libpri/pri.c
Richard Mudgett c5ec479bd2 Outgoing BRI calls fail when using Asterisk 1.8 with HA8, HB8, and B410P cards.
France Telecom brings layer 2 and layer 1 down on BRI lines when the line
is idle.  When layer 1 goes down Asterisk cannot make outgoing calls and
the HA8 and HB8 cards also get IRQ misses.

The inability to make outgoing calls is because the line is in red alarm
and Asterisk will not make calls over a line it considers unavailable.
The IRQ misses for the HA8 and HB8 card are because the hardware is
switching clock sources from the line which just brought layer 1 down to
internal timing.

There is a DAHDI option for the B410P card to not tell Asterisk that layer
1 went down so Asterisk will allow outgoing calls: "modprobe wcb4xxp
teignored=1".  There is a similar DAHDI option for the HA8 and HB8 cards:
"modprobe wctdm24xxp bri_teignored=1".  Unfortunately that will not clear
up the IRQ misses when the telco brings layer 1 down.

* Add layer 2 persistence option to customize the layer 2 behavior on BRI
PTMP lines.  The new option has three settings: 1) Use libpri default
layer 2 setting.  2) Keep layer 2 up.  Bring layer 2 back up when the peer
brings it down.  3) Leave layer 2 down when the peer brings it down.
Layer 2 will be brought up as needed for outgoing calls.

(issue AST-598)
Reported by: Trey Blancher


git-svn-id: https://origsvn.digium.com/svn/libpri/branches/1.4@2273 2fbb986a-6c06-0410-b554-c9c1f0a7f128
2011-08-17 15:48:54 +00:00

2269 lines
62 KiB
C

/*
* libpri: An implementation of Primary Rate ISDN
*
* Written by Mark Spencer <markster@digium.com>
*
* Copyright (C) 2001-2005, Digium, Inc.
* All Rights Reserved.
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*
* In addition, when this program is distributed with Asterisk in
* any form that would qualify as a 'combined work' or as a
* 'derivative work' (but not mere aggregation), you can redistribute
* and/or modify the combination under the terms of the license
* provided with that copy of Asterisk, instead of the license
* terms granted here.
*/
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/select.h>
#include <stdarg.h>
#include "compat.h"
#include "libpri.h"
#include "pri_internal.h"
#include "pri_facility.h"
#define PRI_BIT(a_bit) (1UL << (a_bit))
#define PRI_ALL_SWITCHES 0xFFFFFFFF
#define PRI_ETSI_SWITCHES (PRI_BIT(PRI_SWITCH_EUROISDN_E1) | PRI_BIT(PRI_SWITCH_EUROISDN_T1))
struct pri_timer_table {
const char *name;
enum PRI_TIMERS_AND_COUNTERS number;
unsigned long used_by;
};
/*!
* \note Sort the timer table entries in the order of the timer name so
* pri_dump_info_str() can display them in a consistent order.
*/
static const struct pri_timer_table pri_timer[] = {
/* *INDENT-OFF* */
/* timer name timer number used by switches */
{ "N200", PRI_TIMER_N200, PRI_ALL_SWITCHES },
{ "N201", PRI_TIMER_N201, PRI_ALL_SWITCHES },
{ "N202", PRI_TIMER_N202, PRI_ALL_SWITCHES },
{ "K", PRI_TIMER_K, PRI_ALL_SWITCHES },
{ "T200", PRI_TIMER_T200, PRI_ALL_SWITCHES },
{ "T201", PRI_TIMER_T201, PRI_ALL_SWITCHES },
{ "T202", PRI_TIMER_T202, PRI_ALL_SWITCHES },
{ "T203", PRI_TIMER_T203, PRI_ALL_SWITCHES },
{ "T300", PRI_TIMER_T300, PRI_ALL_SWITCHES },
{ "T301", PRI_TIMER_T301, PRI_ALL_SWITCHES },
{ "T302", PRI_TIMER_T302, PRI_ALL_SWITCHES },
{ "T303", PRI_TIMER_T303, PRI_ALL_SWITCHES },
{ "T304", PRI_TIMER_T304, PRI_ALL_SWITCHES },
{ "T305", PRI_TIMER_T305, PRI_ALL_SWITCHES },
{ "T306", PRI_TIMER_T306, PRI_ALL_SWITCHES },
{ "T307", PRI_TIMER_T307, PRI_ALL_SWITCHES },
{ "T308", PRI_TIMER_T308, PRI_ALL_SWITCHES },
{ "T309", PRI_TIMER_T309, PRI_ALL_SWITCHES },
{ "T310", PRI_TIMER_T310, PRI_ALL_SWITCHES },
{ "T312", PRI_TIMER_T312, PRI_ALL_SWITCHES },
{ "T313", PRI_TIMER_T313, PRI_ALL_SWITCHES },
{ "T314", PRI_TIMER_T314, PRI_ALL_SWITCHES },
{ "T316", PRI_TIMER_T316, PRI_ALL_SWITCHES },
{ "T317", PRI_TIMER_T317, PRI_ALL_SWITCHES },
{ "T318", PRI_TIMER_T318, PRI_ALL_SWITCHES },
{ "T319", PRI_TIMER_T319, PRI_ALL_SWITCHES },
{ "T320", PRI_TIMER_T320, PRI_ALL_SWITCHES },
{ "T321", PRI_TIMER_T321, PRI_ALL_SWITCHES },
{ "T322", PRI_TIMER_T322, PRI_ALL_SWITCHES },
{ "T-HOLD", PRI_TIMER_T_HOLD, PRI_ALL_SWITCHES },
{ "T-RETRIEVE", PRI_TIMER_T_RETRIEVE, PRI_ALL_SWITCHES },
{ "T-RESPONSE", PRI_TIMER_T_RESPONSE, PRI_ALL_SWITCHES },
{ "T-STATUS", PRI_TIMER_T_STATUS, PRI_ETSI_SWITCHES },
{ "T-ACTIVATE", PRI_TIMER_T_ACTIVATE, PRI_ETSI_SWITCHES },
{ "T-DEACTIVATE", PRI_TIMER_T_DEACTIVATE, PRI_ETSI_SWITCHES },
{ "T-INTERROGATE", PRI_TIMER_T_INTERROGATE, PRI_ETSI_SWITCHES },
{ "T-RETENTION", PRI_TIMER_T_RETENTION, PRI_ETSI_SWITCHES | PRI_BIT(PRI_SWITCH_QSIG) },
{ "T-CCBS1", PRI_TIMER_T_CCBS1, PRI_ETSI_SWITCHES },
{ "T-CCBS2", PRI_TIMER_T_CCBS2, PRI_ETSI_SWITCHES },
{ "T-CCBS3", PRI_TIMER_T_CCBS3, PRI_ETSI_SWITCHES },
{ "T-CCBS4", PRI_TIMER_T_CCBS4, PRI_ETSI_SWITCHES },
{ "T-CCBS5", PRI_TIMER_T_CCBS5, PRI_ETSI_SWITCHES },
{ "T-CCBS6", PRI_TIMER_T_CCBS6, PRI_ETSI_SWITCHES },
{ "T-CCNR2", PRI_TIMER_T_CCNR2, PRI_ETSI_SWITCHES },
{ "T-CCNR5", PRI_TIMER_T_CCNR5, PRI_ETSI_SWITCHES },
{ "T-CCNR6", PRI_TIMER_T_CCNR6, PRI_ETSI_SWITCHES },
{ "CC-T1", PRI_TIMER_QSIG_CC_T1, PRI_BIT(PRI_SWITCH_QSIG) },
{ "CCBS-T2", PRI_TIMER_QSIG_CCBS_T2, PRI_BIT(PRI_SWITCH_QSIG) },
{ "CCNR-T2", PRI_TIMER_QSIG_CCNR_T2, PRI_BIT(PRI_SWITCH_QSIG) },
{ "CC-T3", PRI_TIMER_QSIG_CC_T3, PRI_BIT(PRI_SWITCH_QSIG) },
#if defined(QSIG_PATH_RESERVATION_SUPPORT)
{ "CC-T4", PRI_TIMER_QSIG_CC_T4, PRI_BIT(PRI_SWITCH_QSIG) },
#endif /* defined(QSIG_PATH_RESERVATION_SUPPORT) */
/* *INDENT-ON* */
};
char *pri_node2str(int node)
{
switch(node) {
case PRI_UNKNOWN:
return "Unknown node type";
case PRI_NETWORK:
return "Network";
case PRI_CPE:
return "CPE";
default:
return "Invalid value";
}
}
char *pri_switch2str(int sw)
{
switch(sw) {
case PRI_SWITCH_NI2:
return "National ISDN";
case PRI_SWITCH_DMS100:
return "Nortel DMS100";
case PRI_SWITCH_LUCENT5E:
return "Lucent 5E";
case PRI_SWITCH_ATT4ESS:
return "AT&T 4ESS";
case PRI_SWITCH_NI1:
return "National ISDN 1";
case PRI_SWITCH_EUROISDN_E1:
return "EuroISDN";
case PRI_SWITCH_GR303_EOC:
return "GR303 EOC";
case PRI_SWITCH_GR303_TMC:
return "GR303 TMC";
case PRI_SWITCH_QSIG:
return "Q.SIG switch";
default:
return "Unknown switchtype";
}
}
static void pri_default_timers(struct pri *ctrl, int switchtype)
{
unsigned idx;
/* Initialize all timers/counters to unsupported/disabled. */
for (idx = 0; idx < PRI_MAX_TIMERS; ++idx) {
ctrl->timers[idx] = -1;
}
/* Set timer values to standard defaults. Time is in ms. */
ctrl->timers[PRI_TIMER_N200] = 3; /* Max numer of Q.921 retransmissions */
ctrl->timers[PRI_TIMER_N202] = 3; /* Max numer of transmissions of the TEI identity request message */
if (ctrl->bri) {
ctrl->timers[PRI_TIMER_K] = 1; /* Max number of outstanding I-frames */
} else {
ctrl->timers[PRI_TIMER_K] = 7; /* Max number of outstanding I-frames */
