OpenSceneGraph/src/osgGA/TerrainManipulator.cpp

684 lines
19 KiB
C++
Raw Normal View History

#include <osgGA/TerrainManipulator>
#include <osg/Quat>
#include <osg/Notify>
#include <osgUtil/IntersectVisitor>
using namespace osg;
using namespace osgGA;
TerrainManipulator::TerrainManipulator()
{
_rotationMode =ELEVATION_AZIM;
_distance = 1.0;
_thrown = false;
}
TerrainManipulator::~TerrainManipulator()
{
}
void TerrainManipulator::setRotationMode(RotationMode mode)
{
_rotationMode = mode;
// need to correct rotation.
}
void TerrainManipulator::setNode(osg::Node* node)
{
_node = node;
if (_node.get())
{
const osg::BoundingSphere& boundingSphere=_node->getBound();
const float minimumDistanceScale = 0.001f;
_minimumDistance = osg::clampBetween(
boundingSphere._radius * minimumDistanceScale,
0.00001f,1.0f);
osg::notify(osg::INFO)<<"Setting terrain manipulator _minimumDistance to "<<_minimumDistance<<std::endl;
}
if (getAutoComputeHomePosition()) computeHomePosition();
}
const osg::Node* TerrainManipulator::getNode() const
{
return _node.get();
}
osg::Node* TerrainManipulator::getNode()
{
return _node.get();
}
void TerrainManipulator::home(const GUIEventAdapter& ,GUIActionAdapter& us)
{
if (getAutoComputeHomePosition()) computeHomePosition();
computePosition(_homeEye, _homeCenter, _homeUp);
us.requestRedraw();
}
void TerrainManipulator::init(const GUIEventAdapter& ,GUIActionAdapter& )
{
flushMouseEventStack();
}
void TerrainManipulator::getUsage(osg::ApplicationUsage& usage) const
{
usage.addKeyboardMouseBinding("Trackball: Space","Reset the viewing position to home");
usage.addKeyboardMouseBinding("Trackball: +","When in stereo, increase the fusion distance");
usage.addKeyboardMouseBinding("Trackball: -","When in stereo, reduse the fusion distance");
}
bool TerrainManipulator::handle(const GUIEventAdapter& ea,GUIActionAdapter& us)
{
switch(ea.getEventType())
{
case(GUIEventAdapter::PUSH):
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
return true;
}
case(GUIEventAdapter::RELEASE):
{
if (ea.getButtonMask()==0)
{
if (isMouseMoving())
{
if (calcMovement())
{
us.requestRedraw();
us.requestContinuousUpdate(true);
_thrown = true;
}
}
else
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
}
}
else
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
}
return true;
}
case(GUIEventAdapter::DRAG):
{
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
return true;
}
case(GUIEventAdapter::MOVE):
{
return false;
}
case(GUIEventAdapter::KEYDOWN):
if (ea.getKey()==' ')
{
flushMouseEventStack();
_thrown = false;
home(ea,us);
us.requestRedraw();
us.requestContinuousUpdate(false);
return true;
}
return false;
case(GUIEventAdapter::FRAME):
if (_thrown)
{
if (calcMovement()) us.requestRedraw();
}
return false;
default:
return false;
}
}
bool TerrainManipulator::isMouseMoving()
{
if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false;
static const float velocity = 0.1f;
float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized();
float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized();
float len = sqrtf(dx*dx+dy*dy);
float dt = _ga_t0->time()-_ga_t1->time();
return (len>dt*velocity);
}
void TerrainManipulator::flushMouseEventStack()
{
_ga_t1 = NULL;
_ga_t0 = NULL;
}
void TerrainManipulator::addMouseEvent(const GUIEventAdapter& ea)
{
_ga_t1 = _ga_t0;
_ga_t0 = &ea;
}
void TerrainManipulator::setByMatrix(const osg::Matrixd& matrix)
{
2004-05-07 19:18:18 +08:00
osg::Vec3 lookVector(- matrix(2,0),-matrix(2,1),-matrix(2,2));
osg::Vec3 eye(matrix(3,0),matrix(3,1),matrix(3,2));
osg::notify(INFO)<<"eye point "<<eye<<std::endl;
osg::notify(INFO)<<"lookVector "<<lookVector<<std::endl;
if (!_node)
{
_center = eye+ lookVector;
_distance = lookVector.length();
matrix.get(_rotation);
return;
}
2004-05-07 19:18:18 +08:00
