dahdi-tools/xpp/oct612x/octdeviceapi/oct6100api/oct6100_api/oct6100_interrupts.c
Tzafrir Cohen d3cadf5352 xpp: A copy of oct612x in dahdi-tools
Include a copy of the oct612x Octasic echo canceller interface to be used
by astribank_hexload to load the echo canceller firmware to a Xorcom
Astribank.


git-svn-id: http://svn.astersk.org/svn/dahdi/tools/trunk@10030 17933a7a-c749-41c5-a318-cba88f637d49
2011-07-10 16:10:32 +00:00

2013 lines
71 KiB
C

/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
File: oct6100_interrupts.c
Copyright (c) 2001-2007 Octasic Inc.
Description:
This file contains the API's interrupt service routine and all of its
sub-functions.
This file is part of the Octasic OCT6100 GPL API . The OCT6100 GPL API is
free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.
The OCT6100 GPL API is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with the OCT6100 GPL API; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
$Octasic_Release: OCT612xAPI-01.00-PR49 $
$Octasic_Revision: 81 $
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
/***************************** INCLUDE FILES *******************************/
#include "octdef.h"
#include "oct6100api/oct6100_defines.h"
#include "oct6100api/oct6100_errors.h"
#include "oct6100api/oct6100_apiud.h"
#include "oct6100api/oct6100_tlv_inst.h"
#include "oct6100api/oct6100_chip_open_inst.h"
#include "oct6100api/oct6100_chip_stats_inst.h"
#include "oct6100api/oct6100_interrupts_inst.h"
#include "oct6100api/oct6100_remote_debug_inst.h"
#include "oct6100api/oct6100_debug_inst.h"
#include "oct6100api/oct6100_api_inst.h"
#include "oct6100api/oct6100_interrupts_pub.h"
#include "oct6100api/oct6100_chip_open_pub.h"
#include "oct6100api/oct6100_events_pub.h"
#include "oct6100api/oct6100_channel_pub.h"
#include "oct6100api/oct6100_interrupts_pub.h"
#include "oct6100api/oct6100_channel_inst.h"
#include "oct6100_chip_open_priv.h"
#include "oct6100_miscellaneous_priv.h"
#include "oct6100_events_priv.h"
#include "oct6100_interrupts_priv.h"
/**************************** PUBLIC FUNCTIONS *****************************/
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100InterruptConfigure
Description: Configure the operation of all possible interrupt sources.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntrptConfig Pointer to interrupt configuration structure.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100InterruptConfigureDef
UINT32 Oct6100InterruptConfigureDef(
tPOCT6100_INTERRUPT_CONFIGURE f_pIntrptConfig )
{
f_pIntrptConfig->ulFatalGeneralConfig = cOCT6100_INTERRUPT_NO_TIMEOUT;
f_pIntrptConfig->ulFatalMemoryConfig = cOCT6100_INTERRUPT_NO_TIMEOUT;
f_pIntrptConfig->ulErrorMemoryConfig = cOCT6100_INTERRUPT_NO_TIMEOUT;
f_pIntrptConfig->ulErrorOverflowToneEventsConfig = cOCT6100_INTERRUPT_NO_TIMEOUT;
f_pIntrptConfig->ulErrorH100Config = cOCT6100_INTERRUPT_NO_TIMEOUT;
f_pIntrptConfig->ulFatalMemoryTimeout = 100;
f_pIntrptConfig->ulErrorMemoryTimeout = 100;
f_pIntrptConfig->ulErrorOverflowToneEventsTimeout = 100;
f_pIntrptConfig->ulErrorH100Timeout = 100;
return cOCT6100_ERR_OK;
}
#endif
#if !SKIP_Oct6100InterruptConfigure
UINT32 Oct6100InterruptConfigure(
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_INTERRUPT_CONFIGURE f_pIntrptConfig )
{
tOCT6100_SEIZE_SERIALIZE_OBJECT SeizeSerObj;
tOCT6100_RELEASE_SERIALIZE_OBJECT ReleaseSerObj;
UINT32 ulResult;
UINT32 ulFncRes;
/* Set the process context of the serialize structure.*/
SeizeSerObj.pProcessContext = f_pApiInstance->pProcessContext;
ReleaseSerObj.pProcessContext = f_pApiInstance->pProcessContext;
/* Create serialization object for ISR. */
SeizeSerObj.ulSerialObjHndl = f_pApiInstance->ulApiSerObj;
SeizeSerObj.ulTryTimeMs = cOCT6100_WAIT_INFINITELY;
ulResult = Oct6100UserSeizeSerializeObject( &SeizeSerObj );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Call serialized sub-function. */
ulFncRes = Oct6100InterruptConfigureSer( f_pApiInstance, f_pIntrptConfig, TRUE );
/* Release serialization object. */
ReleaseSerObj.ulSerialObjHndl = f_pApiInstance->ulApiSerObj;
ulResult = Oct6100UserReleaseSerializeObject( &ReleaseSerObj );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check if an error occured in sub-function. */
if ( ulFncRes != cOCT6100_ERR_OK )
return ulFncRes;
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100InterruptServiceRoutine
Description: The API's interrupt service routine. This function clears all
register ROLs which have generated an interrupt and report the
events in the user supplied structure. Also, the tone event
and/or playout event buffer will be emptied if valid events
are present.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntFlags Pointer to structure containing event flags returned
to user.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100InterruptServiceRoutineDef
UINT32 Oct6100InterruptServiceRoutineDef(
tPOCT6100_INTERRUPT_FLAGS f_pIntFlags )
{
f_pIntFlags->fFatalGeneral = FALSE;
f_pIntFlags->ulFatalGeneralFlags = 0x0;
f_pIntFlags->fFatalReadTimeout = FALSE;
f_pIntFlags->fErrorRefreshTooLate = FALSE;
f_pIntFlags->fErrorPllJitter = FALSE;
f_pIntFlags->fErrorOverflowToneEvents = FALSE;
f_pIntFlags->fErrorH100OutOfSync = FALSE;
f_pIntFlags->fErrorH100ClkA = FALSE;
f_pIntFlags->fErrorH100ClkB = FALSE;
f_pIntFlags->fErrorH100FrameA = FALSE;
f_pIntFlags->fToneEventsPending = FALSE;
f_pIntFlags->fBufferPlayoutEventsPending = FALSE;
f_pIntFlags->fApiSynch = FALSE;
return cOCT6100_ERR_OK;
}
#endif
#if !SKIP_Oct6100InterruptServiceRoutine
UINT32 Oct6100InterruptServiceRoutine(
tPOCT6100_INSTANCE_API f_pApiInstance,
tPOCT6100_INTERRUPT_FLAGS f_pIntFlags )
{
tOCT6100_SEIZE_SERIALIZE_OBJECT SeizeSerObj;
tOCT6100_RELEASE_SERIALIZE_OBJECT ReleaseSerObj;
UINT32 ulResult;
UINT32 ulFncRes;
/* Set the process context of the serialize structure. */
SeizeSerObj.pProcessContext = f_pApiInstance->pProcessContext;
ReleaseSerObj.pProcessContext = f_pApiInstance->pProcessContext;
/* Seize the serialization object for the ISR. */
SeizeSerObj.ulSerialObjHndl = f_pApiInstance->ulApiSerObj;
SeizeSerObj.ulTryTimeMs = cOCT6100_WAIT_INFINITELY;
ulResult = Oct6100UserSeizeSerializeObject( &SeizeSerObj );
if ( ulResult == cOCT6100_ERR_OK )
{
/* Call the serialized sub-function. */
ulFncRes = Oct6100InterruptServiceRoutineSer( f_pApiInstance, f_pIntFlags );
}
else
{
return ulResult;
}
/* Release the serialization object. */
ReleaseSerObj.ulSerialObjHndl = f_pApiInstance->ulApiSerObj;
ulResult = Oct6100UserReleaseSerializeObject( &ReleaseSerObj );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check for an error in the sub-function. */
if ( ulFncRes != cOCT6100_ERR_OK )
return ulFncRes;
return cOCT6100_ERR_OK;
}
#endif
/**************************** PRIVATE FUNCTIONS ****************************/
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiIsrSwInit
Description: Initializes portions of API instance associated to the API's
interrupt service routine.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiIsrSwInit
UINT32 Oct6100ApiIsrSwInit(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance )
{
tPOCT6100_SHARED_INFO pSharedInfo;
/* Get local pointer to shared portion of instance. */
pSharedInfo = f_pApiInstance->pSharedInfo;
/* Set the state of each interrupt group to disabled. The state will */
/* be updated to the true configuration once the configure interrupts function is called. */
pSharedInfo->IntrptManage.byFatalGeneralState = cOCT6100_INTRPT_DISABLED;
pSharedInfo->IntrptManage.byFatalMemoryState = cOCT6100_INTRPT_DISABLED;
pSharedInfo->IntrptManage.byErrorMemoryState = cOCT6100_INTRPT_DISABLED;
pSharedInfo->IntrptManage.byErrorH100State = cOCT6100_INTRPT_DISABLED;
pSharedInfo->IntrptManage.byErrorOverflowToneEventsState = cOCT6100_INTRPT_DISABLED;
/* Indicate that the mclk interrupt is not active at the moment. */
pSharedInfo->IntrptManage.fMclkIntrptActive = FALSE;
/* Indicate that no buffer playout events are pending for the moment. */