}
ctrl->timers[PRI_TIMER_T200] = 1000; /* Time between SABME's */
ctrl->timers[PRI_TIMER_T201] = ctrl->timers[PRI_TIMER_T200];/* Time between TEI Identity Checks (Default same as T200) */
ctrl->timers[PRI_TIMER_T202] = 10 * 1000; /* Min time between transmission of TEI Identity request messages */
ctrl->timers[PRI_TIMER_T203] = 10 * 1000; /* Max time without exchanging packets */
ctrl->timers[PRI_TIMER_T303] = 4 * 1000; /* Length between SETUP retransmissions and timeout */
ctrl->timers[PRI_TIMER_T305] = 30 * 1000; /* Wait for DISCONNECT acknowledge */
ctrl->timers[PRI_TIMER_T308] = 4 * 1000; /* Wait for RELEASE acknowledge */
ctrl->timers[PRI_TIMER_T309] = 6 * 1000; /* Time to wait before clearing calls in case of D-channel transient event. Q.931 specifies 6-90 seconds */
ctrl->timers[PRI_TIMER_T312] = (4 + 2) * 1000;/* Supervise broadcast SETUP message call reference retention. T303 + 2 seconds */
ctrl->timers[PRI_TIMER_T313] = 4 * 1000; /* Wait for CONNECT acknowledge, CPE side only */
ctrl->timers[PRI_TIMER_TM20] = 2500; /* Max time awaiting XID response - Q.921 Appendix IV */
ctrl->timers[PRI_TIMER_NM20] = 3; /* Number of XID retransmits - Q.921 Appendix IV */
ctrl->timers[PRI_TIMER_T_HOLD] = 4 * 1000; /* Wait for HOLD request response. */
ctrl->timers[PRI_TIMER_T_RETRIEVE] = 4 * 1000;/* Wait for RETRIEVE request response. */
ctrl->timers[PRI_TIMER_T_RESPONSE] = 4 * 1000; /* Maximum time to wait for a typical APDU response. */
/* ETSI timers */
ctrl->timers[PRI_TIMER_T_STATUS] = 4 * 1000; /* Max time to wait for all replies to check for compatible terminals */
ctrl->timers[PRI_TIMER_T_ACTIVATE] = 10 * 1000; /* Request supervision timeout. */
ctrl->timers[PRI_TIMER_T_DEACTIVATE] = 4 * 1000;/* Deactivate supervision timeout. */
ctrl->timers[PRI_TIMER_T_INTERROGATE] = 4 * 1000;/* Interrogation supervision timeout. */
/* ETSI call-completion timers */
ctrl->timers[PRI_TIMER_T_RETENTION] = 30 * 1000;/* Max time to wait for user A to activate call-completion. */
ctrl->timers[PRI_TIMER_T_CCBS1] = 4 * 1000; /* T-STATUS timer equivalent for CC user A status. */
ctrl->timers[PRI_TIMER_T_CCBS2] = 45 * 60 * 1000;/* Max time the CCBS service will be active */
ctrl->timers[PRI_TIMER_T_CCBS3] = 20 * 1000; /* Max time to wait for user A to respond to user B availability. */
ctrl->timers[PRI_TIMER_T_CCBS4] = 5 * 1000; /* CC user B guard time before sending CC recall indication. */
ctrl->timers[PRI_TIMER_T_CCBS5] = 60 * 60 * 1000;/* Network B CCBS supervision timeout. */
ctrl->timers[PRI_TIMER_T_CCBS6] = 60 * 60 * 1000;/* Network A CCBS supervision timeout. */
ctrl->timers[PRI_TIMER_T_CCNR2] = 180 * 60 * 1000;/* Max time the CCNR service will be active */
ctrl->timers[PRI_TIMER_T_CCNR5] = 195 * 60 * 1000;/* Network B CCNR supervision timeout. */
ctrl->timers[PRI_TIMER_T_CCNR6] = 195 * 60 * 1000;/* Network A CCNR supervision timeout. */
/* Q.SIG call-completion timers */
ctrl->timers[PRI_TIMER_QSIG_CC_T1] = 30 * 1000;/* CC request supervision timeout. */
ctrl->timers[PRI_TIMER_QSIG_CCBS_T2] = 60 * 60 * 1000;/* CCBS supervision timeout. */
ctrl->timers[PRI_TIMER_QSIG_CCNR_T2] = 195 * 60 * 1000;/* CCNR supervision timeout. */
ctrl->timers[PRI_TIMER_QSIG_CC_T3] = 30 * 1000;/* Max time to wait for user A to respond to user B availability. */
#if defined(QSIG_PATH_RESERVATION_SUPPORT)
ctrl->timers[PRI_TIMER_QSIG_CC_T4] = 40 * 1000;/* Path reservation supervision timeout. */
#endif /* defined(QSIG_PATH_RESERVATION_SUPPORT) */
/* Set any switch specific override default values */
switch (switchtype) {
default:
break;
}
}
int pri_set_timer(struct pri *ctrl, int timer, int value)
{
if (!ctrl || timer < 0 || PRI_MAX_TIMERS <= timer || value < 0) {
return -1;
}
ctrl->timers[timer] = value;
return 0;
}
int pri_get_timer(struct pri *ctrl, int timer)
{
if (!ctrl || timer < 0 || PRI_MAX_TIMERS <= timer) {
return -1;
}
return ctrl->timers[timer];
}
int pri_set_service_message_support(struct pri *pri, int supportflag)
{
if (!pri) {
return -1;
}
pri->service_message_support = supportflag ? 1 : 0;
return 0;
}
int pri_timer2idx(const char *timer_name)
{
unsigned idx;
enum PRI_TIMERS_AND_COUNTERS timer_number;
timer_number = -1;
for (idx = 0; idx < ARRAY_LEN(pri_timer); ++idx) {
if (!strcasecmp(timer_name, pri_timer[idx].name)) {
timer_number = pri_timer[idx].number;
break;
}
}
return timer_number;
}
static int __pri_read(struct pri *pri, void *buf, int buflen)
{
int res = read(pri->fd, buf, buflen);
if (res < 0) {
if (errno != EAGAIN)
pri_error(pri, "Read on %d failed: %s\n", pri->fd, strerror(errno));
return 0;
}
return res;
}
static int __pri_write(struct pri *pri, void *buf, int buflen)
{
int res = write(pri->fd, buf, buflen);
if (res < 0) {
if (errno != EAGAIN)
pri_error(pri, "Write to %d failed: %s\n", pri->fd, strerror(errno));
return 0;
}
return res;
}
/*!
* \internal
* \brief Determine the default layer 2 persistence option.
*
* \param ctrl D channel controller.
*
* \return Default layer 2 persistence option. (legacy behaviour default)
*/
static enum pri_layer2_persistence pri_l2_persistence_option_default(struct pri *ctrl)
{
enum pri_layer2_persistence persistence;
if (PTMP_MODE(ctrl)) {
persistence = PRI_L2_PERSISTENCE_LEAVE_DOWN;
} else {
persistence = PRI_L2_PERSISTENCE_KEEP_UP;
}
return persistence;
}
/*!
* \internal
* \brief Determine the default display text send options.
*
* \param ctrl D channel controller.
*
* \return Default display text send options. (legacy behaviour defaults)
*/
static unsigned long pri_display_options_send_default(struct pri *ctrl)
{
unsigned long flags;
switch (ctrl->switchtype) {
case PRI_SWITCH_QSIG:
flags = PRI_DISPLAY_OPTION_BLOCK;
break;
case PRI_SWITCH_EUROISDN_E1:
case PRI_SWITCH_EUROISDN_T1:
if (ctrl->localtype == PRI_CPE) {
flags = PRI_DISPLAY_OPTION_BLOCK;
break;
}
flags = PRI_DISPLAY_OPTION_NAME_INITIAL;
break;
default:
flags = PRI_DISPLAY_OPTION_NAME_INITIAL;
break;
}
return flags;
}
/*!
* \internal
* \brief Determine the default display text receive options.
*
* \param ctrl D channel controller.
*
* \return Default display text receive options. (legacy behaviour defaults)
*/
static unsigned long pri_display_options_receive_default(struct pri *ctrl)
{
unsigned long flags;
switch (ctrl->switchtype) {
case PRI_SWITCH_QSIG:
flags = PRI_DISPLAY_OPTION_BLOCK;
break;
default:
flags = PRI_DISPLAY_OPTION_NAME_INITIAL;
break;
}
return flags;
}
/*!
* \internal
* \brief Determine the default date/time send option default.
*
* \param ctrl D channel controller.
*
* \return Default date/time send option.
*/
static int pri_date_time_send_default(struct pri *ctrl)
{
int date_time_send;
if (BRI_NT_PTMP(ctrl)) {
date_time_send = PRI_DATE_TIME_SEND_DATE_HHMM;
} else {
date_time_send = PRI_DATE_TIME_SEND_NO;
}
return date_time_send;
}
/*!