// need to reintersect with the terrain
osgUtil::IntersectVisitor iv;
const osg::BoundingSphere& bs = _node->getBound();
float distance = (eye-bs.center()).length() + _node->getBound().radius();
osg::Vec3d start_segment = eye;
osg::Vec3d end_segment = eye + lookVector*distance;
2004-05-07 19:18:18 +08:00
//CoordinateFrame coordinateFrame = getCoordinateFrame(_center.x(), _center.y(), _center.z());
//osg::notify(INFO)<<"start="<<start_segment<<"\tend="<<end_segment<<"\tupVector="<<getUpVector(coordinateFrame)<<std::endl;
2004-05-07 19:18:18 +08:00
osg::ref_ptr<osg::LineSegment> segLookVector = new osg::LineSegment;
segLookVector->set(start_segment,end_segment);
iv.addLineSegment(segLookVector.get());
_node->accept(iv);
bool hitFound = false;
if (iv.hits())
{
osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segLookVector.get());
if (!hitList.empty())
{
2004-07-19 17:39:58 +08:00
notify(INFO) << "Hit terrain ok A"<< std::endl;
osg::Vec3d ip = hitList.front().getWorldIntersectPoint();
_center = ip;
2004-05-07 19:18:18 +08:00
_distance = (eye-ip).length();
osg::Matrix rotation_matrix = osg::Matrixd::translate(0.0,0.0,-_distance)*
matrix*
osg::Matrixd::translate(-_center);
2004-05-07 19:18:18 +08:00
rotation_matrix.get(_rotation);
hitFound = true;
}
}
if (!hitFound)
{
CoordinateFrame eyePointCoordFrame = getCoordinateFrame( eye );
2004-05-07 19:18:18 +08:00
// clear the intersect visitor ready for a new test
iv.reset();
osg::ref_ptr<osg::LineSegment> segDowVector = new osg::LineSegment;
segLookVector->set(eye+getUpVector(eyePointCoordFrame)*distance,
eye-getUpVector(eyePointCoordFrame)*distance);
iv.addLineSegment(segLookVector.get());
_node->accept(iv);
hitFound = false;
if (iv.hits())
{
osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segLookVector.get());
if (!hitList.empty())
{
2004-07-19 17:39:58 +08:00
notify(INFO) << "Hit terrain ok B"<< std::endl;
osg::Vec3d ip = hitList.front().getWorldIntersectPoint();
2004-05-07 19:18:18 +08:00
_center = ip;
2004-05-07 19:18:18 +08:00
_distance = (eye-ip).length();
_rotation.set(0,0,0,1);
hitFound = true;
}
}
}
CoordinateFrame coordinateFrame = getCoordinateFrame(_center);
_previousUp = getUpVector(coordinateFrame);
clampOrientation();
}
osg::Matrixd TerrainManipulator::getMatrix() const
{
return osg::Matrixd::translate(0.0,0.0,_distance)*osg::Matrixd::rotate(_rotation)*osg::Matrix::translate(_center);
}
osg::Matrixd TerrainManipulator::getInverseMatrix() const
{
return osg::Matrix::translate(-_center)*osg::Matrixd::rotate(_rotation.inverse())*osg::Matrixd::translate(0.0,0.0,-_distance);
}
void TerrainManipulator::computePosition(const osg::Vec3d& eye,const osg::Vec3d& center,const osg::Vec3d& up)
{
if (!_node) return;
// compute rotation matrix
osg::Vec3 lv(center-eye);
_distance = lv.length();
_center = center;
2004-07-19 17:39:58 +08:00
osg::notify(osg::INFO) << "In compute"<< std::endl;
if (_node.valid())
{
bool hitFound = false;
float distance = lv.length();
float maxDistance = distance+2*(eye-_node->getBound().center()).length();
osg::Vec3 farPosition = eye+lv*(maxDistance/distance);
osg::Vec3 endPoint = center;
for(int i=0;
!hitFound && i<2;
++i, endPoint = farPosition)
{
// compute the itersection with the scene.
osgUtil::IntersectVisitor iv;
osg::ref_ptr<osg::LineSegment> segLookVector = new osg::LineSegment;
segLookVector->set(eye,endPoint );
iv.addLineSegment(segLookVector.get());
_node->accept(iv);
if (iv.hits())
{
osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segLookVector.get());
if (!hitList.empty())
{
osg::notify(osg::INFO) << "Hit terrain ok C"<< std::endl;
osg::Vec3d ip = hitList.front().getWorldIntersectPoint();
_center = ip;
_distance = (ip-eye).length();
hitFound = true;
}
}
}
}
// note LookAt = inv(CF)*inv(RM)*inv(T) which is equivilant to:
// inv(R) = CF*LookAt.
