OpenSceneGraph/examples/osgdelaunay/osgdelaunay.cpp

1295 lines
58 KiB
C++
Raw Normal View History

2006-07-18 23:21:48 +08:00
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This application is open source and may be redistributed and/or modified
* freely and without restriction, both in commericial and non commericial applications,
* as long as this copyright notice is maintained.
*
* This application is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
/** Example of use of delaunay triangulator with constraints.
* this could be a method of generating terrains, a constraint forces certain edges to
* exist in the triangulation.
*/
#include <osgDB/ReadFile>
#include <osgUtil/Optimizer>
#include <osgViewer/Viewer>
#include <osg/CoordinateSystemNode>
#include <osgUtil/DelaunayTriangulator>
#include <osg/Material>
#include <osg/Texture2D>
#include <osg/Projection>
#include <osg/MatrixTransform>
#include <osgUtil/Tessellator> // tessellator triangulates the constrained triangles
#include <osgText/Text>
#include <sstream>
#include <iostream>
/** here are 2 common types of constraint
* Area - forces an area to be filled; replacement geometry is a canopy and optional wall
* Linear - constructs a closed loop of constant width around a line.
*/
class WallConstraint: public osgUtil::DelaunayConstraint { // forces lines to eb edge
// wall constraint - can generate a wall at the coordinates of the constraint
public:
/** if you derive a class from DelaunayConstraint then you can create
* a specific geometry creation routine.
*/
WallConstraint() : height(0), txxrepWall(10), txyrepWall(10) { }
/** or create a wall around the constraint area: */
virtual osg::Geometry * makeWallGeometry(void) const;
/** for basic purposes, you can call these routines to make simple fill in geometries */
virtual osg::DrawArrays* makeWall(void ) const { // build a wall height high around the constraint
const osg::Vec3Array *_line= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
return (new osg::DrawArrays(osg::PrimitiveSet::QUAD_STRIP,0,2*_line->size()));
}
virtual osg::Vec3Array *getWall(const float height) const;
virtual osg::Vec2Array *getWallTexcoords(const float height) const;
virtual osg::Vec3Array *getWallNormals(void) const {
osg::ref_ptr<osg::Vec3Array> nrms=new osg::Vec3Array;
const osg::Vec3Array *vertices= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
for (unsigned int ipr=0; ipr<getNumPrimitiveSets(); ipr++) {
const osg::PrimitiveSet* prset=getPrimitiveSet(ipr);
if (prset->getMode()==osg::PrimitiveSet::LINE_LOOP ||
prset->getMode()==osg::PrimitiveSet::LINE_STRIP) { // loops and walls
// start with the last point on the loop
osg::Vec3 prevp=(*vertices)[prset->index (prset->getNumIndices()-1)];
for (unsigned int i=0; i<prset->getNumIndices(); i++) {
const osg::Vec3 curp=(*vertices)[prset->index (i)];
osg::Vec3 nrm=(curp-prevp)^osg::Vec3(0,0,1);
nrm.normalize();
nrms->push_back(nrm);
nrms->push_back(nrm);
prevp=curp;
}
const osg::Vec3 curp=(*vertices)[prset->index (0)];
osg::Vec3 nrm=(curp-prevp)^osg::Vec3(0,0,1);
nrm.normalize();
nrms->push_back(nrm);
nrms->push_back(nrm);
}
}
return nrms.release();
}
// geometry creation parameters
void setWallTexrep(const float w,const float h) { txxrepWall=w;txyrepWall=h;}
/** Wall Geometry will return with this texture applied: */
void setTexture(const char *tx) { texture=tx;}
/** fence/wall height */
void setHeight(const float h) { height=h;}
protected:
float height;
std::string texture;
float txxrepWall, txyrepWall;
};
class ArealConstraint: public osgUtil::DelaunayConstraint { // forces edges of an area to fit triangles
// areal constraint - general nonuniform field, forest, lake etc.
public:
/** if you derive a class from DelaunayConstraint then you can create
* a specific geometry creation routine.
*/
ArealConstraint() : txxrepArea(10), txyrepArea(10),txxrepWall(10), txyrepWall(10) { }
/** return a geometry that fills the constraint.
*/
virtual osg::Geometry * makeAreal( osg::Vec3Array *points);
/** or create a wall around the constraint area: */
virtual osg::Geometry * makeWallGeometry( osg::Vec3Array *points) ;
/** for basic purposes, you can call these routines to make simple fill in geometries */
virtual osg::DrawArrays* makeWall(void ) const;
virtual osg::Vec3Array *getWall(const float height) const;
virtual osg::Vec2Array *getWallTexcoords(const float height) const;
virtual osg::Vec3Array *getWallNormals(void) const;
/** Canopies are the same triangles as the terrain but offset by height above
* (height might be 0). */
virtual osg::DrawArrays* makeCanopy(void ) const;
virtual osg::Vec3Array *getCanopy(const osg::Vec3Array *points,const float height) const;
virtual osg::Vec2Array *getCanopyTexcoords(const osg::Vec3Array *points) const;
virtual osg::Vec3Array *getCanopyNormals(const osg::Vec3Array *points) const;
// geometry creation parameters
void setTexrep(const float w,const float h) { txxrepArea=w;txyrepArea=h;}
void setWallTexrep(const float w,const float h) { txxrepWall=w;txyrepWall=h;}
/** Geometry will return with this texture applied: */
void setWallTexture(const char *tx) { walltexture=tx;}
/** Geometry will return with this texture applied: */
void setTexture(const char *tx) { texture=tx;}
/** fence/wall height */
void setHeight(const float h) { height=h;}
std::string walltexture;
protected:
float height;
std::string texture;
float txxrepArea, txyrepArea;
float txxrepWall, txyrepWall;
};
class LinearConstraint: public osgUtil::DelaunayConstraint {
/** forces edges of a "road" to fit triangles
* if 2 roads cross, then the overlap will be replaced by a 'cross road'
* and the roads built up to the cross roads with a texture along its length. */
public:
2005-12-05 18:24:02 +08:00
LinearConstraint() : osgUtil::DelaunayConstraint(), txxrepAlong(10), txyrepAcross(10), width(2) { }
/** geometry creation parameters */
/* Width of linear feature (eg road, railway) */
void setWidth(const float w) { width=w;}
/** Texture repeat distance across linear (often equal to width) and along its length */
virtual void setTexrep(const float w,const float h) { txyrepAcross=h;txxrepAlong=w; }
/** generate constant width around line - creates the area to be cut into the terrain. */
virtual void setVertices( osg::Vec3Array *lp, const float width);
/** return a geometry that fills the constraint.