pSharedInfo->IntrptManage.fBufferPlayoutEventsPending = FALSE;
/* Indicate that no tone events are pending for the moment. */
pSharedInfo->IntrptManage.fToneEventsPending = FALSE;
/* The ISR has never been called. */
pSharedInfo->IntrptManage.fIsrCalled = FALSE;
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiIsrHwInit
Description: Initializes the chip's interrupt registers.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntrptConfig Pointer to structure defining how the interrupts
should be configured.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiIsrHwInit
UINT32 Oct6100ApiIsrHwInit(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance,
IN tPOCT6100_INTERRUPT_CONFIGURE f_pIntrptConfig )
{
tOCT6100_WRITE_PARAMS WriteParams;
UINT32 ulResult;
/* Set some parameters of write struct. */
WriteParams.pProcessContext = f_pApiInstance->pProcessContext;
WriteParams.ulUserChipId = f_pApiInstance->pSharedInfo->ChipConfig.ulUserChipId;
/*==================================================================================*/
/* Enable all the interrupts */
WriteParams.ulWriteAddress = 0x104;
WriteParams.usWriteData = 0x0001;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
WriteParams.ulWriteAddress = 0x204;
WriteParams.usWriteData = 0x1C05;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
WriteParams.ulWriteAddress = 0x304;
WriteParams.usWriteData = 0xFFFF;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
WriteParams.ulWriteAddress = 0x504;
WriteParams.usWriteData = 0x0002;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
WriteParams.ulWriteAddress = 0x704;
WriteParams.usWriteData = 0x0007;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/*==================================================================================*/
/* Calculate the number of mclk cycles in 1 ms. */
f_pApiInstance->pSharedInfo->IntrptManage.ulNumMclkCyclesIn1Ms = f_pApiInstance->pSharedInfo->MiscVars.ulMclkFreq / 1000;
/* Configure the interrupt registers as requested by the user. */
ulResult = Oct6100InterruptConfigureSer( f_pApiInstance, f_pIntrptConfig, TRUE );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100InterruptConfigureSer
Description: Configure the operation of interrupt groups.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntrptConfig Pointer to interrupt configuration structure.
f_fCheckParams Check parameter enable flag.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100InterruptConfigureSer
UINT32 Oct6100InterruptConfigureSer(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance,
IN tPOCT6100_INTERRUPT_CONFIGURE f_pIntrptConfig,
IN BOOL f_fCheckParams )
{
tPOCT6100_API_INTRPT_CONFIG pIntrptConfig;
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
UINT32 ulResult;
/* Check for errors. */
if ( f_fCheckParams == TRUE )
{
if ( f_pIntrptConfig->ulFatalGeneralConfig != cOCT6100_INTERRUPT_DISABLE &&
f_pIntrptConfig->ulFatalGeneralConfig != cOCT6100_INTERRUPT_NO_TIMEOUT )
return cOCT6100_ERR_INTRPTS_FATAL_GENERAL_CONFIG;
if ( f_pIntrptConfig->ulFatalMemoryConfig != cOCT6100_INTERRUPT_DISABLE &&
f_pIntrptConfig->ulFatalMemoryConfig != cOCT6100_INTERRUPT_TIMEOUT &&
f_pIntrptConfig->ulFatalMemoryConfig != cOCT6100_INTERRUPT_NO_TIMEOUT )
return cOCT6100_ERR_INTRPTS_FATAL_MEMORY_CONFIG;
if ( f_pIntrptConfig->ulErrorMemoryConfig != cOCT6100_INTERRUPT_DISABLE &&
f_pIntrptConfig->ulErrorMemoryConfig != cOCT6100_INTERRUPT_TIMEOUT &&
f_pIntrptConfig->ulErrorMemoryConfig != cOCT6100_INTERRUPT_NO_TIMEOUT )
return cOCT6100_ERR_INTRPTS_DATA_ERR_MEMORY_CONFIG;
if ( f_pIntrptConfig->ulErrorOverflowToneEventsConfig != cOCT6100_INTERRUPT_DISABLE &&
f_pIntrptConfig->ulErrorOverflowToneEventsConfig != cOCT6100_INTERRUPT_TIMEOUT &&
f_pIntrptConfig->ulErrorOverflowToneEventsConfig != cOCT6100_INTERRUPT_NO_TIMEOUT )
return cOCT6100_ERR_INTRPTS_OVERFLOW_TONE_EVENTS_CONFIG;
if ( f_pIntrptConfig->ulErrorH100Config != cOCT6100_INTERRUPT_DISABLE &&
f_pIntrptConfig->ulErrorH100Config != cOCT6100_INTERRUPT_TIMEOUT &&
f_pIntrptConfig->ulErrorH100Config != cOCT6100_INTERRUPT_NO_TIMEOUT )
return cOCT6100_ERR_INTRPTS_H100_ERROR_CONFIG;
if ( f_pIntrptConfig->ulFatalMemoryTimeout < 10 ||
f_pIntrptConfig->ulFatalMemoryTimeout > 10000 )
return cOCT6100_ERR_INTRPTS_FATAL_MEMORY_TIMEOUT;
if ( f_pIntrptConfig->ulErrorMemoryTimeout < 10 ||
f_pIntrptConfig->ulErrorMemoryTimeout > 10000 )
return cOCT6100_ERR_INTRPTS_DATA_ERR_MEMORY_TIMEOUT;
if ( f_pIntrptConfig->ulErrorOverflowToneEventsTimeout < 10 ||
f_pIntrptConfig->ulErrorOverflowToneEventsTimeout > 10000 )
return cOCT6100_ERR_INTRPTS_OVERFLOW_TONE_EVENTS_TIMEOUT;
if ( f_pIntrptConfig->ulErrorH100Timeout < 10 ||
f_pIntrptConfig->ulErrorH100Timeout > 10000 )
return cOCT6100_ERR_INTRPTS_H100_ERROR_TIMEOUT;
}
/* Copy the configuration to the API instance. */
pIntrptConfig = &f_pApiInstance->pSharedInfo->IntrptConfig;
pIntrptManage = &f_pApiInstance->pSharedInfo->IntrptManage;
pIntrptConfig->byFatalGeneralConfig = (UINT8)( f_pIntrptConfig->ulFatalGeneralConfig & 0xFF );
pIntrptConfig->byFatalMemoryConfig = (UINT8)( f_pIntrptConfig->ulFatalMemoryConfig & 0xFF );
pIntrptConfig->byErrorMemoryConfig = (UINT8)( f_pIntrptConfig->ulErrorMemoryConfig & 0xFF );
pIntrptConfig->byErrorOverflowToneEventsConfig = (UINT8)( f_pIntrptConfig->ulErrorOverflowToneEventsConfig & 0xFF );
pIntrptConfig->byErrorH100Config = (UINT8)( f_pIntrptConfig->ulErrorH100Config & 0xFF );
f_pIntrptConfig->ulFatalMemoryTimeout = ((f_pIntrptConfig->ulFatalMemoryTimeout + 9) / 10) * 10;
pIntrptConfig->ulFatalMemoryTimeoutMclk = f_pIntrptConfig->ulFatalMemoryTimeout * pIntrptManage->ulNumMclkCyclesIn1Ms;
f_pIntrptConfig->ulErrorMemoryTimeout = ((f_pIntrptConfig->ulErrorMemoryTimeout + 9) / 10) * 10;
pIntrptConfig->ulErrorMemoryTimeoutMclk = f_pIntrptConfig->ulErrorMemoryTimeout * pIntrptManage->ulNumMclkCyclesIn1Ms;
f_pIntrptConfig->ulErrorOverflowToneEventsTimeout = ((f_pIntrptConfig->ulErrorOverflowToneEventsTimeout + 9) / 10) * 10;
pIntrptConfig->ulErrorOverflowToneEventsTimeoutMclk = f_pIntrptConfig->ulErrorOverflowToneEventsTimeout * pIntrptManage->ulNumMclkCyclesIn1Ms;
f_pIntrptConfig->ulErrorH100Timeout = ((f_pIntrptConfig->ulErrorH100Timeout + 9) / 10) * 10;
pIntrptConfig->ulErrorH100TimeoutMclk = f_pIntrptConfig->ulErrorH100Timeout * pIntrptManage->ulNumMclkCyclesIn1Ms;
/*Clear all interrupts that were already enabled*/
ulResult = Oct6100ApiClearEnabledInterrupts( f_pApiInstance );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Before writing the new configuration to the chip's registers, make sure that any */
/* interrupts which are either disabled or have no timeout period are not on the */
/* disabled interrupt list. */
/*==================================================================================*/
if ( pIntrptConfig->byFatalGeneralConfig == cOCT6100_INTERRUPT_DISABLE )
pIntrptManage->byFatalGeneralState = cOCT6100_INTRPT_DISABLED;
else /* pIntrptConfig->byFatalGeneralConfig == cOCT6100_INTERRUPT_NO_TIMEOUT */
pIntrptManage->byFatalGeneralState = cOCT6100_INTRPT_ACTIVE;
/*==================================================================================*/
if ( pIntrptConfig->byFatalMemoryConfig == cOCT6100_INTERRUPT_DISABLE )
pIntrptManage->byFatalMemoryState = cOCT6100_INTRPT_DISABLED;
else if ( pIntrptConfig->byFatalMemoryConfig == cOCT6100_INTERRUPT_NO_TIMEOUT )
pIntrptManage->byFatalMemoryState = cOCT6100_INTRPT_ACTIVE;
else /* ( pIntrptConfig->byFatalMemoryConfig == cOCT6100_INTERRUPT_TIMEOUT ) */
{
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_DISABLED )
pIntrptManage->byFatalMemoryState = cOCT6100_INTRPT_ACTIVE;
}
/*==================================================================================*/
if ( pIntrptConfig->byErrorMemoryConfig == cOCT6100_INTERRUPT_DISABLE )
pIntrptManage->byErrorMemoryState = cOCT6100_INTRPT_DISABLED;
else if ( pIntrptConfig->byErrorMemoryConfig == cOCT6100_INTERRUPT_NO_TIMEOUT )
pIntrptManage->byErrorMemoryState = cOCT6100_INTRPT_ACTIVE;