osg::Matrixd rotation_matrix = osg::Matrixd::lookAt(eye,center,up);
rotation_matrix.get(_rotation);
_rotation = _rotation.inverse();
CoordinateFrame coordinateFrame = getCoordinateFrame(_center);
_previousUp = getUpVector(coordinateFrame);
clampOrientation();
}
bool TerrainManipulator::calcMovement()
{
// return if less then two events have been added.
if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false;
double dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized();
double dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized();
// return if there is no movement.
if (dx==0 && dy==0) return false;
unsigned int buttonMask = _ga_t1->getButtonMask();
if (buttonMask==GUIEventAdapter::LEFT_MOUSE_BUTTON)
{
if (_rotationMode==ELEVATION_AZIM_ROLL)
{
// rotate camera.
osg::Vec3 axis;
double angle;
double px0 = _ga_t0->getXnormalized();
double py0 = _ga_t0->getYnormalized();
double px1 = _ga_t1->getXnormalized();
double py1 = _ga_t1->getYnormalized();
trackball(axis,angle,px1,py1,px0,py0);
osg::Quat new_rotate;
new_rotate.makeRotate(angle,axis);
_rotation = _rotation*new_rotate;
}
else
{
osg::Matrix rotation_matrix;
rotation_matrix.set(_rotation);
osg::Vec3d lookVector = -getUpVector(rotation_matrix);
osg::Vec3d sideVector = getSideVector(rotation_matrix);
osg::Vec3d upVector = getFrontVector(rotation_matrix);
CoordinateFrame coordinateFrame = getCoordinateFrame(_center);
osg::Vec3d localUp = getUpVector(coordinateFrame);
//osg::Vec3d localUp = _previousUp;
osg::Vec3d forwardVector = localUp^sideVector;
sideVector = forwardVector^localUp;
forwardVector.normalize();
sideVector.normalize();
osg::Quat rotate_elevation;
rotate_elevation.makeRotate(dy,sideVector);
osg::Quat rotate_azim;
rotate_azim.makeRotate(-dx,localUp);
_rotation = _rotation * rotate_elevation * rotate_azim;
}
return true;
}
else if (buttonMask==GUIEventAdapter::MIDDLE_MOUSE_BUTTON ||
buttonMask==(GUIEventAdapter::LEFT_MOUSE_BUTTON|GUIEventAdapter::RIGHT_MOUSE_BUTTON))
{
// pan model.
2004-07-12 17:17:21 +08:00
double scale = -0.3f*_distance;
osg::Matrix rotation_matrix;
rotation_matrix.set(_rotation);
// compute look vector.
osg::Vec3d lookVector = -getUpVector(rotation_matrix);
osg::Vec3d sideVector = getSideVector(rotation_matrix);
osg::Vec3d upVector = getFrontVector(rotation_matrix);
// CoordinateFrame coordinateFrame = getCoordinateFrame(_center);
// osg::Vec3d localUp = getUpVector(coordinateFrame);
osg::Vec3d localUp = _previousUp;
osg::Vec3d forwardVector =localUp^sideVector;
sideVector = forwardVector^localUp;
forwardVector.normalize();
sideVector.normalize();
osg::Vec3d dv = forwardVector * (dy*scale) + sideVector * (dx*scale);
_center += dv;
// need to recompute the itersection point along the look vector.
if (_node.valid())
{
// now reorientate the coordinate frame to the frame coords.
CoordinateFrame coordinateFrame = getCoordinateFrame(_center);
// need to reintersect with the terrain
osgUtil::IntersectVisitor iv;
2004-05-06 20:30:53 +08:00
double distance = _node->getBound().radius()*0.1f;
osg::Vec3d start_segment = _center + getUpVector(coordinateFrame) * distance;
osg::Vec3d end_segment = start_segment - getUpVector(coordinateFrame) * (2.0f*distance);
osg::notify(INFO)<<"start="<<start_segment<<"\tend="<<end_segment<<"\tupVector="<<getUpVector(coordinateFrame)<<std::endl;
osg::ref_ptr<osg::LineSegment> segLookVector = new osg::LineSegment;
segLookVector->set(start_segment,end_segment);
iv.addLineSegment(segLookVector.get());
_node->accept(iv);
bool hitFound = false;
if (iv.hits())
{
osgUtil::IntersectVisitor::HitList& hitList = iv.getHitList(segLookVector.get());
if (!hitList.empty())
{
notify(INFO) << "Hit terrain ok"<< std::endl;
osg::Vec3d ip = hitList.front().getWorldIntersectPoint();
_center = ip;
hitFound = true;
}
}
if (!hitFound)
{
// ??