*/
virtual osg::Geometry *makeGeometry(const osg::Vec3Array *points) ;
/** return normals array - flat shaded */
osg::Vec3Array* getNormals(const osg::Vec3Array *points);
/** Roads apply a texture proportional to length along the road line. */
virtual osg::DrawArrays* makeRoad( ) const;
virtual osg::Vec3Array *getRoadVertices() const;
virtual osg::Vec2Array *getRoadTexcoords(const osg::Vec3Array *points) ;
virtual osg::Vec3Array *getRoadNormals(const osg::Vec3Array *points) const;
/** Geometry will return with this texture applied: */
void setTexture(const char *tx) { texture=tx;}
protected:
osg::ref_ptr<osg::Vec2Array> _tcoords;
osg::ref_ptr<osg::Vec3Array> _edgecoords;
float txxrepAlong, txyrepAcross;
std::string texture;
float width; // width of a linear feature
osg::ref_ptr<osg::Vec3Array> _midline; // defines the midline of a road, rail etc.
};
/** a specific type of constaint - that replaces an area with a pyramid */
class pyramid : public osgUtil::DelaunayConstraint {
/** sample user constriant - creates hole in terrain to fit base of pyramid, and
* geometry of an Egyptian pyramid to fit the hole. */
public:
pyramid() : _side(100.) {}
void setpos(const osg::Vec3 p, const float size) { _pos=p;_side=size;}
virtual osg::Geometry * makeGeometry(void) const
{
// create pyramid geometry. Centre plus points around base
const osg::Vec3Array *_line= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
osg::Geometry *gm=new osg::Geometry;
osg::Vec3Array *pts=new osg::Vec3Array;
osg::Vec3Array *norms=new osg::Vec3Array;
osg::Vec2Array *tcoords=new osg::Vec2Array;
int ip;
pts->push_back(_pos+osg::Vec3(0,0,_side)*0.5);
for (ip=0; ip<4; ip++) {
pts->push_back((*_line)[ip]);
}
for (ip=1; ip<5; ip++) {
osg::Vec3 nrm=((*pts)[ip]-(*pts)[0])^((*pts)[ip==4?0:ip+1]-(*pts)[ip]);
nrm.normalize( );
norms->push_back(nrm);
}
gm->setNormalBinding(osg::Geometry::BIND_PER_PRIMITIVE);
gm->setVertexArray(pts);
osg::StateSet *dstate= gm->getOrCreateStateSet( );
dstate->setMode( GL_LIGHTING, osg::StateAttribute::ON );
osg::Image* image = osgDB::readImageFile("Images/Brick-Std-Orange.TGA");
if (image)
{
osg::Texture2D* txt = new osg::Texture2D;
txt->setImage(image);
txt->setWrap( osg::Texture2D::WRAP_S, osg::Texture2D::REPEAT );
txt->setWrap( osg::Texture2D::WRAP_T, osg::Texture2D::REPEAT );
dstate->setTextureAttributeAndModes(0,txt,osg::StateAttribute::ON);
}
gm->setNormalArray(norms);
//// gm->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::TRIANGLE_FAN,0,6));
osg::DrawElementsUInt *dui=new osg::DrawElementsUInt(GL_TRIANGLES);
for (ip=0; ip<4; ip++) {
dui->push_back(0);
dui->push_back(ip+1);
dui->push_back(ip==3?1:ip+2);
}
tcoords->push_back(osg::Vec2(2,4));
tcoords->push_back(osg::Vec2(0,0));
tcoords->push_back(osg::Vec2(4,0));
tcoords->push_back(osg::Vec2(0,0));
tcoords->push_back(osg::Vec2(4,0));
gm->setTexCoordArray(0,tcoords);
gm->addPrimitiveSet(dui);
return gm;
}
virtual void calcVertices( void) { // must have a position first
osg::Vec3Array *edges=new osg::Vec3Array;
osg::Vec3 valong;
edges->push_back(_pos+osg::Vec3(0.5,0.5,0)*_side);
edges->push_back(_pos+osg::Vec3(-0.5,0.5,0)*_side);
edges->push_back(_pos+osg::Vec3(-0.5,-0.5,0)*_side);
edges->push_back(_pos+osg::Vec3(0.5,-0.5,0)*_side);
setVertexArray(edges);
}
private:
osg::Vec3 _pos; // where the pyramid is
float _side ; // length of side
};
float getheight(const float x, const float y)
{ // returns the x,y,height of terrain
return 150*sin(x*.0020)*cos(y*.0020);
}
osg::Vec3d getpt(const int np)
{ // returns the x,y,height of terrain up to maxp^2 points
static int maxp =40;
int i=np/maxp;
int j=np%maxp;
// make the random scale 0.00 if you want an equispaced XY grid.
float x=3000.0/(maxp-1)*i+16.*(float)rand()/RAND_MAX;
float y=3000.0/(maxp-1)*j+16.*(float)rand()/RAND_MAX;
float z=getheight(x,y);
if (np>=maxp*maxp) z=-1.e32;
return osg::Vec3d(x,y,z);
}
osg::Node* createHUD(const int ndcs,std::string what)
{ // add a string reporting the type of winding rule tessellation applied
osg::Geode* geode = new osg::Geode();
std::string timesFont("fonts/arial.ttf");
// turn lighting off for the text and disable depth test to ensure its always ontop.
osg::StateSet* stateset = geode->getOrCreateStateSet();
stateset->setMode(GL_LIGHTING,osg::StateAttribute::OFF);
// Disable depth test, and make sure that the hud is drawn after everything
// else so that it always appears ontop.
stateset->setMode(GL_DEPTH_TEST,osg::StateAttribute::OFF);
stateset->setRenderBinDetails(11,"RenderBin");
osg::Vec3 position(50.0f,900.0f,0.0f);
osg::Vec3 delta(0.0f,-35.0f,0.0f);
{
osgText::Text* text = new osgText::Text;
geode->addDrawable( text );
std::ostringstream cue;
cue<<"Delaunay triangulation with constraints level "<<ndcs <<"\n"<< what;
text->setFont(timesFont);
text->setPosition(position);
text->setText(cue.str());
text->setColor(osg::Vec4(1.0,1.0,0.8,1.0));
position += delta*(ndcs+2);
#if 0
text = new osgText::Text;
geode->addDrawable( text );
text->setFont(timesFont);
text->setPosition(position);
text->setText("(use 'W' wireframe & 'T' texture to visualise mesh)");
text->setColor(osg::Vec4(1.0,1.0,0.8,1.0));
position += delta;
#endif
}
{
osgText::Text* text = new osgText::Text;
geode->addDrawable( text );
text->setFont(timesFont);
text->setPosition(position);
text->setText("Press 'n' to add another constraint.");
}
// create the hud.
osg::MatrixTransform* modelview_abs = new osg::MatrixTransform;
modelview_abs->setReferenceFrame(osg::Transform::ABSOLUTE_RF);
modelview_abs->setMatrix(osg::Matrix::identity());
modelview_abs->addChild(geode);
osg::Projection* projection = new osg::Projection;
projection->setMatrix(osg::Matrix::ortho2D(0,1280,0,1024));
projection->addChild(modelview_abs);
return projection;
}
osg::Group *makedelaunay(const int ndcs)
{ // create a terrain tile. This is just an example!