else /* (pIntrptConfig->byErrorMemoryConfig == cOCT6100_INTERRUPT_TIMEOUT ) */
{
if ( pIntrptManage->byErrorMemoryState == cOCT6100_INTRPT_DISABLED )
pIntrptManage->byErrorMemoryState = cOCT6100_INTRPT_ACTIVE;
}
/*==================================================================================*/
if ( pIntrptConfig->byErrorOverflowToneEventsConfig == cOCT6100_INTERRUPT_DISABLE )
pIntrptManage->byErrorOverflowToneEventsState = cOCT6100_INTRPT_DISABLED;
else if ( pIntrptConfig->byErrorOverflowToneEventsConfig == cOCT6100_INTERRUPT_NO_TIMEOUT )
pIntrptManage->byErrorOverflowToneEventsState = cOCT6100_INTRPT_ACTIVE;
else /* (pIntrptConfig->byErrorOverflowToneEventsConfig == cOCT6100_INTERRUPT_TIMEOUT ) */
{
if ( pIntrptManage->byErrorOverflowToneEventsState == cOCT6100_INTRPT_DISABLED )
pIntrptManage->byErrorOverflowToneEventsState = cOCT6100_INTRPT_ACTIVE;
}
/*==================================================================================*/
if ( pIntrptConfig->byErrorH100Config == cOCT6100_INTERRUPT_DISABLE )
pIntrptManage->byErrorH100State = cOCT6100_INTRPT_DISABLED;
else if ( pIntrptConfig->byErrorH100Config == cOCT6100_INTERRUPT_NO_TIMEOUT )
pIntrptManage->byErrorH100State = cOCT6100_INTRPT_ACTIVE;
else /* (pIntrptConfig->byErrorH100Config == cOCT6100_INTERRUPT_TIMEOUT ) */
{
if ( pIntrptManage->byErrorH100State == cOCT6100_INTRPT_DISABLED )
pIntrptManage->byErrorH100State = cOCT6100_INTRPT_ACTIVE;
}
/* Write to the interrupt registers to update the state of each interrupt group. */
ulResult = Oct6100ApiWriteIeRegs( f_pApiInstance );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiClearEnabledInterrupts
Description: Disabled interruption are not reported but still available. This
function will clear the interrupts that were disabled and wish
to enable now.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntrptConfig Pointer to interrupt configuration structure.
f_pIntrptManage Pointer to interrupt manager structure.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiClearEnabledInterrupts
UINT32 Oct6100ApiClearEnabledInterrupts(
IN tPOCT6100_INSTANCE_API f_pApiInstance )
{
tPOCT6100_SHARED_INFO pSharedInfo;
tOCT6100_WRITE_PARAMS WriteParams;
tPOCT6100_API_INTRPT_CONFIG pIntrptConfig;
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
UINT32 ulResult;
/* Get local pointer to shared portion of instance. */
pSharedInfo = f_pApiInstance->pSharedInfo;
/* Set the process context and user chip ID parameters once and for all. */
WriteParams.pProcessContext = f_pApiInstance->pProcessContext;
WriteParams.ulUserChipId = pSharedInfo->ChipConfig.ulUserChipId;
/* Copy the configuration to the API instance. */
pIntrptConfig = &f_pApiInstance->pSharedInfo->IntrptConfig;
pIntrptManage = &f_pApiInstance->pSharedInfo->IntrptManage;
if ( pIntrptConfig->byFatalGeneralConfig != cOCT6100_INTERRUPT_DISABLE &&
pIntrptManage->byFatalGeneralState != cOCT6100_INTRPT_DISABLED )
{
WriteParams.ulWriteAddress = 0x102;
WriteParams.usWriteData = cOCT6100_INTRPT_MASK_REG_102H;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
WriteParams.ulWriteAddress = 0x202;
WriteParams.usWriteData = 0x1800;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
WriteParams.ulWriteAddress = 0x502;
WriteParams.usWriteData = cOCT6100_INTRPT_MASK_REG_502H;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
if ( pIntrptConfig->byErrorMemoryConfig != cOCT6100_INTERRUPT_DISABLE &&
pIntrptManage->byErrorMemoryState != cOCT6100_INTRPT_DISABLED )
{
WriteParams.ulWriteAddress = 0x202;
WriteParams.usWriteData = cOCT6100_INTRPT_MASK_REG_202H;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
if ( pIntrptConfig->byErrorH100Config != cOCT6100_INTERRUPT_DISABLE &&
pIntrptManage->byErrorH100State != cOCT6100_INTRPT_DISABLED )
{
WriteParams.ulWriteAddress = 0x302;
WriteParams.usWriteData = cOCT6100_INTRPT_MASK_REG_302H;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
if ( pIntrptConfig->byErrorOverflowToneEventsConfig != cOCT6100_INTERRUPT_DISABLE &&
pIntrptManage->byErrorOverflowToneEventsState != cOCT6100_INTRPT_DISABLED )
{
WriteParams.ulWriteAddress = 0x702;
WriteParams.usWriteData = cOCT6100_INTRPT_MASK_REG_702H;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100InterruptServiceRoutineSer
Description: Serialized sub-function of API's interrupt service routine.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntFlags Pointer to structure containing event flags returned
to user.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100InterruptServiceRoutineSer
UINT32 Oct6100InterruptServiceRoutineSer(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance,
IN tPOCT6100_INTERRUPT_FLAGS f_pIntFlags )
{
tPOCT6100_SHARED_INFO pSharedInfo;
tOCT6100_READ_PARAMS ReadParams;
tOCT6100_WRITE_PARAMS WriteParams;
UINT32 ulRegister210h;
UINT32 ulResult;
UINT16 usReadData;
/* Get local pointer(s). */
pSharedInfo = f_pApiInstance->pSharedInfo;
/* Must update the statistics. Set parameters in read and write structs. */
WriteParams.pProcessContext = f_pApiInstance->pProcessContext;
WriteParams.ulUserChipId = pSharedInfo->ChipConfig.ulUserChipId;
ReadParams.pProcessContext = f_pApiInstance->pProcessContext;
ReadParams.ulUserChipId = pSharedInfo->ChipConfig.ulUserChipId;
ReadParams.pusReadData = &usReadData;
/* Set all the flags to default values to make sure the variables are initialized. */
f_pIntFlags->fFatalGeneral = FALSE;
f_pIntFlags->ulFatalGeneralFlags = 0x0;
f_pIntFlags->fFatalReadTimeout = FALSE;
f_pIntFlags->fErrorRefreshTooLate = FALSE;
f_pIntFlags->fErrorPllJitter = FALSE;
f_pIntFlags->fErrorH100OutOfSync = FALSE;
f_pIntFlags->fErrorH100ClkA = FALSE;
f_pIntFlags->fErrorH100ClkB = FALSE;
f_pIntFlags->fErrorH100FrameA = FALSE;
f_pIntFlags->fApiSynch = FALSE;
f_pIntFlags->fErrorOverflowToneEvents = FALSE;
/* Start by reading registers 210h to determine if any modules have flagged an interrupt. */
ReadParams.ulReadAddress = 0x210;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
ulRegister210h = usReadData;
/* Update the extended mclk counter. */
ulResult = Oct6100ApiReadChipMclkTime( f_pApiInstance );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* If the mclk interrupt is active then check which interrupt timeout periods have expired. */
ReadParams.ulReadAddress = 0x302;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
if ( (usReadData & 0x1) != 0 && pSharedInfo->IntrptManage.fMclkIntrptActive == TRUE )
{
/* Update timeout periods. */
ulResult = Oct6100ApiUpdateIntrptTimeouts( f_pApiInstance );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
f_pIntFlags->fApiSynch = TRUE;
/* Read registers 210h and 212h again to determine if any modules have flagged an interrupt. */
ReadParams.ulReadAddress = 0x210;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
ulRegister210h = usReadData;
}
/* Read the interrupt registers to determine what interrupt conditions have occured. */
ulResult = Oct6100ApiReadIntrptRegs( f_pApiInstance, f_pIntFlags, ulRegister210h );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Empty the tone buffer if any events are pending. */
ulResult = Oct6100ApiTransferToneEvents( f_pApiInstance, FALSE );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Set the tone events pending flag. */
f_pIntFlags->fToneEventsPending = pSharedInfo->IntrptManage.fToneEventsPending;
/* Check for buffer playout events and insert in the software queue -- if activated. */
if ( pSharedInfo->ChipConfig.ulSoftBufPlayoutEventsBufSize != 0 )
{
ulResult = Oct6100BufferPlayoutTransferEvents( f_pApiInstance, FALSE );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Set the buffer playout events pending flag. */
f_pIntFlags->fBufferPlayoutEventsPending = pSharedInfo->IntrptManage.fBufferPlayoutEventsPending;
}
else
{
f_pIntFlags->fBufferPlayoutEventsPending = FALSE;
}
/* Update the states of each interrupt group. */