* \brief Destroy the given link.
*
* \param link Q.921 link to destroy.
*
* \return Nothing
*/
void pri_link_destroy(struct q921_link *link)
{
if (link) {
struct q931_call *call;
call = link->dummy_call;
if (call) {
pri_schedule_del(call->pri, call->retranstimer);
call->retranstimer = 0;
pri_call_apdu_queue_cleanup(call);
}
free(link);
}
}
/*!
* \internal
* \brief Initialize the layer 2 link structure.
*
* \param ctrl D channel controller.
* \param link Q.921 link to initialize.
* \param sapi SAPI new link is to use.
* \param tei TEI new link is to use.
*
* \note It is assumed that the link has already been memset to zero.
*
* \return Nothing
*/
static void pri_link_init(struct pri *ctrl, struct q921_link *link, int sapi, int tei)
{
link->ctrl = ctrl;
link->sapi = sapi;
link->tei = tei;
}
/*!
* \brief Create a new layer 2 link.
*
* \param ctrl D channel controller.
* \param sapi SAPI new link is to use.
* \param tei TEI new link is to use.
*
* \retval link on success.
* \retval NULL on error.
*/
struct q921_link *pri_link_new(struct pri *ctrl, int sapi, int tei)
{
struct link_dummy *dummy_link;
struct q921_link *link;
switch (ctrl->switchtype) {
case PRI_SWITCH_GR303_EOC:
case PRI_SWITCH_GR303_TMC:
link = calloc(1, sizeof(*link));
if (!link) {
return NULL;
}
dummy_link = NULL;
break;
default:
dummy_link = calloc(1, sizeof(*dummy_link));
if (!dummy_link) {
return NULL;
}
link = &dummy_link->link;
break;
}
pri_link_init(ctrl, link, sapi, tei);
if (dummy_link) {
/* Initialize the dummy call reference call record. */
link->dummy_call = &dummy_link->dummy_call;
q931_init_call_record(link, link->dummy_call, Q931_DUMMY_CALL_REFERENCE);
}
q921_start(link);
return link;
}
/*!
* \internal
* \brief Destroy the given D channel controller.
*
* \param ctrl D channel control to destroy.
*
* \return Nothing
*/
static void pri_ctrl_destroy(struct pri *ctrl)
{
if (ctrl) {
struct q931_call *call;
if (ctrl->link.tei == Q921_TEI_GROUP
&& ctrl->link.sapi == Q921_SAPI_LAYER2_MANAGEMENT
&& ctrl->localtype == PRI_CPE) {
/* This dummy call was borrowed from the specific TEI link. */
call = NULL;
} else {
call = ctrl->link.dummy_call;
}
if (call) {
pri_schedule_del(call->pri, call->retranstimer);
call->retranstimer = 0;
pri_call_apdu_queue_cleanup(call);
}
free(ctrl->msg_line);
free(ctrl->sched.timer);
free(ctrl);
}
}
/*!
* \internal
* \brief Create a new D channel control structure.
*
* \param fd D channel file descriptor if no callback functions supplied.
* \param node Switch NET/CPE type
* \param switchtype ISDN switch type
* \param rd D channel read callback function
* \param wr D channel write callback function
* \param userdata Callback function parameter
* \param tei TEI new link is to use.
* \param bri TRUE if interface is BRI
*
* \retval ctrl on success.
* \retval NULL on error.
*/
static struct pri *pri_ctrl_new(int fd, int node, int switchtype, pri_io_cb rd, pri_io_cb wr, void *userdata, int tei, int bri)
{
int create_dummy_call;
struct d_ctrl_dummy *dummy_ctrl;
struct pri *ctrl;
switch (switchtype) {
case PRI_SWITCH_GR303_EOC:
case PRI_SWITCH_GR303_TMC:
create_dummy_call = 0;
break;
default:
if (bri && node == PRI_CPE && tei == Q921_TEI_GROUP) {
/*
* BRI TE PTMP will not use its own group dummy call record. It
* will use the specific TEI dummy call instead.
*/
create_dummy_call = 0;
} else {
create_dummy_call = 1;
}
break;
}
if (create_dummy_call) {
dummy_ctrl = calloc(1, sizeof(*dummy_ctrl));
if (!dummy_ctrl) {
return NULL;
}
ctrl = &dummy_ctrl->ctrl;
} else {
ctrl = calloc(1, sizeof(*ctrl));
if (!ctrl) {
return NULL;
}
dummy_ctrl = NULL;
}
ctrl->msg_line = calloc(1, sizeof(*ctrl->msg_line));
if (!ctrl->msg_line) {
free(ctrl);
return NULL;
}
ctrl->bri = bri;
ctrl->fd = fd;
ctrl->read_func = rd;
ctrl->write_func = wr;
ctrl->userdata = userdata;
ctrl->localtype = node;
ctrl->switchtype = switchtype;
ctrl->cref = 1;
ctrl->nsf = PRI_NSF_NONE;
ctrl->callpool = &ctrl->localpool;
pri_default_timers(ctrl, switchtype);
ctrl->q921_rxcount = 0;
ctrl->q921_txcount = 0;
ctrl->q931_rxcount = 0;
ctrl->q931_txcount = 0;
ctrl->l2_persistence = pri_l2_persistence_option_default(ctrl);
ctrl->display_flags.send = pri_display_options_send_default(ctrl);
ctrl->display_flags.receive = pri_display_options_receive_default(ctrl);
switch (switchtype) {
case PRI_SWITCH_GR303_EOC:
ctrl->protodisc = GR303_PROTOCOL_DISCRIMINATOR;
pri_link_init(ctrl, &ctrl->link, Q921_SAPI_GR303_EOC, Q921_TEI_GR303_EOC_OPS);
ctrl->link.next = pri_link_new(ctrl, Q921_SAPI_GR303_EOC, Q921_TEI_GR303_EOC_PATH);
if (!ctrl->link.next) {
pri_ctrl_destroy(ctrl);
return NULL;
}
break;
case PRI_SWITCH_GR303_TMC:
ctrl->protodisc = GR303_PROTOCOL_DISCRIMINATOR;
pri_link_init(ctrl, &ctrl->link, Q921_SAPI_GR303_TMC_CALLPROC, Q921_TEI_GR303_TMC_CALLPROC);
ctrl->link.next = pri_link_new(ctrl, Q921_SAPI_GR303_TMC_SWITCHING, Q921_TEI_GR303_TMC_SWITCHING);
if (!ctrl->link.next) {
pri_ctrl_destroy(ctrl);
return NULL;
}
break;
default:
ctrl->protodisc = Q931_PROTOCOL_DISCRIMINATOR;
pri_link_init(ctrl, &ctrl->link,
(tei == Q921_TEI_GROUP) ? Q921_SAPI_LAYER2_MANAGEMENT : Q921_SAPI_CALL_CTRL,
tei);
break;
}
ctrl->date_time_send = pri_date_time_send_default(ctrl);
if (dummy_ctrl) {
/* Initialize the dummy call reference call record. */
ctrl->link.dummy_call = &dummy_ctrl->dummy_call;
q931_init_call_record(&ctrl->link, ctrl->link.dummy_call,
Q931_DUMMY_CALL_REFERENCE);
}
if (ctrl->link.tei == Q921_TEI_GROUP && ctrl->link.sapi == Q921_SAPI_LAYER2_MANAGEMENT
&& ctrl->localtype == PRI_CPE) {
ctrl->link.next = pri_link_new(ctrl, Q921_SAPI_CALL_CTRL, Q921_TEI_PRI);
if (!ctrl->link.next) {
pri_ctrl_destroy(ctrl);
return NULL;
}
/*
* Make the group link use the just created specific TEI link
* dummy call instead. It makes no sense for TE PTMP interfaces
* to broadcast messages on the dummy call or to broadcast any
* messages for that matter.
*/
ctrl->link.dummy_call = ctrl->link.next->dummy_call;
} else {
q921_start(&ctrl->link);
}
return ctrl;
}
void pri_call_set_useruser(q931_call *c, const char *userchars)
{
/*
* There is a slight risk here if c is actually stale. However,
* if it is stale then it is better to catch it here than to
* write with it.