// ndcs is the number of delaunay constraints to be applied
osg::ref_ptr<osg::Group> grp=new osg::Group;
osg::ref_ptr<osg::Geode> geode=new osg::Geode;
osg::ref_ptr<osgUtil::DelaunayTriangulator> trig=new osgUtil::DelaunayTriangulator();
osg::StateSet *stateset=geode->getOrCreateStateSet();
osg::Vec3Array *points=new osg::Vec3Array;
osg::Image* image = osgDB::readImageFile("Images/blueFlowers.png");
if (image)
{
osg::Texture2D* texture = new osg::Texture2D;
texture->setImage(image);
texture->setWrap( osg::Texture2D::WRAP_S, osg::Texture2D::REPEAT );
texture->setWrap( osg::Texture2D::WRAP_T, osg::Texture2D::REPEAT );
stateset->setTextureAttributeAndModes(0,texture,osg::StateAttribute::ON);
}
geode->setStateSet( stateset );
unsigned int i;
int eod=0;
while (eod>=0) {
osg::Vec3d pos=getpt(eod);
if (pos.z()>-10000) {
points->push_back(pos);
eod++;
} else {
eod=-9999;
}
}
std::vector < pyramid* > pyrlist;
osg::ref_ptr<WallConstraint> wc; // This example does not remove the interior
osg::ref_ptr<ArealConstraint> dc2;
osg::ref_ptr<ArealConstraint> forest;
osg::ref_ptr<LinearConstraint> dc3;
osg::ref_ptr<LinearConstraint> dc6;
osg::ref_ptr<LinearConstraint> dc6a;
osg::ref_ptr<LinearConstraint> dc8;
osg::ref_ptr<LinearConstraint> forestroad;
osg::ref_ptr<LinearConstraint> forestroad2;
osg::ref_ptr<LinearConstraint> forestroad3;
osg::ref_ptr<osgUtil::DelaunayConstraint> dc;
std::ostringstream what;
if (1==0) { // add a simple constraint of few points
osg::ref_ptr<osgUtil::DelaunayConstraint> dc=new osgUtil::DelaunayConstraint;
osg::Vec3Array *bounds=new osg::Vec3Array;
unsigned int nmax=4;
for (i=0 ; i<nmax; i++) {
float x=910.0+800.0*(i)/(float)nmax,y=810.0+6000*(i-1)*(i-1)/(float)(nmax*nmax);
bounds->push_back(osg::Vec3(x,y,getheight(x,y)));
}
dc->setVertexArray(bounds);
dc->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP,0,nmax) );
trig->addInputConstraint(dc.get());
what << nmax << " point simple constraint\n";
}
if (ndcs>0) { // add 5 pyramids
for (unsigned int ipy=0; ipy<5/*5*/; ipy++) {
osg::ref_ptr<pyramid> pyr=new pyramid;
float x=2210+ipy*120, y=1120+ipy*220;
pyr->setpos(osg::Vec3(x,y,getheight(x,y)),125.0+10*ipy);
pyr->calcVertices(); // make vertices
pyr->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_LOOP,0,4) );
trig->addInputConstraint(pyr.get());
pyrlist.push_back(pyr.get());
}
what << 5 << " pyramids\n";
if (ndcs>1) {
// add a simple constraint feature - this can cut holes in the terrain or just leave the triangles
// with edges forced to the constraint.
dc=new osgUtil::DelaunayConstraint;
osg::Vec3Array *bounds=new osg::Vec3Array;
for (i=0 ; i<12; i++) {
float x=610.0+420*sin(i/3.0),y=610.0+420*cos(i/3.0);
bounds->push_back(osg::Vec3(x,y,getheight(x,y)));
}
dc->setVertexArray(bounds);
dc->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_LOOP,0,12) );
trig->addInputConstraint(dc.get());
what << 12 << " point closed loop";
if (ndcs>2) {
wc=new WallConstraint; // This example does not remove the interior
// eg to force terrain edges that are on ridges in the terrain etc.
// use wireframe to see the constrained edges.
// NB this is not necessarily a closed loop of edges.
// we do however build a wall at the coordinates.
bounds=new osg::Vec3Array;
for (i=0 ; i<5; i++) {
float x=1610.0+420*sin(i/1.0),y=1610.0+420*cos(i/1.0);
bounds->push_back(osg::Vec3(x,y,getheight(x,y)));
}
wc->setVertexArray(bounds);
wc->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP,0,5) );
wc->setHeight(12.0);
trig->addInputConstraint(wc.get());
what << " with interior removed\n";
what << 5 << " point wall derived constraint\n";
if (ndcs>3) {
// add a removed area and replace it with a different texture
dc2=new ArealConstraint;
bounds=new osg::Vec3Array;
for (i=0 ; i<18; i++) {
float x=1610.0+420*sin(i/3.0),y=610.0+220*cos(i/3.0);
bounds->push_back(osg::Vec3(x,y,getheight(x,y)));
}
dc2->setVertexArray(bounds);
dc2->setTexrep(100,100); // texture is repeated at this frequency
dc2->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_LOOP,0,18) );
trig->addInputConstraint(dc2.get());
what << 18 << " point area replaced\n";
if (ndcs>4) {
dc3=new LinearConstraint;
// a linear feature or 'road'
osg::Vec3Array *verts=new osg::Vec3Array;
for (i=0 ; i<32; i++) {
float x=610.0+50*i+90*sin(i/5.0),y=1110.0+90*cos(i/5.0);
verts->push_back(osg::Vec3(x,y,getheight(x,y)));
}
dc3->setVertices(verts,9.5); // width of road
for (osg::Vec3Array::iterator vit=points->begin(); vit!=points->end(); ) {
if (dc3->contains(*vit)) {
vit=points->erase(vit);
} else {
vit++;
}
}
trig->addInputConstraint(dc3.get());
what << 32 << " point road constraint\n";
if (ndcs>5) {
// add a removed area and replace it with a 'forest' with textured roof and walls
forest=new ArealConstraint;
bounds=new osg::Vec3Array;
for (i=0 ; i<12; i++) {
float x=610.0+420*sin(i/2.0),y=1810.0+420*cos(i/2.0);
bounds->push_back(osg::Vec3(x,y,getheight(x,y)));
}
forest->setVertexArray(bounds);
forest->setHeight(50);
forest->setWallTexrep(100,50);
forest->setTexrep(100,100); // texture is repeated at this frequency
forest->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_LOOP,0,12) );
if (ndcs==6) trig->addInputConstraint(forest.get());
what << 12 << " point forest constraint\n";
if (ndcs>6) { // add roads that intersect forest
osg::ref_ptr<osgUtil::DelaunayConstraint> forestplus=new osgUtil::DelaunayConstraint;
forestroad=new LinearConstraint;
verts=new osg::Vec3Array;
for (i=0 ; i<12; i++) {
int ip=(i-6)*(i-6);
float xp=410.0+20.0*ip;
float y=1210.0+150*i;
verts->push_back(osg::Vec3(xp,y,getheight(xp,y)));
}
forestroad->setVertices(verts,22); // add road
forestplus->merge(forestroad.get());
forestroad2=new LinearConstraint;
verts=new osg::Vec3Array;
for (i=0 ; i<12; i++) {
int ip=(i-6)*(i-6);
float xp=810.0-10.0*ip;
float y=1010.0+150*i;
verts->push_back(osg::Vec3(xp,y,getheight(xp,y)));
}
forestroad2->setVertices(verts,22); // add road
forestplus->merge(forestroad2.get());
forestroad3=new LinearConstraint;
verts=new osg::Vec3Array;
for (i=0 ; i<6; i++) {
int ip=(i-6)*(i-6);
float xp=210.0+140.0*i+ip*10.0;
float y=1510.0+150*i;
verts->push_back(osg::Vec3(xp,y,getheight(xp,y)));
}
forestroad3->setVertices(verts,22); // add road
forestplus->merge(forestroad3.get());
forestplus->merge(forest.get());
forestplus->handleOverlaps();
for (osg::Vec3Array::iterator vit=points->begin(); vit!=points->end(); ) {
if (forestroad->contains(*vit)) {