ulResult = Oct6100ApiUpdateIntrptStates( f_pApiInstance, f_pIntFlags );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check the state of the NLP timestamp if required.*/
ulResult = Oct6100ApiCheckProcessorState( f_pApiInstance, f_pIntFlags );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Write to the necessary IE registers. */
ulResult = Oct6100ApiWriteIntrptRegs( f_pApiInstance );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Schedule the next mclk interrupt, if one is needed. */
ulResult = Oct6100ApiScheduleNextMclkIntrptSer( f_pApiInstance );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Free the interrupt pin of the chip (i.e. remove minimum time requirement between interrupts). */
WriteParams.ulWriteAddress = 0x214;
WriteParams.usWriteData = 0x0000;
if ( pSharedInfo->ChipConfig.byInterruptPolarity == cOCT6100_ACTIVE_HIGH_POLARITY )
WriteParams.usWriteData |= 0x4000;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Indicate that the interrupt ROLs have been treated. */
WriteParams.ulWriteAddress = 0x212;
WriteParams.usWriteData = 0x8000;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiReadIntrptRegs
Description: Reads the interrupt registers of all modules currently
indicating an interrupt condition.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntFlags Pointer to an interrupt flag structure.
f_ulRegister210h Value of register 0x210.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiReadIntrptRegs
UINT32 Oct6100ApiReadIntrptRegs(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance,
OUT tPOCT6100_INTERRUPT_FLAGS f_pIntFlags,
IN UINT32 f_ulRegister210h )
{
tPOCT6100_SHARED_INFO pSharedInfo;
tPOCT6100_API_CHIP_ERROR_STATS pErrorStats;
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
tOCT6100_READ_PARAMS ReadParams;
tOCT6100_WRITE_PARAMS WriteParams;
UINT32 ulResult;
UINT16 usReadData;
UINT32 ulFeatureBytesOffset;
UINT32 ulFeatureBitOffset;
UINT32 ulFeatureFieldLength;
UINT32 ulTempData;
UINT32 ulCounterValue;
UINT32 ulMask;
/* Get local pointer(s). */
pSharedInfo = f_pApiInstance->pSharedInfo;
pErrorStats = &pSharedInfo->ErrorStats;
pIntrptManage = &pSharedInfo->IntrptManage;
/* Set some parameters of read struct. */
ReadParams.pProcessContext = f_pApiInstance->pProcessContext;
ReadParams.ulUserChipId = pSharedInfo->ChipConfig.ulUserChipId;
ReadParams.pusReadData = &usReadData;
/* Set some parameters of write struct. */
WriteParams.pProcessContext = f_pApiInstance->pProcessContext;
WriteParams.ulUserChipId = pSharedInfo->ChipConfig.ulUserChipId;
/* CPU registers. */
if ( (f_ulRegister210h & 0x00001) != 0 )
{
/*=======================================================================*/
/* Read registers of this module. */
ReadParams.ulReadAddress = 0x102;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check which interrupt(s) were set. */
if ( (usReadData & 0x0001) != 0 )
{
f_pIntFlags->fFatalReadTimeout = TRUE;
pErrorStats->ulInternalReadTimeoutCnt++;
}
pIntrptManage->usRegister102h = usReadData;
/*=======================================================================*/
}
else
{
pIntrptManage->usRegister102h = 0x0;
}
/* MAIN registers. */
if ( (f_ulRegister210h & 0x00002) != 0 )
{
/*=======================================================================*/
/* Read registers of this module. */
ReadParams.ulReadAddress = 0x202;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Save current value in instance. */
pIntrptManage->usRegister202h = usReadData;
/* Check which interrupts were set. */
if ( (usReadData & 0x0001) != 0 )
{
f_pIntFlags->fErrorRefreshTooLate = TRUE;
pErrorStats->ulSdramRefreshTooLateCnt++;
}
if ( (usReadData & 0x0800) != 0 )
{
f_pIntFlags->ulFatalGeneralFlags |= cOCT6100_FATAL_GENERAL_ERROR_TYPE_1;
f_pIntFlags->fFatalGeneral = TRUE;
pErrorStats->fFatalChipError = TRUE;
}
if ( (usReadData & 0x1000) != 0 )
{
f_pIntFlags->ulFatalGeneralFlags |= cOCT6100_FATAL_GENERAL_ERROR_TYPE_2;
f_pIntFlags->fFatalGeneral = TRUE;
pErrorStats->fFatalChipError = TRUE;
}
if ( (usReadData & 0x0400) != 0 )
{
f_pIntFlags->fErrorPllJitter = TRUE;
pErrorStats->ulPllJitterErrorCnt++;
/* Update the PLL jitter error count here. */
if ( pSharedInfo->DebugInfo.fPouchCounter == TRUE )
{
ulFeatureBytesOffset = pSharedInfo->MemoryMap.PouchCounterFieldOfst.usDwordOffset * 4;
ulFeatureBitOffset = pSharedInfo->MemoryMap.PouchCounterFieldOfst.byBitOffset;
ulFeatureFieldLength = pSharedInfo->MemoryMap.PouchCounterFieldOfst.byFieldSize;
ulResult = Oct6100ApiReadDword( f_pApiInstance,
cOCT6100_POUCH_BASE + ulFeatureBytesOffset,
&ulTempData );
/* Read previous value set in the feature field. */
mOCT6100_CREATE_FEATURE_MASK( ulFeatureFieldLength, ulFeatureBitOffset, &ulMask );
/* Update counter. */
ulCounterValue = ulTempData & ulMask;
ulCounterValue = ulCounterValue >> ulFeatureBitOffset;
ulCounterValue ++;
/* Handle wrap around case. */
ulCounterValue &= ( 1 << ulFeatureFieldLength ) - 1;
/* Clear old counter value. */
ulTempData &= (~ulMask);
ulTempData |= ulCounterValue << ulFeatureBitOffset;
/* Write the DWORD where the field is located.*/
ulResult = Oct6100ApiWriteDword( f_pApiInstance,
cOCT6100_POUCH_BASE + ulFeatureBytesOffset,
ulTempData );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
}
/*=======================================================================*/
}
else
{
pIntrptManage->usRegister202h = 0x0;
}
/* H.100 registers. */
if ( (f_ulRegister210h & 0x00004) != 0 )
{
/*=======================================================================*/
/* Read registers of this module. */
ReadParams.ulReadAddress = 0x302;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check which interrupts were set. */
if ( (usReadData & 0x0100) != 0 )
{
f_pIntFlags->fErrorH100OutOfSync = TRUE;
pErrorStats->ulH100OutOfSyncCnt++;
}
if ( (usReadData & 0x1000) != 0 )
{
f_pIntFlags->fErrorH100FrameA = TRUE;
pErrorStats->ulH100FrameABadCnt++;
}
if ( (usReadData & 0x4000) != 0 )
{
f_pIntFlags->fErrorH100ClkA = TRUE;
pErrorStats->ulH100ClkABadCnt++;
}
if ( (usReadData & 0x8000) != 0 )
{
if ( f_pApiInstance->pSharedInfo->ChipConfig.fEnableFastH100Mode == TRUE )
{
f_pIntFlags->fErrorH100ClkB = TRUE;
pErrorStats->ulH100ClkBBadCnt++;
}
}
pIntrptManage->usRegister302h = usReadData;
/*=======================================================================*/
}
else
{
pIntrptManage->usRegister302h = 0x0;
}
/* TDMIE registers. */
if ( (f_ulRegister210h & 0x00010) != 0 )
{
/*=======================================================================*/
/* Read register. */
ReadParams.ulReadAddress = 0x502;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check which interrupts were set. */
if ( (usReadData & 0x0002) != 0 )
{
f_pIntFlags->ulFatalGeneralFlags |= cOCT6100_FATAL_GENERAL_ERROR_TYPE_3;
f_pIntFlags->fFatalGeneral = TRUE;
pErrorStats->fFatalChipError = TRUE;
}
pIntrptManage->usRegister502h = usReadData;
/*=======================================================================*/
}
else
{
pIntrptManage->usRegister502h = 0x0;
}
/* PGSP registers. */
if ( (f_ulRegister210h & 0x00080) != 0 )
{
/*=======================================================================*/
/* Read register. */
ReadParams.ulReadAddress = 0x702;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check which interrupts were set. */
if ( (usReadData & 0x0002) != 0 )
{
f_pIntFlags->fErrorOverflowToneEvents = TRUE;
pErrorStats->ulOverflowToneEventsCnt++;
}
pIntrptManage->usRegister702h = usReadData;
/*=======================================================================*/
}
else
{
pIntrptManage->usRegister702h = 0x0;
}
/* If this is the first time the ISR is called, clear the ISR is not called bit */
/* in external memory to signal the remote client that we are called. */
if ( pSharedInfo->IntrptManage.fIsrCalled == FALSE )
{
/* Remember that we are being called. */
pSharedInfo->IntrptManage.fIsrCalled = TRUE;
if ( pSharedInfo->DebugInfo.fIsIsrCalledField == TRUE )
{
ulFeatureBytesOffset = pSharedInfo->MemoryMap.IsIsrCalledFieldOfst.usDwordOffset * 4;
