OpenSceneGraph/include/osgIntrospection/Value

437 lines
15 KiB
Plaintext
Raw Normal View History

2006-07-18 23:21:48 +08:00
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
2005-04-29 18:06:50 +08:00
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
//osgIntrospection - Copyright (C) 2005 Marco Jez
#ifndef OSGINTROSPECTION_VALUE_
#define OSGINTROSPECTION_VALUE_
#include <osgIntrospection/Export>
#include <osgIntrospection/Reflection>
#include <osgIntrospection/type_traits>
#include <vector>
#include <memory>
#include <string>
namespace osgIntrospection
{
2005-03-14 17:28:31 +08:00
class Type;
class OSGINTROSPECTION_EXPORT Value
{
public:
/// Default constructor. Initializes internal structures
/// so that the Type returned by getType() is typeof(void),
/// and the value is empty so that isEmpty() returns true.
/// Be careful when using empty values, as some operations
/// on them may throw an exception.
inline Value();
/// Direct initialization constructor for void pointers.
/// Although one of the constructor templates below could
/// certainly handle void pointers as well, we need to treat
/// them separately because void* can't be dereferenced.
inline Value(void *v);
/// Direct initialization constructor for const void pointers.
/// Although one of the constructor templates below could
/// certainly handle void pointers as well, we need to treat
/// them separately because void* can't be dereferenced.
inline Value(const void *v);
/// Direct initialization constructor template for non-const
/// pointers. By initializing an instance of Value through
/// this constructor, internal structures will be configured
/// to handle polymorphic types. This means you'll be able to
/// call getInstanceType() to get the actual type of the
/// dereferenced value.
template<typename T> Value(T *v);
/// Direct initialization constructor template for non-const
/// pointers. By initializing an instance of Value through
/// this constructor, internal structures will be configured
/// to handle polymorphic types. This means you'll be able to
/// call getInstanceType() to get the actual type of the
/// dereferenced value.
template<typename T> Value(const T *v);
/// Direct initialization constructor template for all types
/// that are not handled by any of the constructors above.
/// Calling getInstanceType() on an instance constructed
/// this way returns the same as getType().
template<typename T> Value(const T &v);
/// Copy constructor. The underlying value's type must have
/// consistent copy semantics.
inline Value(const Value& copy);
2005-03-14 17:28:31 +08:00
/// Destructor. Frees internal resources but it does NOT delete
/// the value held. For example, this function will produce a
/// memory leak: void f() { Value v(new int); }
inline ~Value();
/// Assignment operator. Behaves like the copy constructor.
inline Value& operator=(const Value& copy);
2005-03-14 17:28:31 +08:00
/// Returns whether the value is a pointer and it points to
/// something whose type is different than void.
inline bool isTypedPointer() const;
/// Returns whether this Value is empty.
inline bool isEmpty() const;
/// Returns whether the value is a null pointer.
inline bool isNullPointer() const;
/// Returns the exact type of the value held.
inline const Type& getType() const;
2005-03-14 17:28:31 +08:00
/// If the value is a pointer to a non-void type, this method
/// returns the actual type of the dereferenced pointer. Please
/// note it is not the same as getType().getPointedType(),
/// because the latter would return the non-polymorphic type.
/// If the value is not a pointer, this method behaves like
/// getType().
inline const Type& getInstanceType() const;
2005-03-14 17:28:31 +08:00
/// Equal to operator.
bool operator==(const Value& other) const;
2005-03-14 17:28:31 +08:00
/// Less than or equal to operator.
bool operator<=(const Value& other) const;
2005-03-14 17:28:31 +08:00
/// Inequality test operator. Returns !operator==(other).
bool operator!=(const Value& other) const;
/// Greater than operator. Returns !operator<=(other).
bool operator>(const Value& other) const;
2005-03-14 17:28:31 +08:00
/// Less than operator. Returns !operator==(other) && operator<=(other).
bool operator<(const Value& other) const;
2005-03-14 17:28:31 +08:00
/// Greater than or equal to operator. Returns operator==(other) || !operator<=(other)
bool operator>=(const Value& other) const;
2005-03-14 17:28:31 +08:00
/// Tries to convert this instance to a Value of the given type.
/// The conversion is performed by rendering to a temporary stream
/// in the source format and trying to read back from the stream
/// in the destination format. If either the source or destination
/// types, or both, don't have a ReaderWriter object, the conversion
/// fails and an exception is thrown. If the conversion can't be
/// completed for other reasons, other exceptions may be thrown.
Value convertTo(const Type& outtype) const;
2005-03-14 17:28:31 +08:00
/// Tries to convert this instance to a Value of the given type.