vit=points->erase(vit);
} else if (forestroad2->contains(*vit)) {
vit=points->erase(vit);
} else if (forestroad3->contains(*vit)) {
vit=points->erase(vit);
} else {
vit++;
}
}
trig->addInputConstraint(forestplus.get());
what << " roads intersect forest constraint\n";
if (ndcs>7) {
// this option adds a more complex DC
// made of several (ok 2 - extend your own way) overlapping DC's
osg::ref_ptr<osgUtil::DelaunayConstraint> dcoverlap=new osgUtil::DelaunayConstraint;
float x=1200; float y=1900;
{
verts=new osg::Vec3Array;
dc6=new LinearConstraint;
verts->push_back(osg::Vec3(x-180,y,getheight(x-180,y)));
verts->push_back(osg::Vec3(x+180,y,getheight(x+180,y)));
dc6->setVertices(verts,22); // width of road
dcoverlap->merge(dc6.get());
}
{
dc6a= new LinearConstraint;
verts=new osg::Vec3Array;
verts->push_back(osg::Vec3(x,y-180,getheight(x,y-180)));
verts->push_back(osg::Vec3(x-20,y,getheight(x,y)));
verts->push_back(osg::Vec3(x,y+180,getheight(x,y+180)));
dc6a->setVertices(verts,22); // width of road
dcoverlap->merge(dc6a.get());
}
what << "2 intersecting roads, with added points\n";
if (ndcs>9) {
// add yet more roads
dc8= new LinearConstraint;
verts=new osg::Vec3Array;
float rad=60.0;
for (float theta=0; theta<4*osg::PI; theta+=0.1*osg::PI) {
float xp=x+rad*cos(theta), yp=y+rad*sin(theta);
verts->push_back(osg::Vec3(xp,yp,getheight(xp,yp)));
rad+=2.5;
}
dc8->setVertices(verts,16); // width of road
dcoverlap->merge(dc8.get());
what << "Spiral road crosses several other constraints.";
}
dcoverlap->handleOverlaps();
if (ndcs>8) {
// remove vertices cleans up the texturing at the intersection.
dcoverlap->removeVerticesInside(dc6.get());
dcoverlap->removeVerticesInside(dc6a.get());
if (dc8.valid()) dcoverlap->removeVerticesInside(dc8.get());
what << " remove internal vertices to improve texturing.";
}
for (osg::Vec3Array::iterator vit=points->begin(); vit!=points->end(); ) {
if (dcoverlap->contains(*vit)) {
vit=points->erase(vit);
} else {
vit++;
}
}
trig->addInputConstraint(dcoverlap.get());
}
}
}
}
}
}
}
} // ndcs>0
trig->setInputPointArray(points);
/** NB you need to supply a vec3 array for the triangulator to calculate normals into */
osg::Vec3Array *norms=new osg::Vec3Array;
trig->setOutputNormalArray(norms);
trig->triangulate();
osg::notify(osg::WARN) << " End of trig\n " <<std::endl;
// Calculate the texture coordinates after triangulation as
//the points may get disordered by the triangulate function
osg::ref_ptr<osg::Geometry> gm=new osg::Geometry;
gm->setVertexArray(points); // points may have been modified in order by triangulation.
/** calculate texture coords for terrain points */
if (image) {
float repeat=150.0, ry=150.0; // how often to repeat texture
osg::Vec2Array *tcoords=new osg::Vec2Array;
for (osg::Vec3Array::iterator itr=points->begin(); itr!=points->end(); itr++) {
osg::Vec2 tcatxy((*itr).x()/repeat,(*itr).y()/ry);
tcoords->push_back(tcatxy);
}
gm->setTexCoordArray(0,tcoords);
}
gm->addPrimitiveSet(trig->getTriangles());
gm->setNormalArray(trig->getOutputNormalArray());
gm->setNormalBinding(osg::Geometry::BIND_PER_PRIMITIVE);
geode->addDrawable(gm.get());
if (ndcs>0) {
for ( std::vector < pyramid* >::iterator itr=pyrlist.begin(); itr!=pyrlist.end(); itr++) {
trig->removeInternalTriangles(*itr);
geode->addDrawable((*itr)->makeGeometry()); // this fills the holes of each pyramid with geometry
}
if (ndcs>2) {
trig->removeInternalTriangles(dc.get());
wc->setTexture("Images/Brick-Norman-Brown.TGA"); // wall looks like brick
geode->addDrawable(wc->makeWallGeometry()); // this creates wall at wc drawarrays
if (ndcs>3) {
trig->removeInternalTriangles(dc2.get());
osg::ref_ptr<osg::Vec3Array> arpts=dc2->getPoints(points);
dc2->setTexture("Images/purpleFlowers.png");
geode->addDrawable(dc2->makeAreal(arpts.get())); // this creates fill in geometry
if (ndcs>4) { // a simple "road"
trig->removeInternalTriangles(dc3.get());
dc3->setTexture ("Images/road.png");
dc3->setTexrep(40,9.5); // texture is repeated at this frequency
geode->addDrawable(dc3->makeGeometry(points)); // this creates road geometry
if (ndcs>5) {
if (ndcs>6) { // road & forest overlap - order of removal is important
trig->removeInternalTriangles(forestroad.get());
trig->removeInternalTriangles(forestroad2.get());
trig->removeInternalTriangles(forestroad3.get());
}
trig->removeInternalTriangles(forest.get());
forest->setTexture("Images/forestRoof.png");
osg::ref_ptr<osg::Vec3Array> locpts=forest->getPoints(points);
geode->addDrawable(forest->makeAreal(locpts.get()));
forest->setWallTexture("Images/forestWall.png");
geode->addDrawable(forest->makeWallGeometry(locpts.get()) );
for (osg::Vec3Array::iterator vit=(*locpts).begin(); vit!=(*locpts).end(); vit++) {
(*vit)+=osg::Vec3(0,0,30);
}
if (ndcs>6) {// road & forest overlap
forestroad->setTexture ("Images/road.png");
forestroad->setTexrep(40,22); // texture is repeated at this frequency
geode->addDrawable(forestroad->makeGeometry(points)); // this creates road geometry
forestroad2->setTexture ("Images/road.png");
forestroad2->setTexrep(40,22); // texture is repeated at this frequency
geode->addDrawable(forestroad2->makeGeometry(points)); // this creates road geometry
forestroad3->setTexture ("Images/road.png");
forestroad3->setTexrep(40,22); // texture is repeated at this frequency
geode->addDrawable(forestroad3->makeGeometry(points)); // this creates road geometry
if (ndcs>7) {// several overlapping DC's - add geom
trig->removeInternalTriangles(dc6.get());
// dc6->makeDrawable();
// dc6a->makeDrawable();
dc6->setTexture ("Images/road.png");
dc6->setTexrep(40,22); // texture is repeated at this frequency
geode->addDrawable(dc6->makeGeometry(points)); // this creates road geometry
trig->removeInternalTriangles(dc6a.get());
dc6a->setTexture ("Images/road.png");
dc6a->setTexrep(40,22); // texture is repeated at this frequency
geode->addDrawable(dc6a->makeGeometry(points)); // this creates road geometry
if (dc8.valid()) {
trig->removeInternalTriangles(dc8.get());
dc8->setTexture ("Images/road.png");
dc8->setTexrep(40,16); // texture is repeated at this frequency
geode->addDrawable(dc8->makeGeometry(points)); // this creates road geometry
}
}
}
}
}
}
}
}
grp->addChild(geode.get());
grp->addChild(createHUD(ndcs,what.str()));
return grp.release();
}
class KeyboardEventHandler : public osgGA::GUIEventHandler
{ // extra event handler traps 'n' key to re-triangulate the basic terrain.