ulFeatureBitOffset = pSharedInfo->MemoryMap.IsIsrCalledFieldOfst.byBitOffset;
ulFeatureFieldLength = pSharedInfo->MemoryMap.IsIsrCalledFieldOfst.byFieldSize;
ulResult = Oct6100ApiReadDword( f_pApiInstance,
cOCT6100_POUCH_BASE + ulFeatureBytesOffset,
&ulTempData );
/* Read previous value set in the feature field. */
mOCT6100_CREATE_FEATURE_MASK( ulFeatureFieldLength, ulFeatureBitOffset, &ulMask );
/* Clear the field. */
ulTempData &= (~ulMask);
/* Write the DWORD where the field is located.*/
ulResult = Oct6100ApiWriteDword( f_pApiInstance,
cOCT6100_POUCH_BASE + ulFeatureBytesOffset,
ulTempData );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
}
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiUpdateIntrptStates
Description: Updates the state of all interrupt register groups.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntFlags Interrupt flags.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiUpdateIntrptStates
UINT32 Oct6100ApiUpdateIntrptStates(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance,
IN tPOCT6100_INTERRUPT_FLAGS f_pIntFlags )
{
tPOCT6100_API_INTRPT_CONFIG pIntrptConfig;
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
pIntrptConfig = &f_pApiInstance->pSharedInfo->IntrptConfig;
pIntrptManage = &f_pApiInstance->pSharedInfo->IntrptManage;
/*-----------------------------------------------------------------------*/
if ( ( f_pIntFlags->fFatalReadTimeout == TRUE) &&
pIntrptConfig->byFatalMemoryConfig == cOCT6100_INTERRUPT_TIMEOUT &&
pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_ACTIVE )
{
pIntrptManage->byFatalMemoryState = cOCT6100_INTRPT_WILL_TIMEOUT;
pIntrptManage->ulFatalMemoryDisableMclkHigh = pIntrptManage->ulRegMclkTimeHigh;
pIntrptManage->ulFatalMemoryDisableMclkLow = pIntrptManage->ulRegMclkTimeLow;
}
/*-----------------------------------------------------------------------*/
if ( (f_pIntFlags->fErrorRefreshTooLate == TRUE ||
f_pIntFlags->fErrorPllJitter == TRUE ) &&
pIntrptConfig->byErrorMemoryConfig == cOCT6100_INTERRUPT_TIMEOUT &&
pIntrptManage->byErrorMemoryState == cOCT6100_INTRPT_ACTIVE )
{
pIntrptManage->byErrorMemoryState = cOCT6100_INTRPT_WILL_TIMEOUT;
pIntrptManage->ulErrorMemoryDisableMclkHigh = pIntrptManage->ulRegMclkTimeHigh;
pIntrptManage->ulErrorMemoryDisableMclkLow = pIntrptManage->ulRegMclkTimeLow;
}
/*-----------------------------------------------------------------------*/
if ( (f_pIntFlags->fErrorOverflowToneEvents == TRUE) &&
pIntrptConfig->byErrorOverflowToneEventsConfig == cOCT6100_INTERRUPT_TIMEOUT &&
pIntrptManage->byErrorOverflowToneEventsState == cOCT6100_INTRPT_ACTIVE )
{
pIntrptManage->byErrorOverflowToneEventsState = cOCT6100_INTRPT_WILL_TIMEOUT;
pIntrptManage->ulErrorOverflowToneEventsDisableMclkHigh = pIntrptManage->ulRegMclkTimeHigh;
pIntrptManage->ulErrorOverflowToneEventsDisableMclkLow = pIntrptManage->ulRegMclkTimeLow;
}
/*-----------------------------------------------------------------------*/
if ( (f_pIntFlags->fErrorH100OutOfSync == TRUE ||
f_pIntFlags->fErrorH100ClkA == TRUE ||
f_pIntFlags->fErrorH100ClkB == TRUE ||
f_pIntFlags->fErrorH100FrameA == TRUE ) &&
pIntrptConfig->byErrorH100Config == cOCT6100_INTERRUPT_TIMEOUT &&
pIntrptManage->byErrorH100State == cOCT6100_INTRPT_ACTIVE )
{
pIntrptManage->byErrorH100State = cOCT6100_INTRPT_WILL_TIMEOUT;
pIntrptManage->ulErrorH100DisableMclkHigh = pIntrptManage->ulRegMclkTimeHigh;
pIntrptManage->ulErrorH100DisableMclkLow = pIntrptManage->ulRegMclkTimeLow;
}
/*-----------------------------------------------------------------------*/
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiWriteIntrptRegs
Description: Writes to interrupt registers to clear interrupt condition, and
writes to an interrupt's IE register if interrupt is to time
out.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiWriteIntrptRegs
UINT32 Oct6100ApiWriteIntrptRegs(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance )
{
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
tOCT6100_WRITE_PARAMS WriteParams;
UINT32 ulResult;
/* Get some local pointers. */
pIntrptManage = &f_pApiInstance->pSharedInfo->IntrptManage;
/* Set some parameters of write struct. */
WriteParams.pProcessContext = f_pApiInstance->pProcessContext;
WriteParams.ulUserChipId = f_pApiInstance->pSharedInfo->ChipConfig.ulUserChipId;
/*===========================================================================*/
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_WILL_TIMEOUT )
{
WriteParams.ulWriteAddress = 0x104;
WriteParams.usWriteData = 0x0000;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
if ( (pIntrptManage->usRegister102h & cOCT6100_INTRPT_MASK_REG_102H) != 0 )
{
WriteParams.ulWriteAddress = 0x102;
WriteParams.usWriteData = pIntrptManage->usRegister102h;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*===========================================================================*/
/*===========================================================================*/
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_WILL_TIMEOUT ||
pIntrptManage->byErrorMemoryState == cOCT6100_INTRPT_WILL_TIMEOUT )
{
WriteParams.ulWriteAddress = 0x204;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x1800;
if ( pIntrptManage->byErrorMemoryState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x0401;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
if ( (pIntrptManage->usRegister202h & cOCT6100_INTRPT_MASK_REG_202H) != 0 )
{
WriteParams.ulWriteAddress = 0x202;
WriteParams.usWriteData = pIntrptManage->usRegister202h;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*===========================================================================*/
/*===========================================================================*/
if ( pIntrptManage->byErrorH100State == cOCT6100_INTRPT_WILL_TIMEOUT )
{
WriteParams.ulWriteAddress = 0x304;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->fMclkIntrptActive == TRUE )
WriteParams.usWriteData |= 0x0001;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
if ( (pIntrptManage->usRegister302h & cOCT6100_INTRPT_MASK_REG_302H) != 0 )
{
WriteParams.ulWriteAddress = 0x302;
WriteParams.usWriteData = pIntrptManage->usRegister302h;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*===========================================================================*/
/*===========================================================================*/
if ( (pIntrptManage->usRegister502h & cOCT6100_INTRPT_MASK_REG_502H) != 0 )
{
WriteParams.ulWriteAddress = 0x502;
WriteParams.usWriteData = pIntrptManage->usRegister502h;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*===========================================================================*/
/*===========================================================================*/
if ( pIntrptManage->byErrorOverflowToneEventsState == cOCT6100_INTRPT_WILL_TIMEOUT )
{
WriteParams.ulWriteAddress = 0x704;
WriteParams.usWriteData = 0x0000;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
if ( (pIntrptManage->usRegister702h & cOCT6100_INTRPT_MASK_REG_702H) != 0 )
{
WriteParams.ulWriteAddress = 0x702;
WriteParams.usWriteData = pIntrptManage->usRegister702h;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*===========================================================================*/
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiWriteIeRegs
Description: Writes the IE field of each interrupt register.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiWriteIeRegs
UINT32 Oct6100ApiWriteIeRegs(
tPOCT6100_INSTANCE_API f_pApiInstance )
{
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
tOCT6100_WRITE_PARAMS WriteParams;
tOCT6100_READ_PARAMS ReadParams;
UINT32 ulResult;
/* Get some local pointers. */
pIntrptManage = &f_pApiInstance->pSharedInfo->IntrptManage;
/* Set some parameters of write struct. */
WriteParams.pProcessContext = f_pApiInstance->pProcessContext;
WriteParams.ulUserChipId = f_pApiInstance->pSharedInfo->ChipConfig.ulUserChipId;
/* Set some parameters of read struct. */