osg::notify(INFO)<<"TerrainManipulator unable to intersect with terrain."<<std::endl;
}
coordinateFrame = getCoordinateFrame(_center);
osg::Vec3d new_localUp = getUpVector(coordinateFrame);
osg::Quat pan_rotation;
pan_rotation.makeRotate(localUp,new_localUp);
if (!pan_rotation.zeroRotation())
{
_rotation = _rotation * pan_rotation;
_previousUp = new_localUp;
//osg::notify(osg::NOTICE)<<"Rotating from "<<localUp<<" to "<<new_localUp<<" angle = "<<acos(localUp*new_localUp/(localUp.length()*new_localUp.length()))<<std::endl;
//clampOrientation();
}
else
{
osg::notify(osg::INFO)<<"New up orientation nearly inline - no need to rotate"<<std::endl;
}
}
return true;
}
else if (buttonMask==GUIEventAdapter::RIGHT_MOUSE_BUTTON)
{
// zoom model.
double fd = _distance;
double scale = 1.0f+dy;
if (fd*scale>_minimumDistance)
{
_distance *= scale;
} else
{
_distance = _minimumDistance;
}
return true;
}
return false;
}
void TerrainManipulator::clampOrientation()
{
if (_rotationMode==ELEVATION_AZIM)
{
osg::Matrix rotation_matrix;
rotation_matrix.set(_rotation);
osg::Vec3d lookVector = -getUpVector(rotation_matrix);
osg::Vec3d upVector = getFrontVector(rotation_matrix);
CoordinateFrame coordinateFrame = getCoordinateFrame(_center);
osg::Vec3d localUp = getUpVector(coordinateFrame);
//osg::Vec3d localUp = _previousUp;
osg::Vec3d sideVector = lookVector ^ localUp;
if (sideVector.length()<0.1)
{
osg::notify(osg::INFO)<<"Side vector short "<<sideVector.length()<<std::endl;
sideVector = upVector^localUp;
sideVector.normalize();
}
Vec3d newUpVector = sideVector^lookVector;
newUpVector.normalize();
osg::Quat rotate_roll;
rotate_roll.makeRotate(upVector,newUpVector);
if (!rotate_roll.zeroRotation())
{
_rotation = _rotation * rotate_roll;
}
}
}
/*
* This size should really be based on the distance from the center of
* rotation to the point on the object underneath the mouse. That
* point would then track the mouse as closely as possible. This is a
* simple example, though, so that is left as an Exercise for the
* Programmer.
*/
const float TRACKBALLSIZE = 0.8f;
/*
* Ok, simulate a track-ball. Project the points onto the virtual
* trackball, then figure out the axis of rotation, which is the cross
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
* Note: This is a deformed trackball-- is a trackball in the center,
* but is deformed into a hyperbolic sheet of rotation away from the
* center. This particular function was chosen after trying out
* several variations.
*
* It is assumed that the arguments to this routine are in the range
* (-1.0 ... 1.0)
*/
void TerrainManipulator::trackball(osg::Vec3& axis,double & angle, double p1x, double p1y, double p2x, double p2y)
{
/*
* First, figure out z-coordinates for projection of P1 and P2 to
* deformed sphere
*/
osg::Matrix rotation_matrix(_rotation);
osg::Vec3d uv = osg::Vec3d(0.0,1.0,0.0)*rotation_matrix;
osg::Vec3d sv = osg::Vec3d(1.0,0.0,0.0)*rotation_matrix;
osg::Vec3d lv = osg::Vec3d(0.0,0.0,-1.0)*rotation_matrix;
osg::Vec3d p1 = sv*p1x+uv*p1y-lv*tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y);
osg::Vec3d p2 = sv*p2x+uv*p2y-lv*tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y);
/*
* Now, we want the cross product of P1 and P2
*/
// Robert,
//
// This was the quick 'n' dirty fix to get the trackball doing the right
// thing after fixing the Quat rotations to be right-handed. You may want
// to do something more elegant.
// axis = p1^p2;
axis = p2^p1;
axis.normalize();
/*
* Figure out how much to rotate around that axis.
*/
double t = (p2-p1).length() / (2.0*TRACKBALLSIZE);
/*
* Avoid problems with out-of-control values...
*/
if (t > 1.0) t = 1.0;
if (t < -1.0) t = -1.0;
angle = inRadians(asin(t));
}
/*
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
* if we are away from the center of the sphere.
*/
double TerrainManipulator::tb_project_to_sphere(double r, double x, double y)
{
float d, t, z;
d = sqrt(x*x + y*y);
/* Inside sphere */
if (d < r * 0.70710678118654752440)
{
z = sqrt(r*r - d*d);
} /* On hyperbola */
else
{
t = r / 1.41421356237309504880;
z = t*t / d;
}
return z;
}