2003-01-22 00:45:36 +08:00
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield
*
* This library is open source and may be redistributed and / or modified under
* the terms of the OpenSceneGraph Public License ( OSGPL ) version 0.0 or
* ( at your option ) any later version . The full license is in LICENSE file
* included with this distribution , and on the openscenegraph . org website .
*
* This library is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* OpenSceneGraph Public License for more details .
*/
2003-09-06 04:48:42 +08:00
2001-09-22 10:42:08 +08:00
# include <osg/Quat>
2001-09-20 05:08:56 +08:00
# include <osg/Notify>
2001-10-15 23:50:55 +08:00
# include <osg/Math>
2004-01-12 22:22:18 +08:00
# include <osg/Timer>
2001-01-11 00:32:10 +08:00
2003-09-03 01:19:18 +08:00
# include <osg/GL>
2001-09-27 17:44:55 +08:00
# include <stdlib.h>
2001-01-11 00:32:10 +08:00
using namespace osg ;
2001-09-22 10:42:08 +08:00
# define SET_ROW(row, v1, v2, v3, v4 ) \
_mat [ ( row ) ] [ 0 ] = ( v1 ) ; \
_mat [ ( row ) ] [ 1 ] = ( v2 ) ; \
_mat [ ( row ) ] [ 2 ] = ( v3 ) ; \
_mat [ ( row ) ] [ 3 ] = ( v4 ) ;
2001-01-11 00:32:10 +08:00
2001-09-22 10:42:08 +08:00
# define INNER_PRODUCT(a,b,r,c) \
( ( a ) . _mat [ r ] [ 0 ] * ( b ) . _mat [ 0 ] [ c ] ) \
+ ( ( a ) . _mat [ r ] [ 1 ] * ( b ) . _mat [ 1 ] [ c ] ) \
+ ( ( a ) . _mat [ r ] [ 2 ] * ( b ) . _mat [ 2 ] [ c ] ) \
+ ( ( a ) . _mat [ r ] [ 3 ] * ( b ) . _mat [ 3 ] [ c ] )
2001-01-11 00:32:10 +08:00
2003-09-06 04:48:42 +08:00
Matrix_implementation : : Matrix_implementation ( value_type a00 , value_type a01 , value_type a02 , value_type a03 ,
2003-09-03 18:47:25 +08:00
value_type a10 , value_type a11 , value_type a12 , value_type a13 ,
value_type a20 , value_type a21 , value_type a22 , value_type a23 ,
value_type a30 , value_type a31 , value_type a32 , value_type a33 )
2001-01-11 00:32:10 +08:00
{
2001-09-22 10:42:08 +08:00
SET_ROW ( 0 , a00 , a01 , a02 , a03 )
SET_ROW ( 1 , a10 , a11 , a12 , a13 )
SET_ROW ( 2 , a20 , a21 , a22 , a23 )
SET_ROW ( 3 , a30 , a31 , a32 , a33 )
2001-01-11 00:32:10 +08:00
}
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : set ( value_type a00 , value_type a01 , value_type a02 , value_type a03 ,
2003-09-03 18:47:25 +08:00
value_type a10 , value_type a11 , value_type a12 , value_type a13 ,
value_type a20 , value_type a21 , value_type a22 , value_type a23 ,
value_type a30 , value_type a31 , value_type a32 , value_type a33 )
2001-01-11 00:32:10 +08:00
{
2001-09-22 10:42:08 +08:00
SET_ROW ( 0 , a00 , a01 , a02 , a03 )
SET_ROW ( 1 , a10 , a11 , a12 , a13 )
SET_ROW ( 2 , a20 , a21 , a22 , a23 )
SET_ROW ( 3 , a30 , a31 , a32 , a33 )
2001-01-11 00:32:10 +08:00
}
2003-09-29 21:14:34 +08:00
# define QX q._v[0]
# define QY q._v[1]
# define QZ q._v[2]
# define QW q._v[3]
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : set ( const Quat & q )
{
// Source: Gamasutra, Rotating Objects Using Quaternions
//
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
double wx , wy , wz , xx , yy , yz , xy , xz , zz , x2 , y2 , z2 ;
// calculate coefficients
x2 = QX + QX ;
y2 = QY + QY ;
z2 = QZ + QZ ;
xx = QX * x2 ;
xy = QX * y2 ;
xz = QX * z2 ;
yy = QY * y2 ;
yz = QY * z2 ;
zz = QZ * z2 ;
wx = QW * x2 ;
wy = QW * y2 ;
wz = QW * z2 ;
// Note. Gamasutra gets the matrix assignments inverted, resulting
// in left-handed rotations, which is contrary to OpenGL and OSG's
// methodology. The matrix assignment has been altered in the next
// few lines of code to do the right thing.