public:
KeyboardEventHandler(osgViewer::Viewer &vr):
viewer(vr), iview(0) {}
virtual bool handle(const osgGA::GUIEventAdapter& ea,osgGA::GUIActionAdapter&)
{
switch(ea.getEventType())
{
case(osgGA::GUIEventAdapter::KEYDOWN):
{
if (ea.getKey()=='n')
{
iview++;
if (iview>10) iview=0;
osg::ref_ptr<osg::Node> loadedModel = makedelaunay(iview);
viewer.setSceneData(loadedModel.get());
return true;
}
break;
}
default:
break;
}
return false;
}
osgViewer::Viewer &viewer;
int iview;
};
osg::Vec3Array * WallConstraint::getWall(const float height) const
{ // return array of points for a wall height high around the constraint
osg::Vec3Array *wall=new osg::Vec3Array;
if (height>0.0) {
osg::Vec3 off(0,0,height);
const osg::Vec3Array *vertices= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
for (unsigned int ipr=0; ipr<getNumPrimitiveSets(); ipr++) {
const osg::PrimitiveSet* prset=getPrimitiveSet(ipr);
if (prset->getMode()==osg::PrimitiveSet::LINE_LOOP ||
prset->getMode()==osg::PrimitiveSet::LINE_STRIP) { // nothing else loops
// start with the last point on the loop
for (unsigned int i=0; i<prset->getNumIndices(); i++) {
const osg::Vec3 curp=(*vertices)[prset->index (i)];
wall->push_back(curp);
wall->push_back(curp+off);
}
const osg::Vec3 curp=(*vertices)[prset->index (0)];
wall->push_back(curp);
wall->push_back(curp+off);
}
}
}
return wall;
}
osg::Vec2Array * WallConstraint::getWallTexcoords(const float height) const
{ // return array of points for a wall height high around the constraint
osg::Vec2Array *tcoords= NULL;
if (height>0.0) {
float texrepRound=txxrepWall;
tcoords= new osg::Vec2Array;
float circumference=0; // distance around wall to get exact number of repeats of texture
const osg::Vec3Array *vertices= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
for (unsigned int ipr=0; ipr<getNumPrimitiveSets(); ipr++) {
const osg::PrimitiveSet* prset=getPrimitiveSet(ipr);
osg::Vec3 prevp=(*vertices)[prset->index (prset->getNumIndices()-1)];
unsigned int i;
for (i=0; i<prset->getNumIndices(); i++) {
const osg::Vec3 curp=(*vertices)[prset->index (i)];
circumference+=(curp-prevp).length();
prevp=curp;
}
const osg::Vec3 curp=(*vertices)[prset->index (0)];
circumference+=(curp-prevp).length();
int nround=(int)(circumference/txxrepWall);
if (nround<1) nround=1; // at least one repeat.
texrepRound=circumference/nround;
float ds=0;
prevp=(*vertices)[prset->index (prset->getNumIndices()-1)];
if (tcoords) {
for (i=0; i<prset->getNumIndices(); i++) {
const osg::Vec3 curp=(*vertices)[prset->index (i)];
osg::Vec2 tci=osg::Vec2f(ds/texrepRound,0/txyrepWall);
tcoords->push_back(tci);
tci=osg::Vec2f(ds/texrepRound,height/txyrepWall);
tcoords->push_back(tci);
ds+=(curp-prevp).length();
prevp=curp;
}
osg::Vec2 tci=osg::Vec2f(ds/texrepRound,0/txyrepWall);
tcoords->push_back(tci);
tci=osg::Vec2f(ds/texrepRound,height/txyrepWall);
tcoords->push_back(tci);
}
} // per primitiveset
}
return tcoords;
}
osg::Geometry *WallConstraint::makeWallGeometry() const
{
osg::ref_ptr<osg::Geometry> gm=new osg::Geometry; // the wall
if (texture!="") {
osg::Image* image = osgDB::readImageFile(texture.c_str());
if (image)
{
osg::Texture2D* txt = new osg::Texture2D;
osg::StateSet* stateset = gm->getOrCreateStateSet();
txt->setImage(image);
txt->setWrap( osg::Texture2D::WRAP_S, osg::Texture2D::REPEAT );
txt->setWrap( osg::Texture2D::WRAP_T, osg::Texture2D::CLAMP );
stateset->setTextureAttributeAndModes(0,txt,osg::StateAttribute::ON);
osg::Material* material = new osg::Material;
material->setAmbient(osg::Material::FRONT_AND_BACK,osg::Vec4(1.0f,1.0f,0.0f,1.0f));
material->setDiffuse(osg::Material::FRONT_AND_BACK,osg::Vec4(1.0f,1.0f,1.0f,1.0f));
stateset->setAttribute(material,osg::StateAttribute::ON);
stateset->setMode( GL_LIGHTING, osg::StateAttribute::ON );
}
}
gm->setVertexArray(getWall(height));
gm->addPrimitiveSet(makeWall());
gm->setTexCoordArray(0,getWallTexcoords(height));
gm->setNormalBinding(osg::Geometry::BIND_PER_VERTEX);
gm->setNormalArray(getWallNormals()); // this creates normals to walls
return gm.release();
}
osg::Vec3Array *ArealConstraint::getWallNormals() const
{
osg::Vec3Array *nrms=new osg::Vec3Array;
const osg::Vec3Array *vertices= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
for (unsigned int ipr=0; ipr<getNumPrimitiveSets(); ipr++) {
const osg::PrimitiveSet* prset=getPrimitiveSet(ipr);
if (prset->getMode()==osg::PrimitiveSet::LINE_LOOP) { // nothing else loops
// start with the last point on the loop
osg::Vec3 prevp=(*vertices)[prset->index (prset->getNumIndices()-1)];
for (unsigned int i=0; i<prset->getNumIndices(); i++) {
const osg::Vec3 curp=(*vertices)[prset->index (i)];
osg::Vec3 nrm=(curp-prevp)^osg::Vec3(0,0,1);
nrm.normalize();
nrms->push_back(nrm);
nrms->push_back(nrm);
prevp=curp;
}
const osg::Vec3 curp=(*vertices)[prset->index (0)];