ReadParams.pProcessContext = f_pApiInstance->pProcessContext;
ReadParams.ulUserChipId = f_pApiInstance->pSharedInfo->ChipConfig.ulUserChipId;
/*==================================================================================*/
WriteParams.ulWriteAddress = 0x104;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x0001;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/*==================================================================================*/
/*==================================================================================*/
WriteParams.ulWriteAddress = 0x204;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x1800;
if ( pIntrptManage->byErrorMemoryState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x0401;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/*==================================================================================*/
/*==================================================================================*/
WriteParams.ulWriteAddress = 0x304;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->fMclkIntrptActive == TRUE )
WriteParams.usWriteData |= 0x0001;
if ( pIntrptManage->byErrorH100State == cOCT6100_INTRPT_ACTIVE )
{
if ( f_pApiInstance->pSharedInfo->ChipConfig.fEnableFastH100Mode == TRUE )
WriteParams.usWriteData |= 0xD100;
else
WriteParams.usWriteData |= 0x5100;
}
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/*==================================================================================*/
/*==================================================================================*/
WriteParams.ulWriteAddress = 0x504;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byFatalGeneralState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x0002;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/*==================================================================================*/
/*==================================================================================*/
WriteParams.ulWriteAddress = 0x704;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byErrorOverflowToneEventsState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x0002;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/*==================================================================================*/
/*==================================================================================*/
/* Enable the GLOBAL IEs for the interrupt pin. */
WriteParams.ulWriteAddress = 0x218;
WriteParams.usWriteData = 0x00D7;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/*==================================================================================*/
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiReadChipMclkTime
Description: Reads the chip's mclk cycle count to construct a chip time.
The time is used to manage interrupts.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiReadChipMclkTime
UINT32 Oct6100ApiReadChipMclkTime(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance )
{
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
tPOCT6100_SHARED_INFO pSharedInfo;
tOCT6100_READ_PARAMS ReadParams;
UINT32 ulCheckData;
UINT32 ulResult;
UINT32 i;
UINT16 usReadData;
/* Get local pointer(s). */
pSharedInfo = f_pApiInstance->pSharedInfo;
pIntrptManage = &pSharedInfo->IntrptManage;
/* Assign memory for read data. */
ReadParams.pProcessContext = f_pApiInstance->pProcessContext;
ReadParams.ulUserChipId = pSharedInfo->ChipConfig.ulUserChipId;
ReadParams.pusReadData = &usReadData;
/* Perform reads. */
for ( i = 0; i < 100; i++ )
{
ReadParams.ulReadAddress = 0x306;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
pIntrptManage->ulRegMclkTimeHigh = usReadData & 0xFF;
ulCheckData = usReadData;
ReadParams.ulReadAddress = 0x308;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
pIntrptManage->ulRegMclkTimeLow = (usReadData & 0xFFFF) << 16;
ReadParams.ulReadAddress = 0x306;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
if ( ulCheckData == usReadData )
break;
}
if ( i == 100 )
return cOCT6100_ERR_FATAL_2F;
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiUpdateIntrptTimeouts
Description: Checks which interrupt groups have finished their timeout
period.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiUpdateIntrptTimeouts
UINT32 Oct6100ApiUpdateIntrptTimeouts(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance )
{
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
tOCT6100_WRITE_PARAMS WriteParams;
UINT32 ulRegMclkTimePlus5MsHigh;
UINT32 ulRegMclkTimePlus5MsLow;
UINT32 ulResult;
BOOL fFatalMemoryChange = FALSE;
BOOL fDataErrMemoryChange = FALSE;
BOOL fErrorOverflowToneEventsChange = FALSE;
BOOL fH100ErrorChange = FALSE;
/* Get local pointer to interrupt management structure. */
pIntrptManage = &f_pApiInstance->pSharedInfo->IntrptManage;
/* Calculate mclk time + 5 ms. */
ulRegMclkTimePlus5MsLow = pIntrptManage->ulRegMclkTimeLow + (5 * pIntrptManage->ulNumMclkCyclesIn1Ms);
if ( ulRegMclkTimePlus5MsLow < pIntrptManage->ulRegMclkTimeLow )
ulRegMclkTimePlus5MsHigh = pIntrptManage->ulRegMclkTimeHigh + 1;
else /* ( ulRegMclkTimePlus5MsLow >= pIntrptManage->ulRegMclkTimeLow ) */
ulRegMclkTimePlus5MsHigh = pIntrptManage->ulRegMclkTimeHigh;
/* Check which interrupts are timed out and need to be reenabled now. */
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_IN_TIMEOUT )
{
mOCT6100_CHECK_INTRPT_TIMEOUT( ulRegMclkTimePlus5MsHigh, ulRegMclkTimePlus5MsLow, pIntrptManage->ulFatalMemoryDisableMclkHigh, pIntrptManage->ulFatalMemoryDisableMclkLow, pIntrptManage->ulFatalMemoryEnableMclkHigh, pIntrptManage->ulFatalMemoryEnableMclkLow, pIntrptManage->byFatalMemoryState, fFatalMemoryChange )
}
if ( pIntrptManage->byErrorMemoryState == cOCT6100_INTRPT_IN_TIMEOUT )
{
mOCT6100_CHECK_INTRPT_TIMEOUT( ulRegMclkTimePlus5MsHigh, ulRegMclkTimePlus5MsLow, pIntrptManage->ulErrorMemoryDisableMclkHigh, pIntrptManage->ulErrorMemoryDisableMclkLow, pIntrptManage->ulErrorMemoryEnableMclkHigh, pIntrptManage->ulErrorMemoryEnableMclkLow, pIntrptManage->byErrorMemoryState, fDataErrMemoryChange )
}
if ( pIntrptManage->byErrorOverflowToneEventsState == cOCT6100_INTRPT_IN_TIMEOUT )
{
mOCT6100_CHECK_INTRPT_TIMEOUT( ulRegMclkTimePlus5MsHigh, ulRegMclkTimePlus5MsLow, pIntrptManage->ulErrorOverflowToneEventsDisableMclkHigh, pIntrptManage->ulErrorOverflowToneEventsDisableMclkLow, pIntrptManage->ulErrorOverflowToneEventsEnableMclkHigh, pIntrptManage->ulErrorOverflowToneEventsEnableMclkLow, pIntrptManage->byErrorOverflowToneEventsState, fErrorOverflowToneEventsChange )
}
if ( pIntrptManage->byErrorH100State == cOCT6100_INTRPT_IN_TIMEOUT )
{
mOCT6100_CHECK_INTRPT_TIMEOUT( ulRegMclkTimePlus5MsHigh, ulRegMclkTimePlus5MsLow, pIntrptManage->ulErrorH100DisableMclkHigh, pIntrptManage->ulErrorH100DisableMclkLow, pIntrptManage->ulErrorH100EnableMclkHigh, pIntrptManage->ulErrorH100EnableMclkLow, pIntrptManage->byErrorH100State, fH100ErrorChange )
}
/* Set some parameters of write struct. */
WriteParams.pProcessContext = f_pApiInstance->pProcessContext;
WriteParams.ulUserChipId = f_pApiInstance->pSharedInfo->ChipConfig.ulUserChipId;
/* Write to the IE registers which have changed. */
/*==================================================================================*/
if ( fFatalMemoryChange == TRUE )
{
WriteParams.ulWriteAddress = 0x104;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x0001;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*==================================================================================*/
/*==================================================================================*/
if ( fFatalMemoryChange == TRUE ||
fDataErrMemoryChange == TRUE )
{
WriteParams.ulWriteAddress = 0x204;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byFatalMemoryState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x1800;
if ( pIntrptManage->byErrorMemoryState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x0401;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*==================================================================================*/