// Don Burns - Oct 13, 2001
2004-01-14 23:14:20 +08:00
_mat [ 0 ] [ 0 ] = 1.0 - ( yy + zz ) ;
2003-09-06 04:48:42 +08:00
_mat [ 1 ] [ 0 ] = xy - wz ;
_mat [ 2 ] [ 0 ] = xz + wy ;
2004-01-14 23:14:20 +08:00
_mat [ 3 ] [ 0 ] = 0.0 ;
2003-09-06 04:48:42 +08:00
_mat [ 0 ] [ 1 ] = xy + wz ;
2004-01-14 23:14:20 +08:00
_mat [ 1 ] [ 1 ] = 1.0 - ( xx + zz ) ;
2003-09-06 04:48:42 +08:00
_mat [ 2 ] [ 1 ] = yz - wx ;
2004-01-14 23:14:20 +08:00
_mat [ 3 ] [ 1 ] = 0.0 ;
2003-09-06 04:48:42 +08:00
_mat [ 0 ] [ 2 ] = xz - wy ;
_mat [ 1 ] [ 2 ] = yz + wx ;
2004-01-14 23:14:20 +08:00
_mat [ 2 ] [ 2 ] = 1.0 - ( xx + yy ) ;
_mat [ 3 ] [ 2 ] = 0.0 ;
2003-09-06 04:48:42 +08:00
2004-01-14 23:14:20 +08:00
_mat [ 0 ] [ 3 ] = 0.0 ;
_mat [ 1 ] [ 3 ] = 0.0 ;
_mat [ 2 ] [ 3 ] = 0.0 ;
_mat [ 3 ] [ 3 ] = 1.0 ;
2003-09-06 04:48:42 +08:00
}
void Matrix_implementation : : get ( Quat & q ) const
{
// Source: Gamasutra, Rotating Objects Using Quaternions
//
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
value_type tr , s ;
value_type tq [ 4 ] ;
int i , j , k ;
int nxt [ 3 ] = { 1 , 2 , 0 } ;
2004-08-31 02:51:42 +08:00
tr = _mat [ 0 ] [ 0 ] + _mat [ 1 ] [ 1 ] + _mat [ 2 ] [ 2 ] + 1.0 ;
2003-09-06 04:48:42 +08:00
// check the diagonal
if ( tr > 0.0 )
{
2004-08-31 02:51:42 +08:00
s = ( value_type ) sqrt ( tr ) ;
2004-01-14 23:14:20 +08:00
QW = s / 2.0 ;
s = 0.5 / s ;
2003-09-06 04:48:42 +08:00
QX = ( _mat [ 1 ] [ 2 ] - _mat [ 2 ] [ 1 ] ) * s ;
QY = ( _mat [ 2 ] [ 0 ] - _mat [ 0 ] [ 2 ] ) * s ;
QZ = ( _mat [ 0 ] [ 1 ] - _mat [ 1 ] [ 0 ] ) * s ;
}
else
{
// diagonal is negative
i = 0 ;
if ( _mat [ 1 ] [ 1 ] > _mat [ 0 ] [ 0 ] )
i = 1 ;
if ( _mat [ 2 ] [ 2 ] > _mat [ i ] [ i ] )
i = 2 ;
j = nxt [ i ] ;
k = nxt [ j ] ;
s = ( value_type ) sqrt ( ( _mat [ i ] [ i ] - ( _mat [ j ] [ j ] + _mat [ k ] [ k ] ) ) + 1.0 ) ;
2004-01-14 23:14:20 +08:00
tq [ i ] = s * 0.5 ;
2003-09-06 04:48:42 +08:00
2004-01-14 23:14:20 +08:00
if ( s ! = 0.0 )
s = 0.5 / s ;
2003-09-06 04:48:42 +08:00
tq [ 3 ] = ( _mat [ j ] [ k ] - _mat [ k ] [ j ] ) * s ;
tq [ j ] = ( _mat [ i ] [ j ] + _mat [ j ] [ i ] ) * s ;
tq [ k ] = ( _mat [ i ] [ k ] + _mat [ k ] [ i ] ) * s ;
QX = tq [ 0 ] ;
QY = tq [ 1 ] ;
QZ = tq [ 2 ] ;
QW = tq [ 3 ] ;
}
}
void Matrix_implementation : : setTrans ( value_type tx , value_type ty , value_type tz )
2001-01-11 00:32:10 +08:00
{
_mat [ 3 ] [ 0 ] = tx ;
_mat [ 3 ] [ 1 ] = ty ;
_mat [ 3 ] [ 2 ] = tz ;
}
2001-09-20 05:08:56 +08:00
2004-05-20 18:15:48 +08:00
void Matrix_implementation : : setTrans ( const Vec3f & v )
{
_mat [ 3 ] [ 0 ] = v [ 0 ] ;
_mat [ 3 ] [ 1 ] = v [ 1 ] ;
_mat [ 3 ] [ 2 ] = v [ 2 ] ;
}
void Matrix_implementation : : setTrans ( const Vec3d & v )
2001-01-11 00:32:10 +08:00
{
2001-09-22 10:42:08 +08:00
_mat [ 3 ] [ 0 ] = v [ 0 ] ;
_mat [ 3 ] [ 1 ] = v [ 1 ] ;
_mat [ 3 ] [ 2 ] = v [ 2 ] ;
2001-01-11 00:32:10 +08:00
}
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : makeIdentity ( )
2001-01-11 00:32:10 +08:00
{
2001-09-22 10:42:08 +08:00
SET_ROW ( 0 , 1 , 0 , 0 , 0 )
SET_ROW ( 1 , 0 , 1 , 0 , 0 )
SET_ROW ( 2 , 0 , 0 , 1 , 0 )
SET_ROW ( 3 , 0 , 0 , 0 , 1 )
2001-01-11 00:32:10 +08:00
}
2004-05-20 18:15:48 +08:00
void Matrix_implementation : : makeScale ( const Vec3f & v )
{
makeScale ( v [ 0 ] , v [ 1 ] , v [ 2 ] ) ;
}
void Matrix_implementation : : makeScale ( const Vec3d & v )
2001-01-11 00:32:10 +08:00
{
2001-09-22 10:42:08 +08:00
makeScale ( v [ 0 ] , v [ 1 ] , v [ 2 ] ) ;
2001-01-11 00:32:10 +08:00
}
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : makeScale ( value_type x , value_type y , value_type z )
2001-01-11 00:32:10 +08:00
{
2001-09-22 10:42:08 +08:00
SET_ROW ( 0 , x , 0 , 0 , 0 )
SET_ROW ( 1 , 0 , y , 0 , 0 )
SET_ROW ( 2 , 0 , 0 , z , 0 )
SET_ROW ( 3 , 0 , 0 , 0 , 1 )
2001-01-11 00:32:10 +08:00
}
2004-05-20 18:15:48 +08:00
void Matrix_implementation : : makeTranslate ( const Vec3f & v )
{