osg::Vec3 nrm=(curp-prevp)^osg::Vec3(0,0,1);
nrm.normalize();
nrms->push_back(nrm);
nrms->push_back(nrm);
}
}
return nrms;
}
osg::Vec3Array * ArealConstraint::getWall(const float height) const
{ // return array of points for a wall height high around the constraint
osg::Vec3Array *wall=new osg::Vec3Array;
if (height>0.0) {
osg::Vec3 off(0,0,height);
const osg::Vec3Array *vertices= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
for (unsigned int ipr=0; ipr<getNumPrimitiveSets(); ipr++) {
const osg::PrimitiveSet* prset=getPrimitiveSet(ipr);
if (prset->getMode()==osg::PrimitiveSet::LINE_LOOP) { // nothing else loops
// start with the last point on the loop
for (unsigned int i=0; i<prset->getNumIndices(); i++) {
const osg::Vec3 curp=(*vertices)[prset->index (i)];
wall->push_back(curp);
wall->push_back(curp+off);
}
const osg::Vec3 curp=(*vertices)[prset->index (0)];
wall->push_back(curp);
wall->push_back(curp+off);
}
}
}
return wall;
}
osg::Vec2Array * ArealConstraint::getWallTexcoords(const float height) const
{ // return array of points for a wall height high around the constraint
osg::Vec2Array *tcoords= NULL;
if (height>0.0) {
float texrepRound=txxrepWall;
tcoords= new osg::Vec2Array;
float circumference=0; // distance around wall to get exact number of repeats of texture
const osg::Vec3Array *vertices= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
for (unsigned int ipr=0; ipr<getNumPrimitiveSets(); ipr++) {
const osg::PrimitiveSet* prset=getPrimitiveSet(ipr);
osg::Vec3 prevp=(*vertices)[prset->index (prset->getNumIndices()-1)];
unsigned int i;
for (i=0; i<prset->getNumIndices(); i++) {
const osg::Vec3 curp=(*vertices)[prset->index (i)];
circumference+=(curp-prevp).length();
prevp=curp;
}
const osg::Vec3 curp=(*vertices)[prset->index (0)];
circumference+=(curp-prevp).length();
int nround=(int)(circumference/txxrepWall);
if (nround<1) nround=1; // at least one repeat.
texrepRound=circumference/nround;
float ds=0;
prevp=(*vertices)[prset->index (prset->getNumIndices()-1)];
if (tcoords) {
for (i=0; i<prset->getNumIndices(); i++) {
const osg::Vec3 curp=(*vertices)[prset->index (i)];
osg::Vec2 tci=osg::Vec2f(ds/texrepRound,0/txyrepWall);
tcoords->push_back(tci);
tci=osg::Vec2f(ds/texrepRound,height/txyrepWall);
tcoords->push_back(tci);
ds+=(curp-prevp).length();
prevp=curp;
}
osg::Vec2 tci=osg::Vec2f(ds/texrepRound,0/txyrepWall);
tcoords->push_back(tci);
tci=osg::Vec2f(ds/texrepRound,height/txyrepWall);
tcoords->push_back(tci);
}
} // per primitiveset
}
return tcoords;
}
osg::DrawArrays* ArealConstraint::makeCanopy( void ) const
{
return (new osg::DrawArrays(osg::PrimitiveSet::TRIANGLES,0,3*_interiorTris.size()));
}
osg::Vec3Array *ArealConstraint::getCanopy(const osg::Vec3Array *points,const float height) const
{ // returns the array of vertices in the canopy
osg::Vec3 off(0,0,height);
osg::Vec3Array *internals=new osg::Vec3Array;
trilist::const_iterator tritr;
for (tritr=_interiorTris.begin(); tritr!=_interiorTris.end();tritr++) {
for (int i=0; i<3; i++) {
int index=(*tritr)[i];
internals->push_back((*points)[index]+off);
}
}
return internals;
}
osg::Vec3Array *ArealConstraint::getCanopyNormals(const osg::Vec3Array *points) const
{
osg::Vec3Array *nrms=new osg::Vec3Array;
trilist::const_iterator tritr;
for (tritr=_interiorTris.begin(); tritr!=_interiorTris.end();tritr++) {
osg::Vec3 e1=(*points)[(*tritr)[1]]-(*points)[(*tritr)[0]];
osg::Vec3 e2=(*points)[(*tritr)[2]]-(*points)[(*tritr)[0]];
osg::Vec3 nrm=e1^e2;
nrm.normalize();
nrms->push_back(nrm);
}
return nrms;
}
osg::Vec2Array *ArealConstraint::getCanopyTexcoords(const osg::Vec3Array *points) const
{
osg::Vec3Array::const_iterator tritr;
osg::ref_ptr<osg::Vec2Array> tcoords= new osg::Vec2Array ;
for (tritr=points->begin(); tritr!=points->end();tritr++) {
// calculate tcoords for terrain from xy drape.
osg::Vec2 tci=osg::Vec2f(tritr->x()/txxrepArea, tritr->y()/txyrepArea);
tcoords->push_back(tci);
}
return tcoords.release();
}
osg::DrawArrays * ArealConstraint::makeWall(void) const
{ // build a wall height high around the constraint
const osg::Vec3Array *_line= dynamic_cast<const osg::Vec3Array*>(getVertexArray());
return (new osg::DrawArrays(osg::PrimitiveSet::QUAD_STRIP,0,2+2*_line->size()));
}
osg::Geometry *ArealConstraint::makeWallGeometry( osg::Vec3Array *pt)
{
osg::ref_ptr<osg::Geometry> gm=new osg::Geometry; // the wall
osg::ref_ptr<osg::Geometry> edges=new osg::Geometry; // edges of bounds
edges->setVertexArray(pt);
osg::DrawElementsUInt *trgeom=getTriangles();
edges->addPrimitiveSet(trgeom);
osg::ref_ptr<osgUtil::Tessellator> tscx=new osgUtil::Tessellator; // this assembles all the constraints
tscx->setTessellationType(osgUtil::Tessellator::TESS_TYPE_GEOMETRY);
tscx->setBoundaryOnly(true);
tscx->setWindingType( osgUtil::Tessellator::TESS_WINDING_NONZERO);
// find all edges.