/// The conversion is performed by rendering to a temporary stream
/// in the source format and trying to read back from the stream
/// in the destination format. If either the source or destination
/// types, or both, don't have a ReaderWriter object, the conversion
/// fails and an empty Value is returned.
/// Please note that unlike convertTo(), this method does not
/// intentionally throw any exceptions.
Value tryConvertTo(const Type& outtype) const;
2005-03-14 17:28:31 +08:00
/// Tries to get a string representation of the underlying value.
/// This requires the value's type to have a ReaderWriter object
/// associated to it. If the conversion can't be completed, an
/// exception is thrown.
std::string toString() const;
std::wstring toWString() const;
/// Swaps the content of this Value with another Value
void swap(Value& v);
2005-03-14 17:28:31 +08:00
private:
// It's good to have friends!
template<typename T> friend T variant_cast(const Value& v);
template<typename T> friend bool requires_conversion(const Value& v);
template<typename T> friend T *extract_raw_data(Value& v);
template<typename T> friend const T *extract_raw_data(const Value& v);
2005-03-14 17:28:31 +08:00
// throw an exception if the value is empty
void check_empty() const;
// Base class for holding values. Provides a clone() method
// which must be overriden in descendant classes.
struct Instance_base
{
virtual Instance_base *clone() const = 0;
virtual ~Instance_base() {}
};
// Generic descendant of Instance_base for holding values of
// type T. Note that values are created on the stack.
template<typename T>
struct Instance: Instance_base
{
Instance(T data): _data(data) {}
2009-02-03 04:35:19 +08:00
2005-03-14 17:28:31 +08:00
virtual Instance_base *clone() const { return new Instance<T>(*this); }
virtual ~Instance() {}
T _data;
2009-02-03 04:35:19 +08:00
protected:
Instance& operator = (const Instance& rhs)
{
if (&rhs!=this)
{
_data = rhs._data;
}
return *this;
}
2005-03-14 17:28:31 +08:00
};
// Base class for storage of Instance objects. Actually three
// instances are created: the main instance which keeps the
// desired value, an additional instance that keeps a reference
// to that value, and another instance that keeps a const
// reference to that value. These additional instances are queried
// when casting the Value to a reference type.
struct Instance_box_base
{
Instance_box_base()
: inst_(0),
_ref_inst(0),
_const_ref_inst(0)
2005-03-14 17:28:31 +08:00
{
}
virtual ~Instance_box_base()
{
delete inst_;
delete _ref_inst;
delete _const_ref_inst;
2005-03-14 17:28:31 +08:00
}
// clones the instance box
virtual Instance_box_base *clone() const = 0;
// returns the type of the value held
virtual const Type* type() const = 0;
2005-03-14 17:28:31 +08:00
// returns the actual pointed type if applicable
virtual const Type* ptype() const { return 0; }
2005-03-14 17:28:31 +08:00
// returns whether the data is a null pointer
virtual bool nullptr() const = 0;
Instance_base *inst_;
Instance_base *_ref_inst;
Instance_base *_const_ref_inst;
2005-03-14 17:28:31 +08:00
};
// Generic instance box for non-pointer values.
template<typename T>
struct Instance_box: Instance_box_base
{
Instance_box(): Instance_box_base(), nullptr_(false) {}
Instance_box(const T &d, bool nullptr = false)
: Instance_box_base(),
nullptr_(nullptr)
{
Instance<T> *vl = new Instance<T>(d);
inst_ = vl;
_ref_inst = new Instance<T &>(vl->_data);
_const_ref_inst = new Instance<const T &>(vl->_data);
2005-03-14 17:28:31 +08:00
}
2009-02-03 04:35:19 +08:00
2005-03-14 17:28:31 +08:00
virtual Instance_box_base *clone() const
{
Instance_box<T> *new_inbox = new Instance_box<T>();
// ??? this static_cast<> shouldn't be necessary, but the
// MSVC++ compiler complains about invalid casting without it!
Instance<T> *vl = static_cast<Instance<T> *>(inst_->clone());
new_inbox->inst_ = vl;
new_inbox->_ref_inst = new Instance<T &>(vl->_data);
new_inbox->_const_ref_inst = new Instance<const T &>(vl->_data);
2005-03-14 17:28:31 +08:00
new_inbox->nullptr_ = nullptr_;
return new_inbox;
}
virtual const Type* type() const
2005-03-14 17:28:31 +08:00
{
return &typeof(T);
2005-03-14 17:28:31 +08:00
}
virtual bool nullptr() const
{
return nullptr_;
}
private:
bool nullptr_;
2009-02-03 04:35:19 +08:00
Instance_box& operator = (const Instance_box&) { return *this; }
2005-03-14 17:28:31 +08:00
};
// Generic instance box for pointer values. Unlike Instance_box<>,
// this struct template provides a ptype() method that unreferences
// the pointer (T is supposed to be a pointer) and gets its actual
// type.