makeTranslate ( v [ 0 ] , v [ 1 ] , v [ 2 ] ) ;
}
void Matrix_implementation : : makeTranslate ( const Vec3d & v )
2001-09-20 05:08:56 +08:00
{
2001-12-13 04:29:10 +08:00
makeTranslate ( v [ 0 ] , v [ 1 ] , v [ 2 ] ) ;
2001-09-20 05:08:56 +08:00
}
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : makeTranslate ( value_type x , value_type y , value_type z )
2001-01-11 00:32:10 +08:00
{
2001-09-22 10:42:08 +08:00
SET_ROW ( 0 , 1 , 0 , 0 , 0 )
SET_ROW ( 1 , 0 , 1 , 0 , 0 )
SET_ROW ( 2 , 0 , 0 , 1 , 0 )
SET_ROW ( 3 , x , y , z , 1 )
2001-01-11 00:32:10 +08:00
}
2004-05-20 18:15:48 +08:00
void Matrix_implementation : : makeRotate ( const Vec3f & from , const Vec3f & to )
{
Quat quat ;
quat . makeRotate ( from , to ) ;
set ( quat ) ;
}
void Matrix_implementation : : makeRotate ( const Vec3d & from , const Vec3d & to )
2001-01-11 00:32:10 +08:00
{
2001-12-12 23:09:11 +08:00
Quat quat ;
2001-12-13 04:29:10 +08:00
quat . makeRotate ( from , to ) ;
2003-09-06 04:48:42 +08:00
set ( quat ) ;
2001-01-11 00:32:10 +08:00
}
2004-05-20 18:15:48 +08:00
void Matrix_implementation : : makeRotate ( value_type angle , const Vec3f & axis )
{
Quat quat ;
quat . makeRotate ( angle , axis ) ;
set ( quat ) ;
}
void Matrix_implementation : : makeRotate ( value_type angle , const Vec3d & axis )
2001-01-11 00:32:10 +08:00
{
2001-12-12 23:09:11 +08:00
Quat quat ;
2001-12-13 04:29:10 +08:00
quat . makeRotate ( angle , axis ) ;
2003-09-06 04:48:42 +08:00
set ( quat ) ;
2001-01-11 00:32:10 +08:00
}
2004-01-10 04:33:23 +08:00
void Matrix_implementation : : makeRotate ( value_type angle , value_type x , value_type y , value_type z )
2001-12-12 01:00:29 +08:00
{
2001-12-12 23:09:11 +08:00
Quat quat ;
2001-12-13 04:29:10 +08:00
quat . makeRotate ( angle , x , y , z ) ;
2003-09-06 04:48:42 +08:00
set ( quat ) ;
2001-09-22 10:42:08 +08:00
}
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : makeRotate ( const Quat & quat )
2001-12-12 23:09:11 +08:00
{
2003-09-06 04:48:42 +08:00
set ( quat ) ;
2001-09-22 10:42:08 +08:00
}
2004-05-20 18:15:48 +08:00
void Matrix_implementation : : makeRotate ( value_type angle1 , const Vec3f & axis1 ,
value_type angle2 , const Vec3f & axis2 ,
value_type angle3 , const Vec3f & axis3 )
{
Quat quat ;
quat . makeRotate ( angle1 , axis1 ,
angle2 , axis2 ,
angle3 , axis3 ) ;
set ( quat ) ;
}
void Matrix_implementation : : makeRotate ( value_type angle1 , const Vec3d & axis1 ,
value_type angle2 , const Vec3d & axis2 ,
value_type angle3 , const Vec3d & axis3 )
Added DOFTransform, MatrixTransform and PositionAttitudeTransform to NodeVisitor.
Added osg::Matrix/Quat::makeRotate(angle1,axis1,angle2,axis2,angle3,axis3) and
osg::Matrix::rotate(angle1,axis1,angle2,axis2,angle3,axis3) method.
Made osg::Matrix/Quat::makeRotate(heading,pitch,roll) and
osg::Matrix::rotate(heading,pitch,roll) all deprecated API.
Fixed the Quat*Quat & Quat*=Quat multiplication methods so that they multiplied
in the correct order - they were reversed originally due to the Quat code being
based on code example which used the v' = M v ordering, rather than the OSG's
v' = v M ordering.
2002-08-18 22:42:43 +08:00
{
Quat quat ;
quat . makeRotate ( angle1 , axis1 ,
angle2 , axis2 ,
angle3 , axis3 ) ;
2003-09-06 04:48:42 +08:00
set ( quat ) ;
Added DOFTransform, MatrixTransform and PositionAttitudeTransform to NodeVisitor.
Added osg::Matrix/Quat::makeRotate(angle1,axis1,angle2,axis2,angle3,axis3) and
osg::Matrix::rotate(angle1,axis1,angle2,axis2,angle3,axis3) method.
Made osg::Matrix/Quat::makeRotate(heading,pitch,roll) and
osg::Matrix::rotate(heading,pitch,roll) all deprecated API.
Fixed the Quat*Quat & Quat*=Quat multiplication methods so that they multiplied
in the correct order - they were reversed originally due to the Quat code being
based on code example which used the v' = M v ordering, rather than the OSG's
v' = v M ordering.