const osg::Vec3Array *points=dynamic_cast<osg::Vec3Array*>(getVertexArray());
tscx->retessellatePolygons(*(edges)); // find all edges
if (walltexture!="") {
osg::Image* image = osgDB::readImageFile(walltexture.c_str());
if (image)
{
osg::Texture2D* txt = new osg::Texture2D;
osg::StateSet* stateset = gm->getOrCreateStateSet();
txt->setImage(image);
txt->setWrap( osg::Texture2D::WRAP_S, osg::Texture2D::REPEAT );
txt->setWrap( osg::Texture2D::WRAP_T, osg::Texture2D::CLAMP );
stateset->setTextureAttributeAndModes(0,txt,osg::StateAttribute::ON);
}
}
points=dynamic_cast<osg::Vec3Array*>(edges->getVertexArray());
int nstart=0;
osg::ref_ptr<osg::Vec3Array> coords=new osg::Vec3Array;
osg::ref_ptr<osg::Vec2Array> tcoords=new osg::Vec2Array;
for (unsigned int i=0; i<edges->getNumPrimitiveSets(); i++) {
osg::PrimitiveSet *pr=edges->getPrimitiveSet(i);
if (pr->getMode() == osg::PrimitiveSet::LINE_LOOP) {
float ds=0;
for (unsigned int icon=0; icon<pr->getNumIndices(); icon++) {
unsigned int ithis=pr->index(icon);
osg::Vec3 pt= (*points)[ithis];
coords->push_back(pt);
coords->push_back(pt+osg::Vec3(0,0,height));
tcoords->push_back(osg::Vec2(ds/txxrepWall,0));
tcoords->push_back(osg::Vec2(ds/txxrepWall,1.0));
if (icon<pr->getNumIndices()-1) ds+=((*points)[pr->index(icon+1)]-(*points)[ithis]).length();
else ds+=((*points)[pr->index(0)]-(*points)[ithis]).length();
}
// repeat first point
unsigned int ithis=pr->index(0);
coords->push_back((*points)[ithis]);
coords->push_back((*points)[ithis]+osg::Vec3(0,0,height));
tcoords->push_back(osg::Vec2(ds/txxrepWall,0));
tcoords->push_back(osg::Vec2(ds/txxrepWall,1.0));
gm->setVertexArray(coords.get());
gm->setTexCoordArray(0,tcoords.get());
gm->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUAD_STRIP,nstart,2+2*pr->getNumIndices()));
nstart+=2+2*pr->getNumIndices();
}
}
return gm.release();
}
osg::Geometry * ArealConstraint::makeAreal( osg::Vec3Array *points)
{
osg::ref_ptr<osg::Geometry> gm; // the fill in area
if (_interiorTris.size()>0) {
gm =new osg::Geometry; // the forest roof
gm->setVertexArray(points);
osg::DrawElementsUInt *trgeom=getTriangles();
gm->addPrimitiveSet(trgeom);
gm->setNormalArray(getCanopyNormals(points));
gm->setNormalBinding(osg::Geometry::BIND_PER_PRIMITIVE);
gm->setTexCoordArray(0,getCanopyTexcoords(points));
osg::Image* image = osgDB::readImageFile(texture);
if (image)
{
osg::Texture2D* txt = new osg::Texture2D;
osg::StateSet* stateset = gm->getOrCreateStateSet();
txt->setImage(image);
txt->setWrap( osg::Texture2D::WRAP_S, osg::Texture2D::REPEAT );
txt->setWrap( osg::Texture2D::WRAP_T, osg::Texture2D::REPEAT );
stateset->setTextureAttributeAndModes(0,txt,osg::StateAttribute::ON);
osg::Material* material = new osg::Material;
material->setAmbient(osg::Material::FRONT_AND_BACK,osg::Vec4(1.0f,1.0f,1.0f,1.0f));
material->setDiffuse(osg::Material::FRONT_AND_BACK,osg::Vec4(1.0f,1.0f,1.0f,1.0f));
stateset->setAttribute(material,osg::StateAttribute::ON);
stateset->setMode( GL_LIGHTING, osg::StateAttribute::ON );
}
}
return gm.release();
}
void LinearConstraint::setVertices( osg::Vec3Array *lp, const float w)
{ // generate constant width around line (calls setvertices(edges))
osg::ref_ptr<osg::Vec3Array> edges=new osg::Vec3Array;
_tcoords=new osg::Vec2Array; // texture coordinates for replacement geometry
_edgecoords=new osg::Vec3Array; // posiiton coordinates for replacement geometry
width=w;
_midline=lp;
float ds=0;
for(unsigned int i=0;i<lp->size();i++) {
osg::Vec3 valong;
osg::Vec3 pos[2];
if (i==0) {
valong=(*lp)[i+1]-(*lp)[i];
} else if (i==lp->size()-1) {
valong=(*lp)[i]-(*lp)[i-1];
} else {
valong=(*lp)[i+1]-(*lp)[i-1];
}
valong.normalize();
osg::Vec3 vperp=valong^osg::Vec3(0,0,1);
pos[0]=(*lp)[i]-vperp*.5*width;
pos[1]=(*lp)[i]+vperp*.5*width;
edges->push_back(pos[0]);
_edgecoords->push_back(pos[0]);
_tcoords->push_back(osg::Vec2(0/txyrepAcross,ds/txxrepAlong));
edges->insert(edges->begin() ,pos[1]);
_edgecoords->insert(_edgecoords->begin() ,pos[1]);
_tcoords->insert(_tcoords->begin() ,osg::Vec2(width/txyrepAcross,ds/txxrepAlong));
if (i<lp->size()-1) ds+=((*lp)[i+1]-(*lp)[i]).length();
}
setVertexArray(edges.get());
addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_LOOP,0,edges->size()) );
}
osg::DrawArrays* LinearConstraint::makeRoad(void ) const
{
return new osg::DrawArrays(osg::PrimitiveSet::QUAD_STRIP,0,2*_midline->size());
}
2005-11-28 18:58:09 +08:00
osg::Vec3Array *LinearConstraint::getRoadNormals(const osg::Vec3Array* /*points*/) const
{
osg::Vec3Array *nrms=new osg::Vec3Array;
for(unsigned int i=0;i<_midline->size();i++) {
osg::Vec3 valong; // vector along midline of road
if (i==0) {
valong=(*_midline)[i+1]-(*_midline)[i];
} else if (i==_midline->size()-1) {
valong=(*_midline)[i]-(*_midline)[i-1];
} else {
valong=(*_midline)[i+1]-(*_midline)[i-1];
}
osg::Vec3 vperp=valong^osg::Vec3(0,0,1);
osg::Vec3 nrm=vperp^valong; // normal to linear
nrm.normalize();
nrms->push_back(nrm); // repeated for each vertex of linear.
