);
if (cv)
{
osg::Vec3 eyePointLocal = cv->getEyeLocal();
From Mathias Froehlich, "This is a generic optimization that does not depend on any cpu or instruction set. The optimization is based on the observation that matrix matrix multiplication with a dense matrix 4x4 is 4^3 Operations whereas multiplication with a transform, or scale matrix is only 4^2 operations. Which is a gain of a *FACTOR*4* for these special cases. The change implements these special cases, provides a unit test for these implementation and converts uses of the expensiver dense matrix matrix routine with the specialized versions. Depending on the transform nodes in the scenegraph this change gives a noticable improovement. For example the osgforest code using the MatrixTransform is about 20% slower than the same codepath using the PositionAttitudeTransform instead of the MatrixTransform with this patch applied. If I remember right, the sse type optimizations did *not* provide a factor 4 improovement. Also these changes are totally independent of any cpu or instruction set architecture. So I would prefer to have this current kind of change instead of some hand coded and cpu dependent assembly stuff. If we need that hand tuned stuff, these can go on top of this changes which must provide than hand optimized additional variants for the specialized versions to give a even better result in the end. An other change included here is a change to rotation matrix from quaterion code. There is a sqrt call which couold be optimized away. Since we divide in effect by sqrt(length)*sqrt(length) which is just length ... "
2008-09-18 00:14:28 +08:00
matrix.preMultTranslate(osg::Vec3(eyePointLocal.x(),eyePointLocal.y(),0.0f));
}
return true;
}
/** Get the transformation matrix which moves from world coords to local coords.*/
virtual bool computeWorldToLocalMatrix(osg::Matrix& matrix,osg::NodeVisitor* nv) const
{
std::cout<<"computing transform"<<std::endl;
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);
if (cv)
{
osg::Vec3 eyePointLocal = cv->getEyeLocal();
From Mathias Froehlich, "This is a generic optimization that does not depend on any cpu or instruction set. The optimization is based on the observation that matrix matrix multiplication with a dense matrix 4x4 is 4^3 Operations whereas multiplication with a transform, or scale matrix is only 4^2 operations. Which is a gain of a *FACTOR*4* for these special cases. The change implements these special cases, provides a unit test for these implementation and converts uses of the expensiver dense matrix matrix routine with the specialized versions. Depending on the transform nodes in the scenegraph this change gives a noticable improovement. For example the osgforest code using the MatrixTransform is about 20% slower than the same codepath using the PositionAttitudeTransform instead of the MatrixTransform with this patch applied. If I remember right, the sse type optimizations did *not* provide a factor 4 improovement. Also these changes are totally independent of any cpu or instruction set architecture. So I would prefer to have this current kind of change instead of some hand coded and cpu dependent assembly stuff. If we need that hand tuned stuff, these can go on top of this changes which must provide than hand optimized additional variants for the specialized versions to give a even better result in the end. An other change included here is a change to rotation matrix from quaterion code. There is a sqrt call which couold be optimized away. Since we divide in effect by sqrt(length)*sqrt(length) which is just length ... "
2008-09-18 00:14:28 +08:00
matrix.postMultTranslate(osg::Vec3(-eyePointLocal.x(),-eyePointLocal.y(),0.0f));
}
return true;
}
};
osg::Group* createModel()
{
// no database loaded so automatically create Ed Levin Park
osg::Group* group = new osg::Group;
// the base and sky subgraphs go to set the earth sky of the
// model and clear the color and depth buffer for us, by using
// osg::Depth, and setting their bin numbers to less than 0,
// to force them to draw before the rest of the scene.
osg::ClearNode* clearNode = new osg::ClearNode;
clearNode->setRequiresClear(false); // we've got base and sky to do it.