2002-08-18 22:42:43 +08:00
}
2001-09-22 10:42:08 +08:00
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : mult ( const Matrix_implementation & lhs , const Matrix_implementation & rhs )
2002-02-06 05:51:06 +08:00
{
2002-02-07 09:15:15 +08:00
if ( & lhs = = this )
{
postMult ( rhs ) ;
return ;
}
if ( & rhs = = this )
{
preMult ( lhs ) ;
2002-07-26 05:58:53 +08:00
return ;
2002-02-07 09:15:15 +08:00
}
2002-02-06 05:51:06 +08:00
2001-09-22 10:42:08 +08:00
// PRECONDITION: We assume neither &lhs nor &rhs == this
// if it did, use preMult or postMult instead
_mat [ 0 ] [ 0 ] = INNER_PRODUCT ( lhs , rhs , 0 , 0 ) ;
_mat [ 0 ] [ 1 ] = INNER_PRODUCT ( lhs , rhs , 0 , 1 ) ;
_mat [ 0 ] [ 2 ] = INNER_PRODUCT ( lhs , rhs , 0 , 2 ) ;
_mat [ 0 ] [ 3 ] = INNER_PRODUCT ( lhs , rhs , 0 , 3 ) ;
_mat [ 1 ] [ 0 ] = INNER_PRODUCT ( lhs , rhs , 1 , 0 ) ;
_mat [ 1 ] [ 1 ] = INNER_PRODUCT ( lhs , rhs , 1 , 1 ) ;
_mat [ 1 ] [ 2 ] = INNER_PRODUCT ( lhs , rhs , 1 , 2 ) ;
_mat [ 1 ] [ 3 ] = INNER_PRODUCT ( lhs , rhs , 1 , 3 ) ;
_mat [ 2 ] [ 0 ] = INNER_PRODUCT ( lhs , rhs , 2 , 0 ) ;
_mat [ 2 ] [ 1 ] = INNER_PRODUCT ( lhs , rhs , 2 , 1 ) ;
_mat [ 2 ] [ 2 ] = INNER_PRODUCT ( lhs , rhs , 2 , 2 ) ;
_mat [ 2 ] [ 3 ] = INNER_PRODUCT ( lhs , rhs , 2 , 3 ) ;
_mat [ 3 ] [ 0 ] = INNER_PRODUCT ( lhs , rhs , 3 , 0 ) ;
_mat [ 3 ] [ 1 ] = INNER_PRODUCT ( lhs , rhs , 3 , 1 ) ;
_mat [ 3 ] [ 2 ] = INNER_PRODUCT ( lhs , rhs , 3 , 2 ) ;
_mat [ 3 ] [ 3 ] = INNER_PRODUCT ( lhs , rhs , 3 , 3 ) ;
}
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : preMult ( const Matrix_implementation & other )
2001-09-22 10:42:08 +08:00
{
// brute force method requiring a copy
2003-09-06 04:48:42 +08:00
//Matrix_implementation tmp(other* *this);
2001-09-22 10:42:08 +08:00
// *this = tmp;
2004-01-10 04:33:23 +08:00
// more efficient method just use a value_type[4] for temporary storage.
value_type t [ 4 ] ;
2001-09-22 10:42:08 +08:00
for ( int col = 0 ; col < 4 ; + + col ) {
t [ 0 ] = INNER_PRODUCT ( other , * this , 0 , col ) ;
t [ 1 ] = INNER_PRODUCT ( other , * this , 1 , col ) ;
t [ 2 ] = INNER_PRODUCT ( other , * this , 2 , col ) ;
t [ 3 ] = INNER_PRODUCT ( other , * this , 3 , col ) ;
_mat [ 0 ] [ col ] = t [ 0 ] ;
_mat [ 1 ] [ col ] = t [ 1 ] ;
_mat [ 2 ] [ col ] = t [ 2 ] ;
_mat [ 3 ] [ col ] = t [ 3 ] ;
}
2001-09-20 05:08:56 +08:00
2001-01-11 00:32:10 +08:00
}
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : postMult ( const Matrix_implementation & other )
2001-01-11 00:32:10 +08:00
{
2001-09-22 10:42:08 +08:00
// brute force method requiring a copy
2003-09-06 04:48:42 +08:00
//Matrix_implementation tmp(*this * other);
2001-09-22 10:42:08 +08:00
// *this = tmp;
2004-01-10 04:33:23 +08:00
// more efficient method just use a value_type[4] for temporary storage.
2003-09-06 04:48:42 +08:00
value_type t [ 4 ] ;
2001-09-22 10:42:08 +08:00
for ( int row = 0 ; row < 4 ; + + row )
2001-09-20 05:08:56 +08:00
{
2001-09-22 10:42:08 +08:00
t [ 0 ] = INNER_PRODUCT ( * this , other , row , 0 ) ;
t [ 1 ] = INNER_PRODUCT ( * this , other , row , 1 ) ;
t [ 2 ] = INNER_PRODUCT ( * this , other , row , 2 ) ;
t [ 3 ] = INNER_PRODUCT ( * this , other , row , 3 ) ;
SET_ROW ( row , t [ 0 ] , t [ 1 ] , t [ 2 ] , t [ 3 ] )
2001-09-20 05:08:56 +08:00
}
2001-01-11 00:32:10 +08:00
}
2001-09-22 10:42:08 +08:00
# undef INNER_PRODUCT
2001-09-20 05:08:56 +08:00
2002-02-12 07:24:23 +08:00
2004-01-12 22:22:18 +08:00
bool Matrix_implementation : : invert ( const Matrix_implementation & rhs )
{
# if 1
return invert_4x4_new ( rhs ) ;
# else
static const osg : : Timer & timer = * Timer : : instance ( ) ;
Matrix_implementation a ;
Matrix_implementation b ;
Timer_t t1 = timer . tick ( ) ;
a . invert_4x4_new ( rhs ) ;
Timer_t t2 = timer . tick ( ) ;
b . invert_4x4_orig ( rhs ) ;
Timer_t t3 = timer . tick ( ) ;
static double new_time = 0.0 ;
static double orig_time = 0.0 ;
static double count = 0.0 ;
new_time + = timer . delta_u ( t1 , t2 ) ;
orig_time + = timer . delta_u ( t2 , t3 ) ;
+ + count ;
std : : cout < < " Average new= " < < new_time / count < < " orig = " < < orig_time / count < < std : : endl ;
std : : cout < < " new matrix invert time= " < < timer . delta_u ( t1 , t2 ) < < " " < < a < < std : : endl ;
std : : cout < < " orig matrix invert time= " < < timer . delta_u ( t2 , t3 ) < < " " < < b < < std : : endl ;
set ( b ) ;
return true ;
# endif
}
/******************************************
Matrix inversion technique :
Given a matrix mat , we want to invert it .
