OpenSceneGraph/src/osgGA/TrackballManipulator.cpp

410 lines
10 KiB
C++
Raw Normal View History

#include <osgGA/TrackballManipulator>
#include <osg/Quat>
#include <osg/Notify>
using namespace osg;
using namespace osgGA;
TrackballManipulator::TrackballManipulator()
{
_modelScale = 0.01f;
_minimumZoomScale = 0.05f;
_thrown = false;
_distance = 1.0f;
}
TrackballManipulator::~TrackballManipulator()
{
}
void TrackballManipulator::setNode(osg::Node* node)
{
_node = node;
if (_node.get())
{
const osg::BoundingSphere& boundingSphere=_node->getBound();
_modelScale = boundingSphere._radius;
}
}
const osg::Node* TrackballManipulator::getNode() const
{
return _node.get();
}
osg::Node* TrackballManipulator::getNode()
{
return _node.get();
}
/*ea*/
void TrackballManipulator::home(const GUIEventAdapter& ,GUIActionAdapter& us)
{
if(_node.get())
{
const osg::BoundingSphere& boundingSphere=_node->getBound();
computePosition(boundingSphere._center+osg::Vec3( 0.0,-3.5f * boundingSphere._radius,0.0f),
boundingSphere._center,
osg::Vec3(0.0f,0.0f,1.0f));
us.requestRedraw();
}
}
void TrackballManipulator::init(const GUIEventAdapter& ,GUIActionAdapter& )
{
flushMouseEventStack();
}
void TrackballManipulator::getUsage(osg::ApplicationUsage& usage) const
{
usage.addKeyboardMouseBinding("Trackball: Space","Reset the viewing position to home");
usage.addKeyboardMouseBinding("Trackball: +","When in stereo, increase the fusion distance");
usage.addKeyboardMouseBinding("Trackball: -","When in stereo, reduse the fusion distance");
}
bool TrackballManipulator::handle(const GUIEventAdapter& ea,GUIActionAdapter& us)
{
switch(ea.getEventType())
{
case(GUIEventAdapter::PUSH):
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
return true;
}
case(GUIEventAdapter::RELEASE):
{
if (ea.getButtonMask()==0)
{
if (isMouseMoving())
{
if (calcMovement())
{
us.requestRedraw();
us.requestContinuousUpdate(true);
_thrown = true;
}
}
else
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
}
}
else
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
}
return true;
}
case(GUIEventAdapter::DRAG):
{
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
return true;
}
case(GUIEventAdapter::MOVE):
{
return false;
}
case(GUIEventAdapter::KEYDOWN):
if (ea.getKey()==' ')
{
flushMouseEventStack();
_thrown = false;
home(ea,us);
us.requestRedraw();
us.requestContinuousUpdate(false);
return true;
}
return false;
case(GUIEventAdapter::FRAME):
if (_thrown)
{
if (calcMovement()) us.requestRedraw();
}
return false;
default:
return false;
}
}
bool TrackballManipulator::isMouseMoving()
{
if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false;
static const float velocity = 0.1f;
float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized();
float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized();
float len = sqrtf(dx*dx+dy*dy);
float dt = _ga_t0->time()-_ga_t1->time();
return (len>dt*velocity);
}
void TrackballManipulator::flushMouseEventStack()
{
_ga_t1 = NULL;
_ga_t0 = NULL;
}
void TrackballManipulator::addMouseEvent(const GUIEventAdapter& ea)
{
_ga_t1 = _ga_t0;
_ga_t0 = &ea;
}
void TrackballManipulator::setByMatrix(const osg::Matrixd& matrix)
{
_center = osg::Vec3(0.0f,0.0f,-_distance)*matrix;
matrix.get(_rotation);
}
osg::Matrixd TrackballManipulator::getMatrix() const
{
return osg::Matrixd::translate(0.0,0.0,_distance)*osg::Matrixd::rotate(_rotation)*osg::Matrixd::translate(_center);
}
osg::Matrixd TrackballManipulator::getInverseMatrix() const
{
return osg::Matrixd::translate(-_center)*osg::Matrixd::rotate(_rotation.inverse())*osg::Matrixd::translate(0.0,0.0,-_distance);
}
void TrackballManipulator::computePosition(const osg::Vec3& eye,const osg::Vec3& center,const osg::Vec3& up)
{
osg::Vec3 lv(center-eye);
osg::Vec3 f(lv);
f.normalize();
osg::Vec3 s(f^up);
s.normalize();
osg::Vec3 u(s^f);
u.normalize();
osg::Matrix rotation_matrix(s[0], u[0], -f[0], 0.0f,
s[1], u[1], -f[1], 0.0f,
s[2], u[2], -f[2], 0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
_center = center;
_distance = lv.length();
rotation_matrix.get(_rotation);
_rotation = _rotation.inverse();
}
bool TrackballManipulator::calcMovement()
{
// return if less then two events have been added.