*/
if (!userchars || !pri_is_call_valid(NULL, c)) {
return;
}
libpri_copy_string(c->useruserinfo, userchars, sizeof(c->useruserinfo));
}
void pri_sr_set_useruser(struct pri_sr *sr, const char *userchars)
{
sr->useruserinfo = userchars;
}
int pri_restart(struct pri *pri)
{
/* pri_restart() is no longer needed since the Q.921 rewrite. */
#if 0
/* Restart Q.921 layer */
if (pri) {
q921_reset(pri, 1);
q921_start(pri, pri->localtype == PRI_CPE);
}
#endif
return 0;
}
struct pri *pri_new(int fd, int nodetype, int switchtype)
{
return pri_ctrl_new(fd, nodetype, switchtype, __pri_read, __pri_write, NULL, Q921_TEI_PRI, 0);
}
struct pri *pri_new_bri(int fd, int ptpmode, int nodetype, int switchtype)
{
if (ptpmode)
return pri_ctrl_new(fd, nodetype, switchtype, __pri_read, __pri_write, NULL, Q921_TEI_PRI, 1);
else
return pri_ctrl_new(fd, nodetype, switchtype, __pri_read, __pri_write, NULL, Q921_TEI_GROUP, 1);
}
struct pri *pri_new_cb(int fd, int nodetype, int switchtype, pri_io_cb io_read, pri_io_cb io_write, void *userdata)
{
if (!io_read)
io_read = __pri_read;
if (!io_write)
io_write = __pri_write;
return pri_ctrl_new(fd, nodetype, switchtype, io_read, io_write, userdata, Q921_TEI_PRI, 0);
}
struct pri *pri_new_bri_cb(int fd, int ptpmode, int nodetype, int switchtype, pri_io_cb io_read, pri_io_cb io_write, void *userdata)
{
if (!io_read) {
io_read = __pri_read;
}
if (!io_write) {
io_write = __pri_write;
}
if (ptpmode) {
return pri_ctrl_new(fd, nodetype, switchtype, io_read, io_write, userdata, Q921_TEI_PRI, 1);
} else {
return pri_ctrl_new(fd, nodetype, switchtype, io_read, io_write, userdata, Q921_TEI_GROUP, 1);
}
}
void *pri_get_userdata(struct pri *pri)
{
return pri ? pri->userdata : NULL;
}
void pri_set_userdata(struct pri *pri, void *userdata)
{
if (pri)
pri->userdata = userdata;
}
void pri_set_nsf(struct pri *pri, int nsf)
{
if (pri)
pri->nsf = nsf;
}
char *pri_event2str(int id)
{
unsigned idx;
struct {
int id;
char *name;
} events[] = {
/* *INDENT-OFF* */
{ PRI_EVENT_DCHAN_UP, "PRI_EVENT_DCHAN_UP" },
{ PRI_EVENT_DCHAN_DOWN, "PRI_EVENT_DCHAN_DOWN" },
{ PRI_EVENT_RESTART, "PRI_EVENT_RESTART" },
{ PRI_EVENT_CONFIG_ERR, "PRI_EVENT_CONFIG_ERR" },
{ PRI_EVENT_RING, "PRI_EVENT_RING" },
{ PRI_EVENT_HANGUP, "PRI_EVENT_HANGUP" },
{ PRI_EVENT_RINGING, "PRI_EVENT_RINGING" },
{ PRI_EVENT_ANSWER, "PRI_EVENT_ANSWER" },
{ PRI_EVENT_HANGUP_ACK, "PRI_EVENT_HANGUP_ACK" },
{ PRI_EVENT_RESTART_ACK, "PRI_EVENT_RESTART_ACK" },
{ PRI_EVENT_FACILITY, "PRI_EVENT_FACILITY" },
{ PRI_EVENT_INFO_RECEIVED, "PRI_EVENT_INFO_RECEIVED" },
{ PRI_EVENT_PROCEEDING, "PRI_EVENT_PROCEEDING" },
{ PRI_EVENT_SETUP_ACK, "PRI_EVENT_SETUP_ACK" },
{ PRI_EVENT_HANGUP_REQ, "PRI_EVENT_HANGUP_REQ" },
{ PRI_EVENT_NOTIFY, "PRI_EVENT_NOTIFY" },
{ PRI_EVENT_PROGRESS, "PRI_EVENT_PROGRESS" },
{ PRI_EVENT_KEYPAD_DIGIT, "PRI_EVENT_KEYPAD_DIGIT" },
{ PRI_EVENT_SERVICE, "PRI_EVENT_SERVICE" },
{ PRI_EVENT_SERVICE_ACK, "PRI_EVENT_SERVICE_ACK" },
{ PRI_EVENT_HOLD, "PRI_EVENT_HOLD" },
{ PRI_EVENT_HOLD_ACK, "PRI_EVENT_HOLD_ACK" },
{ PRI_EVENT_HOLD_REJ, "PRI_EVENT_HOLD_REJ" },
{ PRI_EVENT_RETRIEVE, "PRI_EVENT_RETRIEVE" },
{ PRI_EVENT_RETRIEVE_ACK, "PRI_EVENT_RETRIEVE_ACK" },
{ PRI_EVENT_RETRIEVE_REJ, "PRI_EVENT_RETRIEVE_REJ" },
{ PRI_EVENT_CONNECT_ACK, "PRI_EVENT_CONNECT_ACK" },
/* *INDENT-ON* */
};
for (idx = 0; idx < ARRAY_LEN(events); ++idx) {
if (events[idx].id == id) {
return events[idx].name;
}
}
return "Unknown Event";
}
pri_event *pri_check_event(struct pri *pri)
{
char buf[1024];
int res;
pri_event *e;
res = pri->read_func ? pri->read_func(pri, buf, sizeof(buf)) : 0;
if (!res)
return NULL;
/* Receive the q921 packet */
e = q921_receive(pri, (q921_h *)buf, res);
return e;
}
static int wait_pri(struct pri *pri)
{
struct timeval *tv, real;
fd_set fds;
int res;
FD_ZERO(&fds);
FD_SET(pri->fd, &fds);
tv = pri_schedule_next(pri);
if (tv) {
gettimeofday(&real, NULL);
real.tv_sec = tv->tv_sec - real.tv_sec;
real.tv_usec = tv->tv_usec - real.tv_usec;
if (real.tv_usec < 0) {
real.tv_usec += 1000000;
real.tv_sec -= 1;
}
if (real.tv_sec < 0) {
real.tv_sec = 0;
real.tv_usec = 0;
}
}
res = select(pri->fd + 1, &fds, NULL, NULL, tv ? &real : tv);
if (res < 0)
return -1;
return res;
}
pri_event *pri_mkerror(struct pri *pri, char *errstr)
{
/* Return a configuration error */
pri->ev.err.e = PRI_EVENT_CONFIG_ERR;
libpri_copy_string(pri->ev.err.err, errstr, sizeof(pri->ev.err.err));
return &pri->ev;
}
pri_event *pri_dchannel_run(struct pri *pri, int block)
{
pri_event *e;
int res;
if (!pri)
return NULL;
if (block) {
do {
e = NULL;
res = wait_pri(pri);
/* Check for error / interruption */
if (res < 0)
return NULL;
if (!res)
e = pri_schedule_run(pri);
else
e = pri_check_event(pri);
} while(!e);
} else {
e = pri_check_event(pri);
return e;
}
return e;
}
void pri_set_debug(struct pri *pri, int debug)
{
if (!pri)
return;
pri->debug = debug;
}
int pri_get_debug(struct pri *pri)
{
if (!pri)
return -1;
return pri->debug;
}
void pri_facility_enable(struct pri *pri)
{
if (!pri)
return;
pri->sendfacility = 1;
}
int pri_acknowledge(struct pri *pri, q931_call *call, int channel, int info)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_alerting(pri, call, channel, info);
}
int pri_proceeding(struct pri *pri, q931_call *call, int channel, int info)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_call_proceeding(pri, call, channel, info);
}
int pri_progress_with_cause(struct pri *pri, q931_call *call, int channel, int info, int cause)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_call_progress_with_cause(pri, call, channel, info, cause);
}
int pri_progress(struct pri *pri, q931_call *call, int channel, int info)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_call_progress(pri, call, channel, info);
}
int pri_information(struct pri *pri, q931_call *call, char digit)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_information(pri, call, digit);
}
int pri_keypad_facility(struct pri *pri, q931_call *call, const char *digits)
{
if (!pri || !pri_is_call_valid(pri, call) || !digits || !digits[0]) {
return -1;
}
return q931_keypad_facility(pri, call, digits);
}
int pri_notify(struct pri *pri, q931_call *call, int channel, int info)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_notify(pri, call, channel, info);
}
void pri_destroycall(struct pri *pri, q931_call *call)
{
if (pri && pri_is_call_valid(pri, call)) {
q931_destroycall(pri, call);
}
}
int pri_need_more_info(struct pri *pri, q931_call *call, int channel, int nonisdn)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_setup_ack(pri, call, channel, nonisdn);
}
int pri_answer(struct pri *pri, q931_call *call, int channel, int nonisdn)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_connect(pri, call, channel, nonisdn);
}
int pri_connect_ack(struct pri *ctrl, q931_call *call, int channel)
{
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
return q931_connect_acknowledge(ctrl, call, channel);
}
void pri_connect_ack_enable(struct pri *ctrl, int enable)
{
if (ctrl) {
ctrl->manual_connect_ack = enable ? 1 : 0;
}
}
/*!
* \brief Copy the PRI party name to the Q.931 party name structure.
*
* \param q931_name Q.931 party name structure
* \param pri_name PRI party name structure
*
* \return Nothing
*/
void pri_copy_party_name_to_q931(struct q931_party_name *q931_name, const struct pri_party_name *pri_name)
{
q931_party_name_init(q931_name);
if (pri_name->valid) {
q931_name->valid = 1;
q931_name->presentation = pri_name->presentation;
q931_name->char_set = pri_name->char_set;
libpri_copy_string(q931_name->str, pri_name->str, sizeof(q931_name->str));
}
}
/*!
* \brief Copy the PRI party number to the Q.931 party number structure.
*
* \param q931_number Q.931 party number structure
* \param pri_number PRI party number structure
*
* \return Nothing
*/
void pri_copy_party_number_to_q931(struct q931_party_number *q931_number, const struct pri_party_number *pri_number)
{
q931_party_number_init(q931_number);
if (pri_number->valid) {
q931_number->valid = 1;
q931_number->presentation = pri_number->presentation;
q931_number->plan = pri_number->plan;
libpri_copy_string(q931_number->str, pri_number->str, sizeof(q931_number->str));
}
}
/*!
* \brief Copy the PRI party subaddress to the Q.931 party subaddress structure.