mat = [ r00 r01 r02 a
r10 r11 r12 b
r20 r21 r22 c
tx ty tz d ]
We note that this matrix can be split into three matrices .
mat = rot * trans * corr , where rot is rotation part , trans is translation part , and corr is the correction due to perspective ( if any ) .
rot = [ r00 r01 r02 0
r10 r11 r12 0
r20 r21 r22 0
0 0 0 1 ]
trans = [ 1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1 ]
corr = [ 1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 s ]
where the elements of corr are obtained from linear combinations of the elements of rot , trans , and mat .
So the inverse is mat ' = ( trans * corr ) ' * rot ' , where rot ' must be computed the traditional way , which is easy since it is only a 3 x3 matrix .
This problem is simplified if [ px py pz s ] = [ 0 0 0 1 ] , which will happen if mat was composed only of rotations , scales , and translations ( which is common ) . In this case , we can ignore corr entirely which saves on a lot of computations .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
bool Matrix_implementation : : invert_4x4_new ( const Matrix_implementation & mat )
{
if ( & mat = = this )
{
Matrix_implementation tm ( mat ) ;
return invert_4x4_new ( tm ) ;
}
register value_type r00 , r01 , r02 ,
r10 , r11 , r12 ,
r20 , r21 , r22 ;
// Copy rotation components directly into registers for speed
r00 = mat . _mat [ 0 ] [ 0 ] ; r01 = mat . _mat [ 0 ] [ 1 ] ; r02 = mat . _mat [ 0 ] [ 2 ] ;
r10 = mat . _mat [ 1 ] [ 0 ] ; r11 = mat . _mat [ 1 ] [ 1 ] ; r12 = mat . _mat [ 1 ] [ 2 ] ;
r20 = mat . _mat [ 2 ] [ 0 ] ; r21 = mat . _mat [ 2 ] [ 1 ] ; r22 = mat . _mat [ 2 ] [ 2 ] ;
// Partially compute inverse of rot
_mat [ 0 ] [ 0 ] = r11 * r22 - r12 * r21 ;
_mat [ 0 ] [ 1 ] = r02 * r21 - r01 * r22 ;
_mat [ 0 ] [ 2 ] = r01 * r12 - r02 * r11 ;
// Compute determinant of rot from 3 elements just computed
register value_type one_over_det = 1.0 / ( r00 * _mat [ 0 ] [ 0 ] + r10 * _mat [ 0 ] [ 1 ] + r20 * _mat [ 0 ] [ 2 ] ) ;
r00 * = one_over_det ; r10 * = one_over_det ; r20 * = one_over_det ; // Saves on later computations
// Finish computing inverse of rot
_mat [ 0 ] [ 0 ] * = one_over_det ;
_mat [ 0 ] [ 1 ] * = one_over_det ;
_mat [ 0 ] [ 2 ] * = one_over_det ;
_mat [ 0 ] [ 3 ] = 0.0 ;
_mat [ 1 ] [ 0 ] = r12 * r20 - r10 * r22 ; // Have already been divided by det
_mat [ 1 ] [ 1 ] = r00 * r22 - r02 * r20 ; // same
_mat [ 1 ] [ 2 ] = r02 * r10 - r00 * r12 ; // same
_mat [ 1 ] [ 3 ] = 0.0 ;
_mat [ 2 ] [ 0 ] = r10 * r21 - r11 * r20 ; // Have already been divided by det
_mat [ 2 ] [ 1 ] = r01 * r20 - r00 * r21 ; // same
_mat [ 2 ] [ 2 ] = r00 * r11 - r01 * r10 ; // same
_mat [ 2 ] [ 3 ] = 0.0 ;
_mat [ 3 ] [ 3 ] = 1.0 ;
// We no longer need the rxx or det variables anymore, so we can reuse them for whatever we want. But we will still rename them for the sake of clarity.