/*==================================================================================*/
if ( pIntrptManage->fMclkIntrptActive == TRUE ||
fH100ErrorChange == TRUE )
{
WriteParams.ulWriteAddress = 0x304;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->fMclkIntrptActive == TRUE )
WriteParams.usWriteData |= 0x0001;
if ( pIntrptManage->byErrorH100State == cOCT6100_INTRPT_ACTIVE )
{
if ( f_pApiInstance->pSharedInfo->ChipConfig.fEnableFastH100Mode == TRUE )
WriteParams.usWriteData |= 0xD100;
else
WriteParams.usWriteData |= 0x5100;
}
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*==================================================================================*/
/*==================================================================================*/
if ( fErrorOverflowToneEventsChange == TRUE )
{
WriteParams.ulWriteAddress = 0x704;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byErrorOverflowToneEventsState == cOCT6100_INTRPT_ACTIVE )
WriteParams.usWriteData |= 0x0002;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
}
/*==================================================================================*/
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiScheduleNextMclkIntrptSer
Description: Serialized sub-function of Oct6100ApiScheduleNextMclkIntrpt.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiScheduleNextMclkIntrptSer
UINT32 Oct6100ApiScheduleNextMclkIntrptSer(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance )
{
tPOCT6100_SHARED_INFO pSharedInfo;
tPOCT6100_API_INTRPT_CONFIG pIntrptConfig;
tPOCT6100_API_INTRPT_MANAGE pIntrptManage;
tOCT6100_WRITE_PARAMS WriteParams;
UINT32 ulTimeDiff;
UINT32 ulRegMclkTimeHigh;
UINT32 ulRegMclkTimeLow;
UINT32 ulResult;
BOOL fConditionFlag = TRUE;
/* Get local pointer(s). */
pSharedInfo = f_pApiInstance->pSharedInfo;
/* Obtain temporary pointers to reduce indirection, thus speeding up processing. */
pIntrptConfig = &pSharedInfo->IntrptConfig;
pIntrptManage = &pSharedInfo->IntrptManage;
ulRegMclkTimeHigh = pIntrptManage->ulRegMclkTimeHigh;
ulRegMclkTimeLow = pIntrptManage->ulRegMclkTimeLow;
/* First, check if any interrupts have just been disabled. If there are any, */
/* determine the time at which they should be reenabled. */
pIntrptManage->ulNextMclkIntrptTimeHigh = cOCT6100_INVALID_VALUE;
pIntrptManage->ulNextMclkIntrptTimeLow = cOCT6100_INVALID_VALUE;
while ( fConditionFlag )
{
/* Indicate that no mclk interrupt is needed, yet. */
ulTimeDiff = cOCT6100_INVALID_VALUE;
/* Check each interrupt category to see if an mclk interrupt is needed to */
/* reenable an interrupt at a later time. */
if ( pIntrptManage->byFatalMemoryState != cOCT6100_INTRPT_ACTIVE &&
pIntrptManage->byFatalMemoryState != cOCT6100_INTRPT_DISABLED )
{
mOCT6100_GET_INTRPT_ENABLE_TIME( ulRegMclkTimeHigh, ulRegMclkTimeLow, pIntrptManage->byFatalMemoryState, pIntrptManage->ulFatalMemoryEnableMclkHigh, pIntrptManage->ulFatalMemoryEnableMclkLow, pIntrptConfig->ulFatalMemoryTimeoutMclk, ulTimeDiff )
}
if ( pIntrptManage->byErrorMemoryState != cOCT6100_INTRPT_ACTIVE &&
pIntrptManage->byErrorMemoryState != cOCT6100_INTRPT_DISABLED )
{
mOCT6100_GET_INTRPT_ENABLE_TIME( ulRegMclkTimeHigh, ulRegMclkTimeLow, pIntrptManage->byErrorMemoryState, pIntrptManage->ulErrorMemoryEnableMclkHigh, pIntrptManage->ulErrorMemoryEnableMclkLow, pIntrptConfig->ulErrorMemoryTimeoutMclk, ulTimeDiff )
}
if ( pIntrptManage->byErrorOverflowToneEventsState != cOCT6100_INTRPT_ACTIVE &&
pIntrptManage->byErrorOverflowToneEventsState != cOCT6100_INTRPT_DISABLED )
{
mOCT6100_GET_INTRPT_ENABLE_TIME( ulRegMclkTimeHigh, ulRegMclkTimeLow, pIntrptManage->byErrorOverflowToneEventsState, pIntrptManage->ulErrorOverflowToneEventsEnableMclkHigh, pIntrptManage->ulErrorOverflowToneEventsEnableMclkLow, pIntrptConfig->ulErrorOverflowToneEventsTimeoutMclk, ulTimeDiff )
}
if ( pIntrptManage->byErrorH100State != cOCT6100_INTRPT_ACTIVE &&
pIntrptManage->byErrorH100State != cOCT6100_INTRPT_DISABLED )
{
mOCT6100_GET_INTRPT_ENABLE_TIME( ulRegMclkTimeHigh, ulRegMclkTimeLow, pIntrptManage->byErrorH100State, pIntrptManage->ulErrorH100EnableMclkHigh, pIntrptManage->ulErrorH100EnableMclkLow, pIntrptConfig->ulErrorH100TimeoutMclk, ulTimeDiff )
}
/* Set some parameters of write struct. */
WriteParams.pProcessContext = f_pApiInstance->pProcessContext;
WriteParams.ulUserChipId = f_pApiInstance->pSharedInfo->ChipConfig.ulUserChipId;
/* Schedule next mclk interrupt, if any is needed. */
if ( ulTimeDiff != cOCT6100_INVALID_VALUE )
{
UINT32 ulMclkTimeTest;
UINT32 ulAlarmTimeTest;
UINT32 ulTimeDiffTest;
BOOL fAlarmTimePassed;
/* Indicate that an mclk interrupt is scheduled.*/
pIntrptManage->fMclkIntrptActive = TRUE;
pIntrptManage->ulNextMclkIntrptTimeLow = ulRegMclkTimeLow + ulTimeDiff;
if ( pIntrptManage->ulNextMclkIntrptTimeLow < ulRegMclkTimeLow )
pIntrptManage->ulNextMclkIntrptTimeHigh = ulRegMclkTimeHigh + 1;
else /* ( pIntrptManage->ulNextMclkIntrptTimeLow >= ulRegMclkTimeLow ) */
pIntrptManage->ulNextMclkIntrptTimeHigh = ulRegMclkTimeHigh;
WriteParams.ulWriteAddress = 0x30C;
WriteParams.usWriteData = (UINT16)( (pIntrptManage->ulNextMclkIntrptTimeLow >> 24) & 0xFF );
WriteParams.usWriteData |= (UINT16)( (pIntrptManage->ulNextMclkIntrptTimeHigh & 0xFF) << 8 );
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
WriteParams.ulWriteAddress = 0x30E;
WriteParams.usWriteData = (UINT16)( (pIntrptManage->ulNextMclkIntrptTimeLow >> 8) & 0xFFFF );
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
WriteParams.ulWriteAddress = 0x304;
WriteParams.usWriteData = 0;
if ( pIntrptManage->fMclkIntrptActive == TRUE )
WriteParams.usWriteData = 0x0001;
if ( pIntrptManage->byErrorH100State == cOCT6100_INTRPT_ACTIVE )
{
if ( f_pApiInstance->pSharedInfo->ChipConfig.fEnableFastH100Mode == TRUE )
WriteParams.usWriteData |= 0xD100;
else
WriteParams.usWriteData |= 0x5100;
}
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Disable the ROL if previously set. */
WriteParams.ulWriteAddress = 0x302;
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check if already passed the next interrupt time. */
ulResult = Oct6100ApiReadChipMclkTime( f_pApiInstance );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
ulMclkTimeTest = (pIntrptManage->ulRegMclkTimeLow >> 16) & 0xFFFF;
ulAlarmTimeTest = (pIntrptManage->ulNextMclkIntrptTimeLow >> 16) & 0xFFFF;
/* Update the local Mlck timer values.*/
ulRegMclkTimeHigh = pIntrptManage->ulRegMclkTimeHigh;
ulRegMclkTimeLow = pIntrptManage->ulRegMclkTimeLow;
fAlarmTimePassed = FALSE;
if ( ulMclkTimeTest > ulAlarmTimeTest )
{
ulTimeDiffTest = ulMclkTimeTest - ulAlarmTimeTest;
if ( ulTimeDiffTest <= 0x8000 )
fAlarmTimePassed = TRUE;
}
else /* ( ulMclkTimeTest <= ulAlarmTimeTest ) */
{
ulTimeDiffTest = ulAlarmTimeTest - ulMclkTimeTest;
if ( ulTimeDiffTest > 0x8000 )
fAlarmTimePassed = TRUE;
}
if ( fAlarmTimePassed == TRUE )
{
/* Passed the interrupt time. Schedule next interrupt (if needed). */
ulResult = Oct6100ApiUpdateIntrptTimeouts( f_pApiInstance );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
continue;
}
else
{
fConditionFlag = FALSE;
}
}
else
{
/* Indicate that no mclk interrupt is scheduled. */
pIntrptManage->fMclkIntrptActive = FALSE;
/* Insure that the mclk interrupt is not enabled. */
WriteParams.ulWriteAddress = 0x304;
WriteParams.usWriteData = 0x0000;
if ( pIntrptManage->byErrorH100State == cOCT6100_INTRPT_ACTIVE )
{
if ( f_pApiInstance->pSharedInfo->ChipConfig.fEnableFastH100Mode == TRUE )
WriteParams.usWriteData |= 0xD100;
else
WriteParams.usWriteData |= 0x5100;
}
mOCT6100_DRIVER_WRITE_API( WriteParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
fConditionFlag = FALSE;
}
}
return cOCT6100_ERR_OK;
}
#endif
/*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\
Function: Oct6100ApiCheckProcessorState
Description: This function verifies if the NLP and AF processors are operating
correctly.