if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false;
float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized();
float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized();
// return if there is no movement.
if (dx==0 && dy==0) return false;
unsigned int buttonMask = _ga_t1->getButtonMask();
if (buttonMask==GUIEventAdapter::LEFT_MOUSE_BUTTON)
{
// rotate camera.
osg::Vec3 axis;
float angle;
float px0 = _ga_t0->getXnormalized();
float py0 = _ga_t0->getYnormalized();
float px1 = _ga_t1->getXnormalized();
float py1 = _ga_t1->getYnormalized();
trackball(axis,angle,px1,py1,px0,py0);
osg::Quat new_rotate;
new_rotate.makeRotate(angle,axis);
_rotation = _rotation*new_rotate;
return true;
}
else if (buttonMask==GUIEventAdapter::MIDDLE_MOUSE_BUTTON ||
buttonMask==(GUIEventAdapter::LEFT_MOUSE_BUTTON|GUIEventAdapter::RIGHT_MOUSE_BUTTON))
{
// pan model.
float scale = -0.5f*_distance;
osg::Matrix rotation_matrix;
rotation_matrix.set(_rotation);
osg::Vec3 dv(dx*scale,dy*scale,0.0f);
_center += dv*rotation_matrix;
return true;
}
else if (buttonMask==GUIEventAdapter::RIGHT_MOUSE_BUTTON)
{
// zoom model.
float fd = _distance;
float scale = 1.0f+dy;
if (fd*scale>_modelScale*_minimumZoomScale)
{
_distance *= scale;
}
else
{
// notify(DEBUG_INFO) << "Pushing forward"<<std::endl;
// push the camera forward.
float scale = -fd;
osg::Matrix rotation_matrix(_rotation);
osg::Vec3 dv = (osg::Vec3(0.0f,0.0f,-1.0f)*rotation_matrix)*(dy*scale);
_center += dv;
}
return true;
}
return false;
}
/*
* This size should really be based on the distance from the center of
* rotation to the point on the object underneath the mouse. That
* point would then track the mouse as closely as possible. This is a
* simple example, though, so that is left as an Exercise for the
* Programmer.
*/
const float TRACKBALLSIZE = 0.8f;
/*
* Ok, simulate a track-ball. Project the points onto the virtual
* trackball, then figure out the axis of rotation, which is the cross
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
* Note: This is a deformed trackball-- is a trackball in the center,
* but is deformed into a hyperbolic sheet of rotation away from the
* center. This particular function was chosen after trying out
* several variations.
*
* It is assumed that the arguments to this routine are in the range
* (-1.0 ... 1.0)
*/
void TrackballManipulator::trackball(osg::Vec3& axis,float& angle, float p1x, float p1y, float p2x, float p2y)
{
/*
* First, figure out z-coordinates for projection of P1 and P2 to
* deformed sphere
*/
osg::Matrix rotation_matrix(_rotation);
osg::Vec3 uv = osg::Vec3(0.0f,1.0f,0.0f)*rotation_matrix;
osg::Vec3 sv = osg::Vec3(1.0f,0.0f,0.0f)*rotation_matrix;
osg::Vec3 lv = osg::Vec3(0.0f,0.0f,-1.0f)*rotation_matrix;
osg::Vec3 p1 = sv*p1x+uv*p1y-lv*tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y);
osg::Vec3 p2 = sv*p2x+uv*p2y-lv*tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y);
/*
* Now, we want the cross product of P1 and P2
*/
// Robert,
//
// This was the quick 'n' dirty fix to get the trackball doing the right
// thing after fixing the Quat rotations to be right-handed. You may want
// to do something more elegant.
// axis = p1^p2;
axis = p2^p1;
axis.normalize();
/*
* Figure out how much to rotate around that axis.
*/
float t = (p2-p1).length() / (2.0*TRACKBALLSIZE);
/*
* Avoid problems with out-of-control values...
*/
if (t > 1.0) t = 1.0;
if (t < -1.0) t = -1.0;
angle = inRadians(asin(t));
}
/*
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
* if we are away from the center of the sphere.
*/
float TrackballManipulator::tb_project_to_sphere(float r, float x, float y)
{
float d, t, z;
d = sqrt(x*x + y*y);
/* Inside sphere */
if (d < r * 0.70710678118654752440)
{
z = sqrt(r*r - d*d);
} /* On hyperbola */
else
{
t = r / 1.41421356237309504880;
z = t*t / d;
}
return z;
}