# define d r22
d = mat . _mat [ 3 ] [ 3 ] ;
if ( osg : : square ( d - 1.0 ) > 1.0e-6 ) // Involves perspective, so we must
{ // compute the full inverse
Matrix_implementation TPinv ;
_mat [ 3 ] [ 0 ] = _mat [ 3 ] [ 1 ] = _mat [ 3 ] [ 2 ] = 0.0 ;
# define px r00
# define py r01
# define pz r02
# define one_over_s one_over_det
# define a r10
# define b r11
# define c r12
a = mat . _mat [ 0 ] [ 3 ] ; b = mat . _mat [ 1 ] [ 3 ] ; c = mat . _mat [ 2 ] [ 3 ] ;
px = _mat [ 0 ] [ 0 ] * a + _mat [ 0 ] [ 1 ] * b + _mat [ 0 ] [ 2 ] * c ;
py = _mat [ 1 ] [ 0 ] * a + _mat [ 1 ] [ 1 ] * b + _mat [ 1 ] [ 2 ] * c ;
pz = _mat [ 2 ] [ 0 ] * a + _mat [ 2 ] [ 1 ] * b + _mat [ 2 ] [ 2 ] * c ;
# undef a
2004-01-14 00:07:02 +08:00
# undef b
2004-01-12 22:22:18 +08:00
# undef c
# define tx r10
# define ty r11
# define tz r12
tx = mat . _mat [ 3 ] [ 0 ] ; ty = mat . _mat [ 3 ] [ 1 ] ; tz = mat . _mat [ 3 ] [ 2 ] ;
one_over_s = 1.0 / ( d - ( tx * px + ty * py + tz * pz ) ) ;
tx * = one_over_s ; ty * = one_over_s ; tz * = one_over_s ; // Reduces number of calculations later on
// Compute inverse of trans*corr
TPinv . _mat [ 0 ] [ 0 ] = tx * px + 1.0 ;
TPinv . _mat [ 0 ] [ 1 ] = ty * px ;
TPinv . _mat [ 0 ] [ 2 ] = tz * px ;
TPinv . _mat [ 0 ] [ 3 ] = - px * one_over_s ;
TPinv . _mat [ 1 ] [ 0 ] = tx * py ;
TPinv . _mat [ 1 ] [ 1 ] = ty * py + 1.0 ;
TPinv . _mat [ 1 ] [ 2 ] = tz * py ;
TPinv . _mat [ 1 ] [ 3 ] = - py * one_over_s ;
TPinv . _mat [ 2 ] [ 0 ] = tx * pz ;
TPinv . _mat [ 2 ] [ 1 ] = ty * pz ;
TPinv . _mat [ 2 ] [ 2 ] = tz * pz + 1.0 ;
TPinv . _mat [ 2 ] [ 3 ] = - pz * one_over_s ;
TPinv . _mat [ 3 ] [ 0 ] = - tx ;
TPinv . _mat [ 3 ] [ 1 ] = - ty ;
TPinv . _mat [ 3 ] [ 2 ] = - tz ;
TPinv . _mat [ 3 ] [ 3 ] = one_over_s ;
preMult ( TPinv ) ; // Finish computing full inverse of mat
# undef px
# undef py
# undef pz
2004-01-14 00:07:02 +08:00
# undef one_over_s
2004-01-12 22:22:18 +08:00
# undef d
}
else // Rightmost column is [0; 0; 0; 1] so it can be ignored
{
tx = mat . _mat [ 3 ] [ 0 ] ; ty = mat . _mat [ 3 ] [ 1 ] ; tz = mat . _mat [ 3 ] [ 2 ] ;
// Compute translation components of mat'
_mat [ 3 ] [ 0 ] = - ( tx * _mat [ 0 ] [ 0 ] + ty * _mat [ 1 ] [ 0 ] + tz * _mat [ 2 ] [ 0 ] ) ;
_mat [ 3 ] [ 1 ] = - ( tx * _mat [ 0 ] [ 1 ] + ty * _mat [ 1 ] [ 1 ] + tz * _mat [ 2 ] [ 1 ] ) ;
_mat [ 3 ] [ 2 ] = - ( tx * _mat [ 0 ] [ 2 ] + ty * _mat [ 1 ] [ 2 ] + tz * _mat [ 2 ] [ 2 ] ) ;
# undef tx
# undef ty
# undef tz
}
return true ;
}
2002-02-12 07:24:23 +08:00
template < class T >
inline T SGL_ABS ( T a )
2001-01-11 00:32:10 +08:00
{
2002-02-12 07:24:23 +08:00
return ( a > = 0 ? a : - a ) ;
}
2001-09-20 05:08:56 +08:00
2002-02-12 07:24:23 +08:00
# ifndef SGL_SWAP
# define SGL_SWAP(a,b,temp) ((temp)=(a),(a)=(b),(b)=(temp))
# endif
2002-02-07 09:15:15 +08:00
2004-01-12 22:22:18 +08:00
bool Matrix_implementation : : invert_4x4_orig ( const Matrix_implementation & mat )
2002-02-12 07:24:23 +08:00
{
if ( & mat = = this ) {
2003-09-06 04:48:42 +08:00
Matrix_implementation tm ( mat ) ;
2004-01-12 22:22:18 +08:00
return invert_4x4_orig ( tm ) ;
2002-02-12 07:24:23 +08:00
}
2001-01-11 00:32:10 +08:00
2002-02-12 07:24:23 +08:00
unsigned int indxc [ 4 ] , indxr [ 4 ] , ipiv [ 4 ] ;
unsigned int i , j , k , l , ll ;
unsigned int icol = 0 ;
unsigned int irow = 0 ;
2003-04-29 22:24:11 +08:00
double temp , pivinv , dum , big ;
2001-01-11 00:32:10 +08:00
2002-02-12 07:24:23 +08:00
// copy in place this may be unnecessary
* this = mat ;
2001-01-11 00:32:10 +08:00
2002-02-12 07:24:23 +08:00
for ( j = 0 ; j < 4 ; j + + ) ipiv [ j ] = 0 ;
2001-01-11 00:32:10 +08:00
2002-02-12 07:24:23 +08:00
for ( i = 0 ; i < 4 ; i + + )
2001-01-11 00:32:10 +08:00
{
2004-01-10 04:33:23 +08:00
big = 0.0 ;
2002-02-12 07:24:23 +08:00
for ( j = 0 ; j < 4 ; j + + )
if ( ipiv [ j ] ! = 1 )
for ( k = 0 ; k < 4 ; k + + )
{
if ( ipiv [ k ] = = 0 )
2001-01-11 00:32:10 +08:00
{
2002-02-12 07:24:23 +08:00
if ( SGL_ABS ( operator ( ) ( j , k ) ) > = big )
{
big = SGL_ABS ( operator ( ) ( j , k ) ) ;
irow = j ;
icol = k ;
}
2001-01-11 00:32:10 +08:00
}
2002-02-12 07:24:23 +08:00
else if ( ipiv [ k ] > 1 )
return false ;
}
+ + ( ipiv [ icol ] ) ;
if ( irow ! = icol )
for ( l = 0 ; l < 4 ; l + + ) SGL_SWAP ( operator ( ) ( irow , l ) ,
operator ( ) ( icol , l ) ,
temp ) ;
indxr [ i ] = irow ;
indxc [ i ] = icol ;
if ( operator ( ) ( icol , icol ) = = 0 )
return false ;
pivinv = 1.0 / operator ( ) ( icol , icol ) ;
operator ( ) ( icol , icol ) = 1 ;
for ( l = 0 ; l < 4 ; l + + ) operator ( ) ( icol , l ) * = pivinv ;
for ( ll = 0 ; ll < 4 ; ll + + )
if ( ll ! = icol )
{
dum = operator ( ) ( ll , icol ) ;
operator ( ) ( ll , icol ) = 0 ;
for ( l = 0 ; l < 4 ; l + + ) operator ( ) ( ll , l ) - = operator ( ) ( icol , l ) * dum ;
}
}
for ( int lx = 4 ; lx > 0 ; - - lx )
{
if ( indxr [ lx - 1 ] ! = indxc [ lx - 1 ] )
for ( k = 0 ; k < 4 ; k + + ) SGL_SWAP ( operator ( ) ( k , indxr [ lx - 1 ] ) ,
operator ( ) ( k , indxc [ lx - 1 ] ) , temp ) ;
2001-01-11 00:32:10 +08:00
}
2002-02-12 07:24:23 +08:00
return true ;
2001-01-11 00:32:10 +08:00
}
2001-09-22 10:42:08 +08:00
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : makeOrtho ( double left , double right ,
2002-09-02 20:31:35 +08:00
double bottom , double top ,
double zNear , double zFar )
2001-09-22 10:42:08 +08:00
{
2003-09-06 04:48:42 +08:00
// note transpose of Matrix_implementation wr.t OpenGL documentation, since the OSG use post multiplication rather than pre.