// use a transform to make the sky and base move around with the eye point.
osg::Transform* transform = new MoveEarthySkyWithEyePointTransform;
// transform's value isn't knowm until in the cull traversal so its bounding
// volume is can't be determined, therefore culling will be invalid,
// so switch it off, this causes all our paresnts to switch culling
// off as well. But don't worry, culling will be back on once underneath
// this node or any other branch above this transform.
transform->setCullingActive(false);
// add the sky and base layer.
transform->addChild(makeSky()); // bin number -2 so drawn first.
transform->addChild(makeBase()); // bin number -1 so draw second.
// add the transform to the earth sky.
clearNode->addChild(transform);
// add to earth sky to the scene.
group->addChild(clearNode);
// the rest of the scene is drawn after the base and sky above.
group->addChild(makeTrees()); // will drop into a transparent, depth sorted bin (1)
group->addChild(makeTerrain()); // will drop into default bin - state sorted 0
group->addChild(makeTank()); // will drop into default bin - state sorted 0
// add the following in the future...
// makeGliders
// makeClouds
return group;
}
int main( int argc, char **argv )
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// set up the usage document, in case we need to print out how to use this program.
2018-04-21 00:18:22 +08:00
arguments.getApplicationUsage()->setDescription(arguments.getApplicationName()+" is the example which demonstrates how to create a scene programmatically, in this case a hang gliding flying site.");
arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] filename ...");
arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information");
// construct the viewer.
osgViewer::Viewer viewer;
// if user requests help write it out to cout.
if (arguments.read("-h") || arguments.read("--help"))
{
arguments.getApplicationUsage()->write(std::cout);
return 1;
}
bool customWindows = false;
2007-01-05 23:30:49 +08:00
while(arguments.read("-2")) customWindows = true;
if (customWindows)
{
osg::GraphicsContext::WindowingSystemInterface* wsi = osg::GraphicsContext::getWindowingSystemInterface();
if (!wsi)
{
osg::notify(osg::NOTICE)<<"View::setUpViewAcrossAllScreens() : Error, no WindowSystemInterface available, cannot create windows."<<std::endl;
return 0;
}
osg::ref_ptr<osg::GraphicsContext::Traits> traits = new osg::GraphicsContext::Traits;
2007-01-05 23:30:49 +08:00
traits->x = 250;
traits->y = 200;
traits->width = 800;
traits->height = 600;
traits->windowDecoration = true;
traits->doubleBuffer = true;
traits->sharedContext = 0;
traits->readDISPLAY();
traits->setUndefinedScreenDetailsToDefaultScreen();
osg::ref_ptr<osg::GraphicsContext> gc = osg::GraphicsContext::createGraphicsContext(traits.get());
2007-01-05 23:30:49 +08:00
if (gc.valid())
{
// need to ensure that the window is cleared make sure that the complete window is set the correct colour
// rather than just the parts of the window that are under the camera's viewports
2007-01-05 23:30:49 +08:00
gc->setClearColor(osg::Vec4f(0.2f,0.2f,0.6f,1.0f));
gc->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
else
{
osg::notify(osg::NOTICE)<<" GraphicsWindow has not been created successfully."<<std::endl;
}
unsigned int numCameras = 2;
2007-01-05 23:32:21 +08:00
double aspectRatioScale = 1.0;
for(unsigned int i=0; i<numCameras;++i)
{
osg::ref_ptr<osg::Camera> camera = new osg::Camera;
camera->setGraphicsContext(gc.get());
2007-01-05 23:30:49 +08:00
camera->setViewport(new osg::Viewport((i* traits->width)/numCameras,(i* traits->height)/numCameras, traits->width/numCameras, traits->height/numCameras));
GLenum buffer = traits->doubleBuffer ? GL_BACK : GL_FRONT;
camera->setDrawBuffer(buffer);
camera->setReadBuffer(buffer);
viewer.addSlave(camera.get(), osg::Matrixd(), osg::Matrixd::scale(aspectRatioScale,1.0,1.0));
}
}
else
{
viewer.setUpViewAcrossAllScreens();
}
// set up the camera manipulation with our custom manipultor
viewer.setCameraManipulator(new GliderManipulator());
// pass the scene graph to the viewer
viewer.setSceneData( createModel() );
return viewer.run();
}