nrms->push_back(nrm);
}
return nrms;
}
osg::Vec3Array *LinearConstraint::getRoadVertices() const
{
osg::Vec3Array *linearEdges=new osg::Vec3Array;
for(unsigned int i=0;i<_midline->size();i++) {
osg::Vec3 valong; // vector along midline of road
if (i==0) {
valong=(*_midline)[i+1]-(*_midline)[i];
} else if (i==_midline->size()-1) {
valong=(*_midline)[i]-(*_midline)[i-1];
} else {
valong=(*_midline)[i+1]-(*_midline)[i-1];
}
valong.normalize();
osg::Vec3 vperp=valong^osg::Vec3(0,0,1); // vector across road
// sides of linear
linearEdges->push_back((*_midline)[i]-vperp*.5*width);
linearEdges->push_back((*_midline)[i]+vperp*.5*width);
}
return linearEdges;
}
osg::Vec2Array *LinearConstraint::getRoadTexcoords(const osg::Vec3Array *points) {
// need to create a vec2 array from the coordinates that fits the road
osg::Vec3Array::const_iterator tritr;
osg::ref_ptr<osg::Vec2Array> tcoords= new osg::Vec2Array ;
for (tritr=points->begin(); tritr!=points->end();tritr++) {
osg::Vec2 tci(-1.,-1.);
int ib=0;
// osg::Vec3Array *varr=dynamic_cast<osg::Vec3Array*>(getVertexArray());
bool ptfound=false;
for (osg::Vec3Array::iterator vit=_edgecoords->begin(); vit!= _edgecoords->end() && !ptfound; vit++) {
if ((*vit)==(*tritr)) {
tci=_tcoords->at(ib);
ptfound=true;
}
ib++;
}
if (!ptfound) { // search for surrounding points and interpolate
ib=0;
osg::Vec3 pminus=(_edgecoords->back()); // need pminus for interpolation
int ibm1=_edgecoords->size()-1;
for (osg::Vec3Array::iterator vit=_edgecoords->begin(); vit!= _edgecoords->end() /*&& !ptfound*/; vit++) {
osg::Vec3 pplus=(*vit)-(*tritr);
osg::Vec3 dpm=pminus-(*tritr);
pplus.set (pplus.x(),pplus.y(),0);
dpm.set (dpm.x(),dpm.y(),0);
float dprod=pplus*dpm/(pplus.length() * dpm.length());
if (dprod<-0.9999) { // *tritr lies between....
osg::Vec2 tminus=_tcoords->at(ibm1);
osg::Vec2 tplus=_tcoords->at(ib);
float frac=(dpm.length()/(dpm.length()+pplus.length()));
tci=tminus+((tplus-tminus)*frac);
ptfound=true;
}
ibm1=ib;
ib++;
pminus=(*vit);
}
}
tcoords->push_back(tci);
}
// some extra points are not interpolated as they lie between 2 interpolated vertices
for (tritr=points->begin(); tritr!=points->end();tritr++) {
int ib=tritr-points->begin();
osg::Vec2 tci=tcoords->at(ib);
if (tci.x()<-.99 && tci.y()<-.99) {
// search through each of the primitivesets
osg::Vec3Array::const_iterator ptitr;
// osg::notify(osg::WARN) << "Not calculated " << (*tritr).x() <<"," << (*tritr).y() << std::endl;
for (ptitr=points->begin(); ptitr!=points->end();ptitr++) {
}
}
}
return tcoords.release();
}
osg::Vec3Array * LinearConstraint::getNormals(const osg::Vec3Array *points)
{
osg::ref_ptr<osg::Vec3Array> norms=new osg::Vec3Array;
for (osg::DrawElementsUInt::iterator uiitr=prim_tris_->begin(); uiitr!=prim_tris_->end();uiitr+=3) {
osg::Vec3 e1=(*points)[*(uiitr+1)]-(*points)[(*uiitr)];
osg::Vec3 e2=(*points)[*(uiitr+2)]-(*points)[*(uiitr+1)];
osg::Vec3 n=e1^e2;
n.normalize();
// if (n.z()<0) n=-n;
norms->push_back(n);
}
return norms.release();
}
osg::Geometry * LinearConstraint::makeGeometry(const osg::Vec3Array *points)
{
osg::ref_ptr<osg::Geometry> gm=new osg::Geometry; // the fill in road/railway
if (_midline->size()>0) {
osg::ref_ptr<osg::Vec3Array> locpts=getPoints(points);
if (texture!="") {
osg::Image* image = osgDB::readImageFile(texture.c_str());
if (image)
{
osg::Texture2D* txt = new osg::Texture2D;
osg::StateSet* stateset = gm->getOrCreateStateSet();
txt->setImage(image);
txt->setWrap( osg::Texture2D::WRAP_S, osg::Texture2D::REPEAT );
txt->setWrap( osg::Texture2D::WRAP_T, osg::Texture2D::REPEAT );
stateset->setTextureAttributeAndModes(0,txt,osg::StateAttribute::ON);
osg::Material* material = new osg::Material;
material->setAmbient(osg::Material::FRONT_AND_BACK,osg::Vec4(1.0f,1.0f,1.0f,1.0f));
material->setDiffuse(osg::Material::FRONT_AND_BACK,osg::Vec4(1.0f,1.0f,1.0f,1.0f));
stateset->setAttribute(material,osg::StateAttribute::ON);
stateset->setMode( GL_LIGHTING, osg::StateAttribute::ON );
}
gm->setTexCoordArray(0,getRoadTexcoords(locpts.get()));
}
gm->setVertexArray(locpts.get());
gm->setNormalArray(getNormals(locpts.get()));
gm->setNormalBinding(osg::Geometry::BIND_PER_PRIMITIVE);
gm->addPrimitiveSet(getTriangles());
}
return gm.release();
}
int main( int argc, char **argv )
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// construct the viewer.
osgViewer::Viewer viewer;
// create the scene from internal specified terrain/constraints.
osg::ref_ptr<osg::Node> loadedModel = makedelaunay(0);
// if no model has been successfully loaded report failure.
if (!loadedModel)
{
std::cout << arguments.getApplicationName() <<": No data loaded" << std::endl;
return 1;
}
// optimize the scene graph, remove rendundent nodes and state etc.
osgUtil::Optimizer optimizer;
optimizer.optimize(loadedModel.get());
// pass the loaded scene graph to the viewer.
viewer.setSceneData(loadedModel.get());
// copied from osgtessealte.cpp
// add event handler for keyboard 'n' to retriangulate
viewer.addEventHandler(new KeyboardEventHandler(viewer));
return viewer.run();
}