*
* \param q931_subaddress Q.931 party subaddress structure
* \param pri_subaddress PRI party subaddress structure
*
* \return Nothing
*/
void pri_copy_party_subaddress_to_q931(struct q931_party_subaddress *q931_subaddress, const struct pri_party_subaddress *pri_subaddress)
{
int length;
int maxlen = sizeof(q931_subaddress->data) - 1;
q931_party_subaddress_init(q931_subaddress);
if (!pri_subaddress->valid) {
return;
}
q931_subaddress->valid = 1;
q931_subaddress->type = pri_subaddress->type;
length = pri_subaddress->length;
if (length > maxlen){
length = maxlen;
} else {
q931_subaddress->odd_even_indicator = pri_subaddress->odd_even_indicator;
}
q931_subaddress->length = length;
memcpy(q931_subaddress->data, pri_subaddress->data, length);
q931_subaddress->data[length] = '\0';
}
/*!
* \brief Copy the PRI party id to the Q.931 party id structure.
*
* \param q931_id Q.931 party id structure
* \param pri_id PRI party id structure
*
* \return Nothing
*/
void pri_copy_party_id_to_q931(struct q931_party_id *q931_id, const struct pri_party_id *pri_id)
{
pri_copy_party_name_to_q931(&q931_id->name, &pri_id->name);
pri_copy_party_number_to_q931(&q931_id->number, &pri_id->number);
pri_copy_party_subaddress_to_q931(&q931_id->subaddress, &pri_id->subaddress);
}
int pri_connected_line_update(struct pri *ctrl, q931_call *call, const struct pri_party_connected_line *connected)
{
struct q931_party_id party_id;
unsigned idx;
unsigned new_name;
unsigned new_number;
unsigned new_subaddress;
struct q931_call *subcall;
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
pri_copy_party_id_to_q931(&party_id, &connected->id);
q931_party_id_fixup(ctrl, &party_id);
new_name = q931_party_name_cmp(&party_id.name, &call->local_id.name);
new_number = q931_party_number_cmp(&party_id.number, &call->local_id.number);
new_subaddress = party_id.subaddress.valid
&& q931_party_subaddress_cmp(&party_id.subaddress, &call->local_id.subaddress);
/* Update the call and all subcalls with new local_id. */
call->local_id = party_id;
if (call->outboundbroadcast && call->master_call == call) {
for (idx = 0; idx < ARRAY_LEN(call->subcalls); ++idx) {
subcall = call->subcalls[idx];
if (subcall) {
subcall->local_id = party_id;
}
}
}
switch (call->ourcallstate) {
case Q931_CALL_STATE_CALL_INITIATED:
case Q931_CALL_STATE_OVERLAP_SENDING:
case Q931_CALL_STATE_OUTGOING_CALL_PROCEEDING:
case Q931_CALL_STATE_CALL_DELIVERED:
/*
* The local party transferred to someone else before
* the remote end answered.
*/
switch (ctrl->switchtype) {
case PRI_SWITCH_EUROISDN_E1:
case PRI_SWITCH_EUROISDN_T1:
if (BRI_NT_PTMP(ctrl)) {
/*
* NT PTMP mode
*
* We should not send these messages to the network if we are
* the CPE side since phones do not transfer calls within
* themselves. Well... If you consider handing the handset to
* someone else a transfer then how is the network to know?
*/
if (new_number) {
q931_notify_redirection(ctrl, call, PRI_NOTIFY_TRANSFER_ACTIVE,
&party_id.name, &party_id.number);
}
if (new_subaddress || (party_id.subaddress.valid && new_number)) {
q931_subaddress_transfer(ctrl, call);
}
} else if (PTP_MODE(ctrl)) {
/* PTP mode */
if (new_number) {
/* Immediately send EctInform APDU, callStatus=answered(0) */
send_call_transfer_complete(ctrl, call, 0);
}
if (new_subaddress || (party_id.subaddress.valid && new_number)) {
q931_subaddress_transfer(ctrl, call);
}
}
break;
case PRI_SWITCH_QSIG:
if (new_name || new_number) {
/* Immediately send CallTransferComplete APDU, callStatus=answered(0) */
send_call_transfer_complete(ctrl, call, 0);
}
if (new_subaddress
|| (party_id.subaddress.valid && (new_name || new_number))) {
q931_subaddress_transfer(ctrl, call);
}
break;
default:
break;
}
break;
case Q931_CALL_STATE_ACTIVE:
switch (ctrl->switchtype) {
case PRI_SWITCH_EUROISDN_E1:
case PRI_SWITCH_EUROISDN_T1:
if (BRI_NT_PTMP(ctrl)) {
/*
* NT PTMP mode
*
* We should not send these messages to the network if we are
* the CPE side since phones do not transfer calls within
* themselves. Well... If you consider handing the handset to
* someone else a transfer then how is the network to know?
*/
if (new_number) {
#if defined(USE_NOTIFY_FOR_ECT)
/*
* Some ISDN phones only handle the NOTIFY message that the
* EN 300-369 spec says should be sent only if the call has not
* connected yet.
*/
q931_notify_redirection(ctrl, call, PRI_NOTIFY_TRANSFER_ACTIVE,
&party_id.name, &party_id.number);
#else
q931_request_subaddress(ctrl, call, PRI_NOTIFY_TRANSFER_ACTIVE,
&party_id.name, &party_id.number);
#endif /* defined(USE_NOTIFY_FOR_ECT) */
}
if (new_subaddress || (party_id.subaddress.valid && new_number)) {
q931_subaddress_transfer(ctrl, call);
}
} else if (PTP_MODE(ctrl)) {
/* PTP mode */
if (new_number) {
/* Immediately send EctInform APDU, callStatus=answered(0) */
send_call_transfer_complete(ctrl, call, 0);
}
if (new_subaddress || (party_id.subaddress.valid && new_number)) {
q931_subaddress_transfer(ctrl, call);
}
}
break;
case PRI_SWITCH_QSIG:
if (new_name || new_number) {
/* Immediately send CallTransferComplete APDU, callStatus=answered(0) */
send_call_transfer_complete(ctrl, call, 0);
}
if (new_subaddress
|| (party_id.subaddress.valid && (new_name || new_number))) {
q931_subaddress_transfer(ctrl, call);
}
break;
default:
break;
}
break;
default:
/* Just save the data for further developments. */
break;
}
return 0;
}
int pri_redirecting_update(struct pri *ctrl, q931_call *call, const struct pri_party_redirecting *redirecting)
{
unsigned idx;
struct q931_call *subcall;
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
/* Save redirecting.to information and reason. */
pri_copy_party_id_to_q931(&call->redirecting.to, &redirecting->to);
q931_party_id_fixup(ctrl, &call->redirecting.to);
call->redirecting.reason = redirecting->reason;
/*
* Update all subcalls with new redirecting.to information and reason.
* I do not think we will ever have any subcalls when this data is relevant,
* but update it just in case.
*/
if (call->outboundbroadcast && call->master_call == call) {
for (idx = 0; idx < ARRAY_LEN(call->subcalls); ++idx) {
subcall = call->subcalls[idx];
if (subcall) {
subcall->redirecting.to = call->redirecting.to;
subcall->redirecting.reason = redirecting->reason;
}
}
}
switch (call->ourcallstate) {
case Q931_CALL_STATE_NULL:
/* Save the remaining redirecting information before we place a call. */
pri_copy_party_id_to_q931(&call->redirecting.from, &redirecting->from);
q931_party_id_fixup(ctrl, &call->redirecting.from);
pri_copy_party_id_to_q931(&call->redirecting.orig_called, &redirecting->orig_called);
q931_party_id_fixup(ctrl, &call->redirecting.orig_called);
call->redirecting.orig_reason = redirecting->orig_reason;
if (redirecting->count <= 0) {
if (call->redirecting.from.number.valid) {
/*
* We are redirecting with an unknown count
* so assume the count is one.
*/
call->redirecting.count = 1;
} else {
call->redirecting.count = 0;
}
} else if (redirecting->count < PRI_MAX_REDIRECTS) {
call->redirecting.count = redirecting->count;
} else {
call->redirecting.count = PRI_MAX_REDIRECTS;
}
break;
case Q931_CALL_STATE_OVERLAP_RECEIVING:
case Q931_CALL_STATE_INCOMING_CALL_PROCEEDING:
case Q931_CALL_STATE_CALL_RECEIVED:
/* This is an incoming call that has not connected yet. */
if (!call->redirecting.to.number.valid) {
/* Not being redirected toward valid number data. Ignore. */
break;
}
switch (ctrl->switchtype) {
case PRI_SWITCH_EUROISDN_E1:
case PRI_SWITCH_EUROISDN_T1:
if (PTMP_MODE(ctrl)) {
if (NT_MODE(ctrl)) {
/*
* NT PTMP mode
*
* We should not send these messages to the network if we are
* the CPE side since phones do not redirect calls within
* themselves. Well... If you consider someone else picking up
* the handset a redirection then how is the network to know?
