dahdi-linux/drivers/dahdi/wct4xxp/vpm450m.c
Shaun Ruffell 48b3cb8777 wct4xxp: VPM module creates noise on alternate channels on E1 spans.
The VPMOCT128 module was using the VPMOCT256 timeslots assigments which would
mean that channels that should be marked alaw were being set in ulaw. This
only affected E1 spans since by default all spans are configured for ulaw by
default.

This fixes a regression introduced in r10290 [1] "wct4xxp: Add support for
TE820 and VPMOCT256", first released in 2.6.0, that only affects E1 spans on a
quad and dual-span card when used with the hardware echocanceler.

[1] http://svnview.digium.com/svn/dahdi?view=revision&revision=10290

Internal-Issue-ID: DAHDI-945, DAHLIN-275
Signed-off-by: Shaun Ruffell <sruffell@digium.com>
Acked-by: Russ Meyerriecks <rmeyerriecks@digium.com>

Origin: http://svnview.digium.com/svn/dahdi?view=rev&rev=10414

git-svn-id: http://svn.asterisk.org/svn/dahdi/linux/branches/2.6@10416 a0bf4364-ded3-4de4-8d8a-66a801d63aff
2012-01-10 22:05:47 +00:00

593 lines
16 KiB
C

/*
* Copyright (C) 2005-2006 Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* All Rights Reserved
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/version.h>
#include "vpm450m.h"
#include "oct6100api/oct6100_api.h"
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18)
#include <linux/config.h>
#endif
/* API for Octasic access */
UINT32 Oct6100UserGetTime(tPOCT6100_GET_TIME f_pTime)
{
/* Why couldn't they just take a timeval like everyone else? */
struct timeval tv;
unsigned long long total_usecs;
unsigned int mask = ~0;
do_gettimeofday(&tv);
total_usecs = (((unsigned long long)(tv.tv_sec)) * 1000000) +
(((unsigned long long)(tv.tv_usec)));
f_pTime->aulWallTimeUs[0] = (total_usecs & mask);
f_pTime->aulWallTimeUs[1] = (total_usecs >> 32);
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserMemSet(PVOID f_pAddress, UINT32 f_ulPattern, UINT32 f_ulLength)
{
memset(f_pAddress, f_ulPattern, f_ulLength);
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserMemCopy(PVOID f_pDestination, const void *f_pSource, UINT32 f_ulLength)
{
memcpy(f_pDestination, f_pSource, f_ulLength);
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserCreateSerializeObject(tPOCT6100_CREATE_SERIALIZE_OBJECT f_pCreate)
{
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserDestroySerializeObject(tPOCT6100_DESTROY_SERIALIZE_OBJECT f_pDestroy)
{
#ifdef OCTASIC_DEBUG
printk(KERN_DEBUG "I should never be called! (destroy serialize object)\n");
#endif
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserSeizeSerializeObject(tPOCT6100_SEIZE_SERIALIZE_OBJECT f_pSeize)
{
/* Not needed */
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserReleaseSerializeObject(tPOCT6100_RELEASE_SERIALIZE_OBJECT f_pRelease)
{
/* Not needed */
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserDriverWriteApi(tPOCT6100_WRITE_PARAMS f_pWriteParams)
{
oct_set_reg(f_pWriteParams->pProcessContext, f_pWriteParams->ulWriteAddress, f_pWriteParams->usWriteData);
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserDriverWriteSmearApi(tPOCT6100_WRITE_SMEAR_PARAMS f_pSmearParams)
{
unsigned int x;
for (x=0;x<f_pSmearParams->ulWriteLength;x++) {
oct_set_reg(f_pSmearParams->pProcessContext, f_pSmearParams->ulWriteAddress + (x << 1), f_pSmearParams->usWriteData);
}
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserDriverWriteBurstApi(tPOCT6100_WRITE_BURST_PARAMS f_pBurstParams)
{
unsigned int x;
for (x=0;x<f_pBurstParams->ulWriteLength;x++) {
oct_set_reg(f_pBurstParams->pProcessContext, f_pBurstParams->ulWriteAddress + (x << 1), f_pBurstParams->pusWriteData[x]);
}
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserDriverReadApi(tPOCT6100_READ_PARAMS f_pReadParams)
{
*(f_pReadParams->pusReadData) = oct_get_reg(f_pReadParams->pProcessContext, f_pReadParams->ulReadAddress);
return cOCT6100_ERR_OK;
}