2002-04-10 00:09:19 +08:00
double tx = - ( right + left ) / ( right - left ) ;
double ty = - ( top + bottom ) / ( top - bottom ) ;
double tz = - ( zFar + zNear ) / ( zFar - zNear ) ;
2004-01-14 23:14:20 +08:00
SET_ROW ( 0 , 2.0 / ( right - left ) , 0.0 , 0.0 , 0.0 )
SET_ROW ( 1 , 0.0 , 2.0 / ( top - bottom ) , 0.0 , 0.0 )
SET_ROW ( 2 , 0.0 , 0.0 , - 2.0 / ( zFar - zNear ) , 0.0 )
SET_ROW ( 3 , tx , ty , tz , 1.0 )
2002-04-10 00:09:19 +08:00
}
2003-09-29 21:14:34 +08:00
bool Matrix_implementation : : getOrtho ( double & left , double & right ,
2003-07-17 04:14:48 +08:00
double & bottom , double & top ,
2004-01-24 00:09:56 +08:00
double & zNear , double & zFar ) const
2003-07-17 04:14:48 +08:00
{
2004-01-14 23:14:20 +08:00
if ( _mat [ 0 ] [ 3 ] ! = 0.0 | | _mat [ 1 ] [ 3 ] ! = 0.0 | | _mat [ 2 ] [ 3 ] ! = 0.0 | | _mat [ 3 ] [ 3 ] ! = 1.0 ) return false ;
2003-09-29 21:14:34 +08:00
2004-01-14 23:14:20 +08:00
zNear = ( _mat [ 3 ] [ 2 ] + 1.0 ) / _mat [ 2 ] [ 2 ] ;
zFar = ( _mat [ 3 ] [ 2 ] - 1.0 ) / _mat [ 2 ] [ 2 ] ;
2003-07-17 04:14:48 +08:00
2004-01-14 23:14:20 +08:00
left = - ( 1.0 + _mat [ 3 ] [ 0 ] ) / _mat [ 0 ] [ 0 ] ;
right = ( 1.0 - _mat [ 3 ] [ 0 ] ) / _mat [ 0 ] [ 0 ] ;
2003-07-17 04:14:48 +08:00
2004-01-14 23:14:20 +08:00
bottom = - ( 1.0 + _mat [ 3 ] [ 1 ] ) / _mat [ 1 ] [ 1 ] ;
top = ( 1.0 - _mat [ 3 ] [ 1 ] ) / _mat [ 1 ] [ 1 ] ;
2003-09-29 21:14:34 +08:00
return true ;
2003-07-17 04:14:48 +08:00
}
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : makeFrustum ( double left , double right ,
2002-09-02 20:31:35 +08:00
double bottom , double top ,
double zNear , double zFar )
2002-04-10 00:09:19 +08:00
{
2003-09-06 04:48:42 +08:00
// note transpose of Matrix_implementation wr.t OpenGL documentation, since the OSG use post multiplication rather than pre.