*/
q931_notify_redirection(ctrl, call, PRI_NOTIFY_CALL_DIVERTING, NULL,
&call->redirecting.to.number);
}
break;
}
/* PTP mode - same behaviour as Q.SIG */
/* fall through */
case PRI_SWITCH_QSIG:
if (call->redirecting.state != Q931_REDIRECTING_STATE_PENDING_TX_DIV_LEG_3
|| strcmp(call->redirecting.to.number.str, call->called.number.str) != 0) {
/* immediately send divertingLegInformation1 APDU */
if (rose_diverting_leg_information1_encode(ctrl, call)
|| q931_facility(ctrl, call)) {
pri_message(ctrl,
"Could not schedule facility message for divertingLegInfo1\n");
}
}
call->redirecting.state = Q931_REDIRECTING_STATE_IDLE;
/* immediately send divertingLegInformation3 APDU */
if (rose_diverting_leg_information3_encode(ctrl, call, Q931_FACILITY)
|| q931_facility(ctrl, call)) {
pri_message(ctrl,
"Could not schedule facility message for divertingLegInfo3\n");
}
break;
default:
break;
}
break;
default:
pri_message(ctrl, "Ignored redirecting update because call in state %s(%d).\n",
q931_call_state_str(call->ourcallstate), call->ourcallstate);
break;
}
return 0;
}
#if defined(STATUS_REQUEST_PLACE_HOLDER)
/*!
* \brief Poll/ping for the status of any "called" party.
*
* \param ctrl D channel controller.
* \param request_id The upper layer's ID number to match with the response in case
* there are several requests at the same time.
* \param req Setup request for "called" party to determine the status.
*
* \note
* There could be one or more PRI_SUBCMD_STATUS_REQ_RSP to the status request
* depending upon how many endpoints respond to the request.
* (This includes the timeout termination response.)
* \note
* Could be used to poll for the status of call-completion party B.
*
* \retval 0 on success.
* \retval -1 on error.
*/
int pri_status_req(struct pri *ctrl, int request_id, const struct pri_sr *req)
{
return -1;
}
#endif /* defined(STATUS_REQUEST_PLACE_HOLDER) */
#if defined(STATUS_REQUEST_PLACE_HOLDER)
/*!
* \brief Response to a poll/ping request for status of any "called" party by libpri.
*
* \param ctrl D channel controller.
* \param invoke_id ID given by libpri when it requested the party status.
* \param status free(0)/busy(1)/incompatible(2)
*
* \note
* There could be zero, one, or more responses to the original
* status request depending upon how many endpoints respond to the request.
* \note
* Could be used to poll for the status of call-completion party B.
*
* \return Nothing
*/
void pri_status_req_rsp(struct pri *ctrl, int invoke_id, int status)
{
}
#endif /* defined(STATUS_REQUEST_PLACE_HOLDER) */
#if 0
/* deprecated routines, use pri_hangup */
int pri_release(struct pri *pri, q931_call *call, int cause)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_release(pri, call, cause);
}
int pri_disconnect(struct pri *pri, q931_call *call, int cause)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_disconnect(pri, call, cause);
}
#endif
int pri_channel_bridge(q931_call *call1, q931_call *call2)
{
struct q931_call *winner;
/*
* There is a slight risk here if call1 or call2 is actually
* stale. However, if they are stale then it is better to catch
* it here than to write with these pointers.
*/
if (!pri_is_call_valid(NULL, call1) || !pri_is_call_valid(NULL, call2)) {
return -1;
}
winner = q931_find_winning_call(call1);
if (!winner) {
/* Cannot transfer: Call 1 does not have a winner yet. */
return -1;
}
call1 = winner;
winner = q931_find_winning_call(call2);
if (!winner) {
/* Cannot transfer: Call 2 does not have a winner yet. */
return -1;
}
call2 = winner;
/* Check to see if we're on the same PRI */
if (call1->pri != call2->pri) {
return -1;
}
/* Check for bearer capability */
if (call1->bc.transcapability != call2->bc.transcapability)
return -1;
switch (call1->pri->switchtype) {
case PRI_SWITCH_NI2:
case PRI_SWITCH_LUCENT5E:
case PRI_SWITCH_ATT4ESS:
if (eect_initiate_transfer(call1->pri, call1, call2)) {
return -1;
}
break;
case PRI_SWITCH_DMS100:
if (rlt_initiate_transfer(call1->pri, call1, call2)) {
return -1;
}
break;
case PRI_SWITCH_QSIG:
call1->bridged_call = call2;
call2->bridged_call = call1;
if (anfpr_initiate_transfer(call1->pri, call1, call2)) {
return -1;
}
break;
case PRI_SWITCH_EUROISDN_E1:
case PRI_SWITCH_EUROISDN_T1:
if (etsi_initiate_transfer(call1->pri, call1, call2)) {
return -1;
}
break;
default:
return -1;
}
return 0;
}
void pri_hangup_fix_enable(struct pri *ctrl, int enable)
{
if (ctrl) {
ctrl->hangup_fix_enabled = enable ? 1 : 0;
}
}
int pri_hangup(struct pri *pri, q931_call *call, int cause)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
if (cause == -1)
/* normal clear cause */
cause = PRI_CAUSE_NORMAL_CLEARING;
return q931_hangup(pri, call, cause);
}
int pri_reset(struct pri *pri, int channel)
{
if (!pri)
return -1;
return q931_restart(pri, channel);
}
int pri_maintenance_service(struct pri *pri, int span, int channel, int changestatus)
{
if (!pri) {
return -1;
}
return maintenance_service(pri, span, channel, changestatus);
}
q931_call *pri_new_call(struct pri *pri)
{
if (!pri)
return NULL;
return q931_new_call(pri);
}
int pri_is_dummy_call(q931_call *call)
{
if (!call) {
return 0;
}
return q931_is_dummy_call(call);
}
void pri_dump_event(struct pri *pri, pri_event *e)
{
if (!pri || !e)
return;
pri_message(pri, "Event type: %s (%d)\n", pri_event2str(e->gen.e), e->gen.e);
}
void pri_sr_init(struct pri_sr *req)
{
memset(req, 0, sizeof(struct pri_sr));
q931_party_redirecting_init(&req->redirecting);
q931_party_id_init(&req->caller);
q931_party_address_init(&req->called);
req->reversecharge = PRI_REVERSECHARGE_NONE;
}
int pri_sr_set_connection_call_independent(struct pri_sr *req)
{
if (!req)
return -1;
req->cis_call = 1; /* have to set cis_call for all those pesky IEs we need to setup */
req->cis_auto_disconnect = 1;
return 0;
}
int pri_sr_set_no_channel_call(struct pri_sr *req)
{
if (!req) {
return -1;
}
req->cis_call = 1;
return 0;
}
/* Don't call any other pri functions on this */
int pri_mwi_activate(struct pri *pri, q931_call *c, char *caller, int callerplan, char *callername, int callerpres, char *called,
int calledplan)
{
struct pri_sr req;
if (!pri || !pri_is_call_valid(pri, c)) {
return -1;
}
pri_sr_init(&req);
pri_sr_set_connection_call_independent(&req);
pri_sr_set_caller(&req, caller, callername, callerplan, callerpres);
pri_sr_set_called(&req, called, calledplan, 0);
if (mwi_message_send(pri, c, &req, 1) < 0) {
pri_message(pri, "Unable to send MWI activate message\n");
return -1;
}
/* Do more stuff when we figure out that the CISC stuff works */
return q931_setup(pri, c, &req);
}
int pri_mwi_deactivate(struct pri *pri, q931_call *c, char *caller, int callerplan, char *callername, int callerpres, char *called,
int calledplan)
{
struct pri_sr req;
if (!pri || !pri_is_call_valid(pri, c)) {
return -1;
}
pri_sr_init(&req);
pri_sr_set_connection_call_independent(&req);
pri_sr_set_caller(&req, caller, callername, callerplan, callerpres);
pri_sr_set_called(&req, called, calledplan, 0);
if(mwi_message_send(pri, c, &req, 0) < 0) {
pri_message(pri, "Unable to send MWI deactivate message\n");
return -1;
}
return q931_setup(pri, c, &req);
}
int pri_setup(struct pri *pri, q931_call *c, struct pri_sr *req)
{
if (!pri || !pri_is_call_valid(pri, c)) {
return -1;
}
return q931_setup(pri, c, req);
}
int pri_call(struct pri *pri, q931_call *c, int transmode, int channel, int exclusive,
int nonisdn, char *caller, int callerplan, char *callername, int callerpres, char *called,
int calledplan, int ulayer1)
{
struct pri_sr req;
if (!pri || !pri_is_call_valid(pri, c)) {
return -1;
}
pri_sr_init(&req);
pri_sr_set_caller(&req, caller, callername, callerplan, callerpres);
pri_sr_set_called(&req, called, calledplan, 0);
req.transmode = transmode;
req.channel = channel;
req.exclusive = exclusive;
req.nonisdn = nonisdn;
req.userl1 = ulayer1;
return q931_setup(pri, c, &req);
}
static void (*__pri_error)(struct pri *pri, char *stuff);
static void (*__pri_message)(struct pri *pri, char *stuff);
void pri_set_message(void (*func)(struct pri *pri, char *stuff))
{
__pri_message = func;
}
void pri_set_error(void (*func)(struct pri *pri, char *stuff))
{
__pri_error = func;
}
static void pri_old_message(struct pri *ctrl, const char *fmt, va_list *ap)
{
char tmp[1024];
vsnprintf(tmp, sizeof(tmp), fmt, *ap);
if (__pri_message)
__pri_message(ctrl, tmp);
else
fputs(tmp, stdout);
}
void pri_message(struct pri *ctrl, const char *fmt, ...)
{
int added_length;
va_list ap;
if (!ctrl || !ctrl->msg_line) {
/* Just have to do it the old way. */
va_start(ap, fmt);
pri_old_message(ctrl, fmt, &ap);
va_end(ap);
return;
}
va_start(ap, fmt);
added_length = vsnprintf(ctrl->msg_line->str + ctrl->msg_line->length,
sizeof(ctrl->msg_line->str) - ctrl->msg_line->length, fmt, ap);
va_end(ap);
if (added_length < 0
|| sizeof(ctrl->msg_line->str) <= ctrl->msg_line->length + added_length) {
static char truncated_output[] =
"v-- Error building output or output was truncated. (Next line) --v\n";
/*
* This clause should never need to run because the
* output line accumulation buffer is quite large.