-------------------------------------------------------------------------------
| Argument | Description
-------------------------------------------------------------------------------
f_pApiInstance Pointer to API instance. This memory is used to keep
the present state of the chip and all its resources.
f_pIntFlags Pointer to a tOCT6100_INTERRUPT_FLAGS structure.
\*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*/
#if !SKIP_Oct6100ApiCheckProcessorState
UINT32 Oct6100ApiCheckProcessorState(
IN OUT tPOCT6100_INSTANCE_API f_pApiInstance,
IN OUT tPOCT6100_INTERRUPT_FLAGS f_pIntFlags )
{
tPOCT6100_SHARED_INFO pSharedInfo;
tOCT6100_READ_PARAMS ReadParams;
tOCT6100_READ_BURST_PARAMS ReadBurstParams;
UINT32 ulNlpTimestamp;
UINT32 ulAfTimestamp;
UINT32 ulTimestampDiff;
UINT32 ulResult;
UINT32 i;
UINT16 usReadData;
UINT16 ausReadData[ 2 ];
UINT32 aulWaitTime[ 2 ];
/* Get local pointer(s). */
pSharedInfo = f_pApiInstance->pSharedInfo;
/* Set some parameters of write struct. */
ReadParams.pProcessContext = f_pApiInstance->pProcessContext;
ReadParams.ulUserChipId = pSharedInfo->ChipConfig.ulUserChipId;
ReadParams.pusReadData = &usReadData;
/* Set some parameters of write struct. */
ReadBurstParams.pProcessContext = f_pApiInstance->pProcessContext;
ReadBurstParams.ulUserChipId = pSharedInfo->ChipConfig.ulUserChipId;
ReadBurstParams.pusReadData = ausReadData;
/*-----------------------------------------------------------------------*/
/* Check if chip is in reset. */
/* Read the main control register. */
ReadParams.ulReadAddress = 0x100;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
if ( usReadData == 0x0000 )
{
/* Chip was resetted. */
f_pIntFlags->ulFatalGeneralFlags |= cOCT6100_FATAL_GENERAL_ERROR_TYPE_4;
f_pIntFlags->fFatalGeneral = TRUE;
pSharedInfo->ErrorStats.fFatalChipError = TRUE;
}
/*-----------------------------------------------------------------------*/
/*-----------------------------------------------------------------------*/
/* Reading the AF timestamp.*/
for ( i = 0; i < cOCT6100_MAX_LOOP; i++ )
{
/* Read the timestamp.*/
ReadBurstParams.ulReadAddress = 0x082E0008;
ReadBurstParams.ulReadLength = 2;
mOCT6100_DRIVER_READ_BURST_API( ReadBurstParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Read the high part again to make sure it didn't wrap. */
ReadParams.ulReadAddress = 0x082E0008;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check if the low part wrapped. */
if ( ausReadData[ 0 ] == usReadData )
break;
}
if ( i == cOCT6100_MAX_LOOP )
return cOCT6100_ERR_INTRPTS_AF_TIMESTAMP_READ_TIMEOUT;
/* Save the AF timestamp. */
ulAfTimestamp = (ausReadData[ 0 ] << 16) | ausReadData[ 1 ];
/*-----------------------------------------------------------------------*/
/*-----------------------------------------------------------------------*/
/* Reading the NLP timestamp. */
for ( i = 0; i < cOCT6100_MAX_LOOP; i++ )
{
/* Read the timestamp. */
ReadBurstParams.ulReadAddress = 0x08000008;
ReadBurstParams.ulReadLength = 2;
mOCT6100_DRIVER_READ_BURST_API( ReadBurstParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Read the high part again to make sure it didn't wrap. */
ReadParams.ulReadAddress = 0x08000008;
mOCT6100_DRIVER_READ_API( ReadParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/* Check if the low part wrapped. */
if ( ausReadData[ 0 ] == usReadData )
break;
}
if ( i == cOCT6100_MAX_LOOP )
return cOCT6100_ERR_INTRPTS_NLP_TIMESTAMP_READ_TIMEOUT;
/* Save the NLP timestamp. */
ulNlpTimestamp = (ausReadData[ 0 ] << 16) | ausReadData[ 1 ];
/*-----------------------------------------------------------------------*/
/*-----------------------------------------------------------------------*/
/* Check the validity of the timestamp. */
if ( ulAfTimestamp > ulNlpTimestamp )
{
/* The NLP timestamp wrapped. */
ulTimestampDiff = 0xFFFFFFFF - ulAfTimestamp + 1;
ulTimestampDiff += ulNlpTimestamp;
}
else
ulTimestampDiff = ulNlpTimestamp - ulAfTimestamp;
if ( ulTimestampDiff > 0x2000 )
{
f_pIntFlags->ulFatalGeneralFlags |= cOCT6100_FATAL_GENERAL_ERROR_TYPE_5;
f_pIntFlags->fFatalGeneral = TRUE;
pSharedInfo->ErrorStats.fFatalChipError = TRUE;
}
/*Check if AF and NLP are both stuck*/
if ( f_pIntFlags->fErrorH100ClkA == FALSE &&
f_pIntFlags->fErrorH100ClkB == FALSE &&
f_pIntFlags->fErrorH100FrameA == FALSE &&
f_pIntFlags->fErrorH100OutOfSync == FALSE )
{
if ( ulAfTimestamp == 0 && ulNlpTimestamp == 0 )
{
/*Give some time to the counters*/
aulWaitTime[ 0 ] = 250;
aulWaitTime[ 1 ] = 0;
ulResult = Oct6100ApiWaitForTime( f_pApiInstance, aulWaitTime );
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
/*Let's read again the AF timestamp to be sure. Maybe they were at 0 at the same time*/
ReadBurstParams.ulReadAddress = 0x082E0008;
ReadBurstParams.ulReadLength = 2;
mOCT6100_DRIVER_READ_BURST_API( ReadBurstParams, ulResult )
if ( ulResult != cOCT6100_ERR_OK )
return ulResult;
ulAfTimestamp = (ausReadData[ 0 ] << 16) | ausReadData[ 1 ];
if ( ulAfTimestamp == 0 )
{
/*TDM Clocks are ok but NLP and AF timestamps are both at 0*/
f_pIntFlags->ulFatalGeneralFlags |= cOCT6100_FATAL_GENERAL_ERROR_TYPE_9;
f_pIntFlags->fFatalGeneral = TRUE;
pSharedInfo->ErrorStats.fFatalChipError = TRUE;
}
}
}
/*-----------------------------------------------------------------------*/
return cOCT6100_ERR_OK;
}
#endif