2002-04-10 00:09:19 +08:00
double A = ( right + left ) / ( right - left ) ;
double B = ( top + bottom ) / ( top - bottom ) ;
double C = - ( zFar + zNear ) / ( zFar - zNear ) ;
double D = - 2.0 * zFar * zNear / ( zFar - zNear ) ;
2004-01-14 23:14:20 +08:00
SET_ROW ( 0 , 2.0 * zNear / ( right - left ) , 0.0 , 0.0 , 0.0 )
SET_ROW ( 1 , 0.0 , 2.0 * zNear / ( top - bottom ) , 0.0 , 0.0 )
SET_ROW ( 2 , A , B , C , - 1.0 )
SET_ROW ( 3 , 0.0 , 0.0 , D , 0.0 )
2002-04-10 00:09:19 +08:00
}
2001-09-22 10:42:08 +08:00
2003-09-29 21:14:34 +08:00
bool Matrix_implementation : : getFrustum ( double & left , double & right ,
double & bottom , double & top ,
2004-01-24 00:09:56 +08:00
double & zNear , double & zFar ) const
2003-07-17 04:14:48 +08:00
{
2004-01-14 23:14:20 +08:00
if ( _mat [ 0 ] [ 3 ] ! = 0.0 | | _mat [ 1 ] [ 3 ] ! = 0.0 | | _mat [ 2 ] [ 3 ] ! = - 1.0 | | _mat [ 3 ] [ 3 ] ! = 0.0 ) return false ;
2003-09-29 21:14:34 +08:00
2004-01-14 23:14:20 +08:00
zNear = _mat [ 3 ] [ 2 ] / ( _mat [ 2 ] [ 2 ] - 1.0 ) ;
zFar = _mat [ 3 ] [ 2 ] / ( 1.0 + _mat [ 2 ] [ 2 ] ) ;
2003-07-17 04:14:48 +08:00
2004-01-14 23:14:20 +08:00
left = zNear * ( _mat [ 2 ] [ 0 ] - 1.0 ) / _mat [ 0 ] [ 0 ] ;
right = zNear * ( 1.0 + _mat [ 2 ] [ 0 ] ) / _mat [ 0 ] [ 0 ] ;
2003-07-17 04:14:48 +08:00
2004-01-14 23:14:20 +08:00
top = zNear * ( 1.0 + _mat [ 2 ] [ 1 ] ) / _mat [ 1 ] [ 1 ] ;
bottom = zNear * ( _mat [ 2 ] [ 1 ] - 1.0 ) / _mat [ 1 ] [ 1 ] ;
2003-09-29 21:14:34 +08:00
return true ;
2003-07-17 04:14:48 +08:00
}
2002-04-10 00:09:19 +08:00
2003-09-06 04:48:42 +08:00
void Matrix_implementation : : makePerspective ( double fovy , double aspectRatio ,
2003-09-29 21:14:34 +08:00
double zNear , double zFar )
2002-04-10 00:09:19 +08:00
{
// calculate the appropriate left, right etc.
double tan_fovy = tan ( DegreesToRadians ( fovy * 0.5 ) ) ;
double right = tan_fovy * aspectRatio * zNear ;
double left = - right ;
double top = tan_fovy * zNear ;
double bottom = - top ;
makeFrustum ( left , right , bottom , top , zNear , zFar ) ;
2001-09-22 10:42:08 +08:00
}
2003-09-29 21:14:34 +08:00
bool Matrix_implementation : : getPerspective ( double & fovy , double & aspectRatio ,
2004-01-24 00:09:56 +08:00
double & zNear , double & zFar ) const
2003-09-29 21:14:34 +08:00
{
double right = 0.0 ;
double left = 0.0 ;
double top = 0.0 ;
double bottom = 0.0 ;
if ( getFrustum ( left , right , bottom , top , zNear , zFar ) )
{
fovy = RadiansToDegrees ( atan ( top / zNear ) - atan ( bottom / zNear ) ) ;
aspectRatio = ( right - left ) / ( top - bottom ) ;
return true ;
}
return false ;
}
2002-04-10 00:09:19 +08:00
2004-05-20 18:15:48 +08:00
void Matrix_implementation : : makeLookAt ( const Vec3d & eye , const Vec3d & center , const Vec3d & up )
2002-04-10 00:09:19 +08:00
{
2004-05-20 18:15:48 +08:00
Vec3d f ( center - eye ) ;
2002-04-16 19:41:32 +08:00
f . normalize ( ) ;
2004-05-20 18:15:48 +08:00
Vec3d s ( f ^ up ) ;
2002-04-16 19:41:32 +08:00
s . normalize ( ) ;
2004-05-20 18:15:48 +08:00
Vec3d u ( s ^ f ) ;
2002-04-16 19:41:32 +08:00
u . normalize ( ) ;
set (
2004-01-14 23:14:20 +08:00
s [ 0 ] , u [ 0 ] , - f [ 0 ] , 0.0 ,
s [ 1 ] , u [ 1 ] , - f [ 1 ] , 0.0 ,
s [ 2 ] , u [ 2 ] , - f [ 2 ] , 0.0 ,
0.0 , 0.0 , 0.0 , 1.0 ) ;
2002-04-16 19:41:32 +08:00
2003-09-06 04:48:42 +08:00
preMult ( Matrix_implementation : : translate ( - eye ) ) ;
2002-04-10 00:09:19 +08:00
}
2004-05-20 18:15:48 +08:00
void Matrix_implementation : : getLookAt ( Vec3f & eye , Vec3f & center , Vec3f & up , value_type lookDistance ) const
{
Matrix_implementation inv ;
inv . invert ( * this ) ;
eye = osg : : Vec3f ( 0.0 , 0.0 , 0.0 ) * inv ;
up = transform3x3 ( * this , osg : : Vec3f ( 0.0 , 1.0 , 0.0 ) ) ;
center = transform3x3 ( * this , osg : : Vec3f ( 0.0 , 0.0 , - 1 ) ) ;
center . normalize ( ) ;
center = eye + center * lookDistance ;
}
void Matrix_implementation : : getLookAt ( Vec3d & eye , Vec3d & center , Vec3d & up , value_type lookDistance ) const
2003-07-17 04:14:48 +08:00
{
2003-09-06 04:48:42 +08:00
Matrix_implementation inv ;
2003-07-17 04:14:48 +08:00
inv . invert ( * this ) ;
2004-05-20 18:15:48 +08:00
eye = osg : : Vec3d ( 0.0 , 0.0 , 0.0 ) * inv ;
up = transform3x3 ( * this , osg : : Vec3d ( 0.0 , 1.0 , 0.0 ) ) ;
center = transform3x3 ( * this , osg : : Vec3d ( 0.0 , 0.0 , - 1 ) ) ;
2003-07-17 04:14:48 +08:00
center . normalize ( ) ;
center = eye + center * lookDistance ;
}
2002-04-10 00:09:19 +08:00
# undef SET_ROW