*/
/* vsnprintf() error or output string was truncated. */
if (__pri_message) {
__pri_message(ctrl, truncated_output);
} else {
fputs(truncated_output, stdout);
}
/* Add a terminating '\n' to force a flush of the line. */
ctrl->msg_line->length = strlen(ctrl->msg_line->str);
if (ctrl->msg_line->length) {
ctrl->msg_line->str[ctrl->msg_line->length - 1] = '\n';
} else {
ctrl->msg_line->str[0] = '\n';
ctrl->msg_line->str[1] = '\0';
}
} else {
ctrl->msg_line->length += added_length;
}
if (ctrl->msg_line->length
&& ctrl->msg_line->str[ctrl->msg_line->length - 1] == '\n') {
/* The accumulated output line was terminated so send it out. */
ctrl->msg_line->length = 0;
if (__pri_message) {
__pri_message(ctrl, ctrl->msg_line->str);
} else {
fputs(ctrl->msg_line->str, stdout);
}
}
}
void pri_error(struct pri *pri, const char *fmt, ...)
{
char tmp[1024];
va_list ap;
va_start(ap, fmt);
vsnprintf(tmp, sizeof(tmp), fmt, ap);
va_end(ap);
if (__pri_error)
__pri_error(pri, tmp);
else
fputs(tmp, stderr);
}
/* Set overlap mode */
void pri_set_overlapdial(struct pri *pri,int state)
{
if (pri) {
pri->overlapdial = state ? 1 : 0;
}
}
void pri_set_chan_mapping_logical(struct pri *pri, int state)
{
if (pri && pri->switchtype == PRI_SWITCH_QSIG) {
pri->chan_mapping_logical = state ? 1 : 0;
}
}
void pri_set_inbanddisconnect(struct pri *pri, unsigned int enable)
{
if (pri) {
pri->acceptinbanddisconnect = (enable != 0);
}
}
int pri_fd(struct pri *pri)
{
return pri->fd;
}
/*!
* \internal
* \brief Append snprintf output to the given buffer.
*
* \param buf Buffer currently filling.
* \param buf_used Offset into buffer where to put new stuff.
* \param buf_size Actual buffer size of buf.
* \param format printf format string.
*
* \return Total buffer space used.
*/
static size_t pri_snprintf(char *buf, size_t buf_used, size_t buf_size, const char *format, ...) __attribute__((format(printf, 4, 5)));
static size_t pri_snprintf(char *buf, size_t buf_used, size_t buf_size, const char *format, ...)
{
va_list args;
if (buf_used < buf_size) {
va_start(args, format);
buf_used += vsnprintf(buf + buf_used, buf_size - buf_used, format, args);
va_end(args);
}
if (buf_size < buf_used) {
buf_used = buf_size + 1;
}
return buf_used;
}
char *pri_dump_info_str(struct pri *ctrl)
{
char *buf;
size_t buf_size;
size_t used;
struct q921_frame *f;
struct q921_link *link;
struct pri_cc_record *cc_record;
struct q931_call *call;
unsigned num_calls;
unsigned num_globals;
unsigned q921outstanding;
unsigned idx;
unsigned long switch_bit;
if (!ctrl) {
return NULL;
}
buf_size = 4096; /* This should be bigger than we will ever need. */
buf = malloc(buf_size);
if (!buf) {
return NULL;
}
/* Might be nice to format these a little better */
used = 0;
used = pri_snprintf(buf, used, buf_size, "Switchtype: %s\n",
pri_switch2str(ctrl->switchtype));
used = pri_snprintf(buf, used, buf_size, "Type: %s%s%s\n",
ctrl->bri ? "BRI " : "",
pri_node2str(ctrl->localtype),
PTMP_MODE(ctrl) ? " PTMP" : "");
used = pri_snprintf(buf, used, buf_size, "Remote type: %s\n",
pri_node2str(ctrl->remotetype));
used = pri_snprintf(buf, used, buf_size, "Overlap Dial: %d\n", ctrl->overlapdial);
used = pri_snprintf(buf, used, buf_size, "Logical Channel Mapping: %d\n",
ctrl->chan_mapping_logical);
used = pri_snprintf(buf, used, buf_size, "Timer and counter settings:\n");
switch_bit = PRI_BIT(ctrl->switchtype);
for (idx = 0; idx < ARRAY_LEN(pri_timer); ++idx) {
if (pri_timer[idx].used_by & switch_bit) {
enum PRI_TIMERS_AND_COUNTERS tmr;
tmr = pri_timer[idx].number;
if (0 <= ctrl->timers[tmr]) {
used = pri_snprintf(buf, used, buf_size, " %s: %d\n",
pri_timer[idx].name, ctrl->timers[tmr]);
}
}
}
/* Remember that Q921 Counters include Q931 packets (and any retransmissions) */
used = pri_snprintf(buf, used, buf_size, "Q931 RX: %d\n", ctrl->q931_rxcount);
used = pri_snprintf(buf, used, buf_size, "Q931 TX: %d\n", ctrl->q931_txcount);
used = pri_snprintf(buf, used, buf_size, "Q921 RX: %d\n", ctrl->q921_rxcount);
used = pri_snprintf(buf, used, buf_size, "Q921 TX: %d\n", ctrl->q921_txcount);
for (link = &ctrl->link; link; link = link->next) {
q921outstanding = 0;
for (f = link->tx_queue; f; f = f->next) {
++q921outstanding;
}
used = pri_snprintf(buf, used, buf_size, "Q921 Outstanding: %u (TEI=%d)\n",
q921outstanding, link->tei);
}
/* Count the call records in existance. Useful to check for unreleased calls. */
num_calls = 0;
num_globals = 0;
for (call = *ctrl->callpool; call; call = call->next) {
if (!(call->cr & ~Q931_CALL_REFERENCE_FLAG)) {
++num_globals;
continue;
}
++num_calls;
if (call->outboundbroadcast) {
used = pri_snprintf(buf, used, buf_size,
"Master call subcall count: %d\n", q931_get_subcall_count(call));
}
}
used = pri_snprintf(buf, used, buf_size, "Total active-calls:%u global:%u\n",
num_calls, num_globals);
/*
* List simplified call completion records.
*
* This should be last in the output because it could overflow
* the buffer.
*/
used = pri_snprintf(buf, used, buf_size, "CC records:\n");
for (cc_record = ctrl->cc.pool; cc_record; cc_record = cc_record->next) {
used = pri_snprintf(buf, used, buf_size,
" %ld A:%s B:%s state:%s\n", cc_record->record_id,
cc_record->party_a.number.valid ? cc_record->party_a.number.str : "",
cc_record->party_b.number.valid ? cc_record->party_b.number.str : "",
pri_cc_fsm_state_str(cc_record->state));
}
if (buf_size < used) {
pri_message(ctrl,
"pri_dump_info_str(): Produced output exceeded buffer capacity. (Truncated)\n");
}
return buf;
}
int pri_get_crv(struct pri *pri, q931_call *call, int *callmode)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_call_getcrv(pri, call, callmode);
}
int pri_set_crv(struct pri *pri, q931_call *call, int crv, int callmode)
{
if (!pri || !pri_is_call_valid(pri, call)) {
return -1;
}
return q931_call_setcrv(pri, call, crv, callmode);
}
void pri_enslave(struct pri *master, struct pri *slave)
{
if (!master || !slave) {
return;
}
if (slave->master) {
struct pri *swp;
/* The slave already has a master */
if (master->master || master->slave) {
/* The new master has a master or it already has slaves. */
return;
}
/* Swap master and slave. */
swp = master;
master = slave;
slave = swp;
}
/*
* To have some support for dynamic interfaces, the master NFAS
* D channel control structure will always exist even if it is
* abandoned/deleted by the upper layer. The master/slave
* pointers ensure that the correct master will be used.