template<typename T>
struct Ptr_instance_box: Instance_box_base
{
Ptr_instance_box(): Instance_box_base() {}
Ptr_instance_box(const T &d)
: Instance_box_base()
{
Instance<T> *vl = new Instance<T>(d);
inst_ = vl;
_ref_inst = new Instance<T &>(vl->_data);
_const_ref_inst = new Instance<const T &>(vl->_data);
2005-03-14 17:28:31 +08:00
}
virtual Instance_box_base *clone() const
{
Ptr_instance_box<T> *new_inbox = new Ptr_instance_box<T>();
// ??? this static_cast<> shouldn't be necessary, but the
// MSVC++ compiler complains about invalid casting without it!
Instance<T> *vl = static_cast<Instance<T> *>(inst_->clone());
new_inbox->inst_ = vl;
new_inbox->_ref_inst = new Instance<T &>(vl->_data);
new_inbox->_const_ref_inst = new Instance<const T &>(vl->_data);
2005-03-14 17:28:31 +08:00
return new_inbox;
}
virtual const Type* type() const
2005-03-14 17:28:31 +08:00
{
return &typeof(T);
2005-03-14 17:28:31 +08:00
}
virtual const Type* ptype() const
2005-03-14 17:28:31 +08:00
{
if (!static_cast<Instance<T> *>(inst_)->_data) return 0;
return &typeofvalue(*static_cast<Instance<T> *>(inst_)->_data);
2005-03-14 17:28:31 +08:00
}
virtual bool nullptr() const
{
return static_cast<Instance<T> *>(inst_)->_data == 0;
2005-03-14 17:28:31 +08:00
}
};
Instance_box_base *_inbox;
const Type* _type;
const Type* _ptype;
2005-03-14 17:28:31 +08:00
};
/// A vector of values.
typedef std::vector<Value> ValueList;
2005-03-14 17:28:31 +08:00
// INLINE METHODS
inline Value::Value()
: _inbox(0),
_type(&Reflection::type_void()),
_ptype(0)
2005-03-14 17:28:31 +08:00
{
}
template<typename T> Value::Value(const T &v)
: _ptype(0)
2005-03-14 17:28:31 +08:00
{
_inbox = new Instance_box<T>(v);
_type = _inbox->type();
2005-03-14 17:28:31 +08:00
}
inline Value::Value(const void *v)
: _ptype(0)
2005-03-14 17:28:31 +08:00
{
_inbox = new Instance_box<const void *>(v, v == 0);
_type = _inbox->type();
2005-03-14 17:28:31 +08:00
}
inline Value::Value(void *v)
: _ptype(0)
2005-03-14 17:28:31 +08:00
{
_inbox = new Instance_box<void *>(v, v == 0);
_type = _inbox->type();
2005-03-14 17:28:31 +08:00
}
template<typename T> Value::Value(const T *v)
{
_inbox = new Ptr_instance_box<const T *>(v);
_type = _inbox->type();
_ptype = _inbox->ptype();
2005-03-14 17:28:31 +08:00
}
template<typename T> Value::Value(T *v)
{
_inbox = new Ptr_instance_box<T *>(v);
_type = _inbox->type();
_ptype = _inbox->ptype();
2005-03-14 17:28:31 +08:00
}
inline Value::Value(const Value& copy)
: _inbox(copy._inbox? copy._inbox->clone(): 0),
_type(copy._type),
_ptype(copy._ptype)
2005-03-14 17:28:31 +08:00
{
}
inline Value& Value::operator=(const Value& copy)
2005-03-14 17:28:31 +08:00
{
std::auto_ptr<Instance_box_base> new_inbox(copy._inbox? copy._inbox->clone(): 0);
delete _inbox;
_inbox = new_inbox.release();
_type = copy._type;
_ptype = copy._ptype;
2005-03-14 17:28:31 +08:00
return *this;
}
inline Value::~Value()
{
delete _inbox;
2005-03-14 17:28:31 +08:00
}
inline const Type& Value::getType() const
2005-03-14 17:28:31 +08:00
{
return *_type;
2005-03-14 17:28:31 +08:00
}
inline const Type& Value::getInstanceType() const
2005-03-14 17:28:31 +08:00
{
if (_ptype)
return *_ptype;
return *_type;
2005-03-14 17:28:31 +08:00
}
inline bool Value::isTypedPointer() const
{
return _ptype != 0;
2005-03-14 17:28:31 +08:00
}
inline bool Value::isEmpty() const
{
return _inbox == 0;
2005-03-14 17:28:31 +08:00
}
inline bool Value::isNullPointer() const
{
return _inbox->nullptr();
2005-03-14 17:28:31 +08:00
}
}
#endif