*/
master = PRI_NFAS_MASTER(master);
master->nfas = 1;
slave->nfas = 1;
slave->callpool = &master->localpool;
/* Link the slave to the master on the end of the master's list. */
slave->master = master;
slave->slave = NULL;
for (; master->slave; master = master->slave) {
}
master->slave = slave;
}
struct pri_sr *pri_sr_new(void)
{
struct pri_sr *req;
req = malloc(sizeof(*req));
if (req)
pri_sr_init(req);
return req;
}
void pri_sr_free(struct pri_sr *sr)
{
free(sr);
}
int pri_sr_set_channel(struct pri_sr *sr, int channel, int exclusive, int nonisdn)
{
sr->channel = channel;
sr->exclusive = exclusive;
sr->nonisdn = nonisdn;
return 0;
}
int pri_sr_set_bearer(struct pri_sr *sr, int transmode, int userl1)
{
sr->transmode = transmode;
sr->userl1 = userl1;
return 0;
}
int pri_sr_set_called(struct pri_sr *sr, char *called, int calledplan, int numcomplete)
{
q931_party_address_init(&sr->called);
if (called) {
sr->called.number.valid = 1;
sr->called.number.plan = calledplan;
libpri_copy_string(sr->called.number.str, called, sizeof(sr->called.number.str));
}
sr->numcomplete = numcomplete;
return 0;
}
void pri_sr_set_called_subaddress(struct pri_sr *sr, const struct pri_party_subaddress *subaddress)
{
pri_copy_party_subaddress_to_q931(&sr->called.subaddress, subaddress);
}
int pri_sr_set_caller(struct pri_sr *sr, char *caller, char *callername, int callerplan, int callerpres)
{
q931_party_id_init(&sr->caller);
if (caller) {
sr->caller.number.valid = 1;
sr->caller.number.presentation = callerpres;
sr->caller.number.plan = callerplan;
libpri_copy_string(sr->caller.number.str, caller, sizeof(sr->caller.number.str));
if (callername) {
sr->caller.name.valid = 1;
sr->caller.name.presentation = callerpres;
sr->caller.name.char_set = PRI_CHAR_SET_ISO8859_1;
libpri_copy_string(sr->caller.name.str, callername,
sizeof(sr->caller.name.str));
}
}
return 0;
}
void pri_sr_set_caller_subaddress(struct pri_sr *sr, const struct pri_party_subaddress *subaddress)
{
pri_copy_party_subaddress_to_q931(&sr->caller.subaddress, subaddress);
}
void pri_sr_set_caller_party(struct pri_sr *sr, const struct pri_party_id *caller)
{
pri_copy_party_id_to_q931(&sr->caller, caller);
}
int pri_sr_set_redirecting(struct pri_sr *sr, char *num, int plan, int pres, int reason)
{
q931_party_redirecting_init(&sr->redirecting);
if (num && num[0]) {
sr->redirecting.from.number.valid = 1;
sr->redirecting.from.number.presentation = pres;
sr->redirecting.from.number.plan = plan;
libpri_copy_string(sr->redirecting.from.number.str, num,
sizeof(sr->redirecting.from.number.str));
sr->redirecting.count = 1;
sr->redirecting.reason = reason;
}
return 0;
}
void pri_sr_set_redirecting_parties(struct pri_sr *sr, const struct pri_party_redirecting *redirecting)
{
pri_copy_party_id_to_q931(&sr->redirecting.from, &redirecting->from);
pri_copy_party_id_to_q931(&sr->redirecting.to, &redirecting->to);
pri_copy_party_id_to_q931(&sr->redirecting.orig_called, &redirecting->orig_called);
sr->redirecting.orig_reason = redirecting->orig_reason;
sr->redirecting.reason = redirecting->reason;
if (redirecting->count <= 0) {
if (sr->redirecting.from.number.valid) {
/*
* We are redirecting with an unknown count
* so assume the count is one.
*/
sr->redirecting.count = 1;
} else {
sr->redirecting.count = 0;
}
} else if (redirecting->count < PRI_MAX_REDIRECTS) {
sr->redirecting.count = redirecting->count;
} else {
sr->redirecting.count = PRI_MAX_REDIRECTS;
}
}
void pri_sr_set_reversecharge(struct pri_sr *sr, int requested)
{
sr->reversecharge = requested;
}
void pri_sr_set_keypad_digits(struct pri_sr *sr, const char *keypad_digits)
{
sr->keypad_digits = keypad_digits;
}
void pri_transfer_enable(struct pri *ctrl, int enable)
{
if (ctrl) {
ctrl->transfer_support = enable ? 1 : 0;
}
}
void pri_hold_enable(struct pri *ctrl, int enable)
{
if (ctrl) {
ctrl->hold_support = enable ? 1 : 0;
}
}
int pri_hold(struct pri *ctrl, q931_call *call)
{
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
return q931_send_hold(ctrl, call);
}
int pri_hold_ack(struct pri *ctrl, q931_call *call)
{
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
return q931_send_hold_ack(ctrl, call);
}
int pri_hold_rej(struct pri *ctrl, q931_call *call, int cause)
{
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
return q931_send_hold_rej(ctrl, call, cause);
}
int pri_retrieve(struct pri *ctrl, q931_call *call, int channel)
{
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
return q931_send_retrieve(ctrl, call, channel);
}
int pri_retrieve_ack(struct pri *ctrl, q931_call *call, int channel)
{
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
return q931_send_retrieve_ack(ctrl, call, channel);
}
int pri_retrieve_rej(struct pri *ctrl, q931_call *call, int cause)
{
if (!ctrl || !pri_is_call_valid(ctrl, call)) {
return -1;
}
return q931_send_retrieve_rej(ctrl, call, cause);
}
int pri_callrerouting_facility(struct pri *pri, q931_call *call, const char *dest, const char* original, const char* reason)
{
if (!pri || !pri_is_call_valid(pri, call) || !dest) {
return -1;
}
return qsig_cf_callrerouting(pri, call, dest, original, reason);
}
void pri_reroute_enable(struct pri *ctrl, int enable)
{
if (ctrl) {
ctrl->deflection_support = enable ? 1 : 0;
}
}
int pri_reroute_call(struct pri *ctrl, q931_call *call, const struct pri_party_id *caller, const struct pri_party_redirecting *deflection, int subscription_option)
{
const struct q931_party_id *caller_id;
struct q931_party_id local_caller;
struct q931_party_redirecting reroute;
if (!ctrl || !pri_is_call_valid(ctrl, call) || !deflection) {
return -1;
}
if (caller) {
/* Convert the caller update information. */
pri_copy_party_id_to_q931(&local_caller, caller);
q931_party_id_fixup(ctrl, &local_caller);
caller_id = &local_caller;
} else {
caller_id = NULL;
}
/* Convert the deflection information. */
q931_party_redirecting_init(&reroute);
pri_copy_party_id_to_q931(&reroute.from, &deflection->from);
q931_party_id_fixup(ctrl, &reroute.from);
pri_copy_party_id_to_q931(&reroute.to, &deflection->to);
q931_party_id_fixup(ctrl, &reroute.to);
pri_copy_party_id_to_q931(&reroute.orig_called, &deflection->orig_called);
q931_party_id_fixup(ctrl, &reroute.orig_called);
reroute.reason = deflection->reason;
reroute.orig_reason = deflection->orig_reason;
if (deflection->count <= 0) {
/*
* We are deflecting with an unknown count
* so assume the count is one.
*/
reroute.count = 1;
} else if (deflection->count < PRI_MAX_REDIRECTS) {
reroute.count = deflection->count;
} else {
reroute.count = PRI_MAX_REDIRECTS;
}
return send_reroute_request(ctrl, call, caller_id, &reroute, subscription_option);
}
void pri_cc_enable(struct pri *ctrl, int enable)
{
if (ctrl) {
ctrl->cc_support = enable ? 1 : 0;
}
}
void pri_cc_recall_mode(struct pri *ctrl, int mode)
{
if (ctrl) {
ctrl->cc.option.recall_mode = mode ? 1 : 0;
}
}
void pri_cc_retain_signaling_req(struct pri *ctrl, int signaling_retention)
{
if (ctrl && 0 <= signaling_retention && signaling_retention < 3) {
ctrl->cc.option.signaling_retention_req = signaling_retention;
}
}
void pri_cc_retain_signaling_rsp(struct pri *ctrl, int signaling_retention)
{
if (ctrl) {
ctrl->cc.option.signaling_retention_rsp = signaling_retention ? 1 : 0;
}
}
void pri_persistent_layer2_option(struct pri *ctrl, enum pri_layer2_persistence option)
{
if (!ctrl) {
return;
}
if (PTMP_MODE(ctrl)) {
switch (option) {
case PRI_L2_PERSISTENCE_DEFAULT:
ctrl->l2_persistence = pri_l2_persistence_option_default(ctrl);
break;
case PRI_L2_PERSISTENCE_KEEP_UP:
case PRI_L2_PERSISTENCE_LEAVE_DOWN:
ctrl->l2_persistence = option;
break;
}
if (ctrl->l2_persistence == PRI_L2_PERSISTENCE_KEEP_UP) {
q921_bring_layer2_up(ctrl);
}
}
}
void pri_display_options_send(struct pri *ctrl, unsigned long flags)
{
if (!ctrl) {
return;
}
if (!flags) {
flags = pri_display_options_send_default(ctrl);
}
ctrl->display_flags.send = flags;
}
void pri_display_options_receive(struct pri *ctrl, unsigned long flags)
{
if (!ctrl) {
return;
}
if (!flags) {
flags = pri_display_options_receive_default(ctrl);
}
ctrl->display_flags.receive = flags;
}
int pri_display_text(struct pri *ctrl, q931_call *call, const struct pri_subcmd_display_txt *display)
{
if (!ctrl || !display || display->length <= 0
|| sizeof(display->text) < display->length || !pri_is_call_valid(ctrl, call)) {
/* Parameter sanity checks failed. */
return -1;
}
return q931_display_text(ctrl, call, display);
}
void pri_date_time_send_option(struct pri *ctrl, int option)
{
if (!ctrl) {
return;
}
switch (option) {
case PRI_DATE_TIME_SEND_DEFAULT:
ctrl->date_time_send = pri_date_time_send_default(ctrl);
break;
default:
case PRI_DATE_TIME_SEND_NO:
ctrl->date_time_send = PRI_DATE_TIME_SEND_NO;
break;
case PRI_DATE_TIME_SEND_DATE:
case PRI_DATE_TIME_SEND_DATE_HH:
case PRI_DATE_TIME_SEND_DATE_HHMM:
case PRI_DATE_TIME_SEND_DATE_HHMMSS:
if (NT_MODE(ctrl)) {
/* Only networks may send date/time ie. */
ctrl->date_time_send = option;
} else {
ctrl->date_time_send = PRI_DATE_TIME_SEND_NO;
}
break;
}
}