UINT32 Oct6100UserDriverReadBurstApi(tPOCT6100_READ_BURST_PARAMS f_pBurstParams)
{
unsigned int x;
for (x=0;x<f_pBurstParams->ulReadLength;x++) {
f_pBurstParams->pusReadData[x] = oct_get_reg(f_pBurstParams->pProcessContext, f_pBurstParams->ulReadAddress + (x << 1));
}
return cOCT6100_ERR_OK;
}
#define SOUT_G168_1100GB_ON 0x40000004
#define SOUT_DTMF_1 0x40000011
#define SOUT_DTMF_2 0x40000012
#define SOUT_DTMF_3 0x40000013
#define SOUT_DTMF_A 0x4000001A
#define SOUT_DTMF_4 0x40000014
#define SOUT_DTMF_5 0x40000015
#define SOUT_DTMF_6 0x40000016
#define SOUT_DTMF_B 0x4000001B
#define SOUT_DTMF_7 0x40000017
#define SOUT_DTMF_8 0x40000018
#define SOUT_DTMF_9 0x40000019
#define SOUT_DTMF_C 0x4000001C
#define SOUT_DTMF_STAR 0x4000001E
#define SOUT_DTMF_0 0x40000010
#define SOUT_DTMF_POUND 0x4000001F
#define SOUT_DTMF_D 0x4000001D
#define ROUT_G168_2100GB_ON 0x10000000
#define ROUT_G168_2100GB_WSPR 0x10000002
#define ROUT_SOUT_G168_2100HB_END 0x50000003
#define ROUT_G168_1100GB_ON 0x10000004
#define ROUT_DTMF_1 0x10000011
#define ROUT_DTMF_2 0x10000012
#define ROUT_DTMF_3 0x10000013
#define ROUT_DTMF_A 0x1000001A
#define ROUT_DTMF_4 0x10000014
#define ROUT_DTMF_5 0x10000015
#define ROUT_DTMF_6 0x10000016
#define ROUT_DTMF_B 0x1000001B
#define ROUT_DTMF_7 0x10000017
#define ROUT_DTMF_8 0x10000018
#define ROUT_DTMF_9 0x10000019
#define ROUT_DTMF_C 0x1000001C
#define ROUT_DTMF_STAR 0x1000001E
#define ROUT_DTMF_0 0x10000010
#define ROUT_DTMF_POUND 0x1000001F
#define ROUT_DTMF_D 0x1000001D
#if 0
#define cOCT6100_ECHO_OP_MODE_DIGITAL cOCT6100_ECHO_OP_MODE_HT_FREEZE
#else
#define cOCT6100_ECHO_OP_MODE_DIGITAL cOCT6100_ECHO_OP_MODE_POWER_DOWN
#endif
struct vpm450m {
tPOCT6100_INSTANCE_API pApiInstance;
UINT32 aulEchoChanHndl[256];
int chanflags[256];
int ecmode[256];
int numchans;
};
#define FLAG_DTMF (1 << 0)
#define FLAG_MUTE (1 << 1)
#define FLAG_ECHO (1 << 2)
static unsigned int tones[] = {
SOUT_DTMF_1,
SOUT_DTMF_2,
SOUT_DTMF_3,
SOUT_DTMF_A,
SOUT_DTMF_4,
SOUT_DTMF_5,
SOUT_DTMF_6,
SOUT_DTMF_B,
SOUT_DTMF_7,
SOUT_DTMF_8,
SOUT_DTMF_9,
SOUT_DTMF_C,
SOUT_DTMF_STAR,
SOUT_DTMF_0,
SOUT_DTMF_POUND,
SOUT_DTMF_D,
SOUT_G168_1100GB_ON,
ROUT_DTMF_1,
ROUT_DTMF_2,
ROUT_DTMF_3,
ROUT_DTMF_A,
ROUT_DTMF_4,
ROUT_DTMF_5,
ROUT_DTMF_6,
ROUT_DTMF_B,
ROUT_DTMF_7,
ROUT_DTMF_8,
ROUT_DTMF_9,
ROUT_DTMF_C,
ROUT_DTMF_STAR,
ROUT_DTMF_0,
ROUT_DTMF_POUND,
ROUT_DTMF_D,
ROUT_G168_1100GB_ON,
};
static void vpm450m_setecmode(struct vpm450m *vpm450m, int channel, int mode)
{
tOCT6100_CHANNEL_MODIFY *modify;
UINT32 ulResult;
if (vpm450m->ecmode[channel] == mode)
return;
modify = kmalloc(sizeof(tOCT6100_CHANNEL_MODIFY), GFP_ATOMIC);
if (!modify) {
printk(KERN_NOTICE "wct4xxp: Unable to allocate memory for setec!\n");
return;
}
Oct6100ChannelModifyDef(modify);
modify->ulEchoOperationMode = mode;
modify->ulChannelHndl = vpm450m->aulEchoChanHndl[channel];
ulResult = Oct6100ChannelModify(vpm450m->pApiInstance, modify);
if (ulResult != GENERIC_OK) {
printk(KERN_NOTICE "Failed to apply echo can changes on channel %d %08x!\n", channel, ulResult);
} else {
#ifdef OCTASIC_DEBUG
printk(KERN_DEBUG "Echo can on channel %d set to %d\n", channel, mode);
#endif
vpm450m->ecmode[channel] = mode;
}
kfree(modify);
}
void vpm450m_setdtmf(struct vpm450m *vpm450m, int channel, int detect, int mute)
{
tOCT6100_CHANNEL_MODIFY *modify;
UINT32 ulResult;
modify = kmalloc(sizeof(tOCT6100_CHANNEL_MODIFY), GFP_KERNEL);
if (!modify) {
printk(KERN_NOTICE "wct4xxp: Unable to allocate memory for setdtmf!\n");
return;
}
Oct6100ChannelModifyDef(modify);
modify->ulChannelHndl = vpm450m->aulEchoChanHndl[channel];
if (mute) {
vpm450m->chanflags[channel] |= FLAG_MUTE;
modify->VqeConfig.fDtmfToneRemoval = TRUE;
} else {
vpm450m->chanflags[channel] &= ~FLAG_MUTE;
modify->VqeConfig.fDtmfToneRemoval = FALSE;
}
if (detect)
vpm450m->chanflags[channel] |= FLAG_DTMF;
else
vpm450m->chanflags[channel] &= ~FLAG_DTMF;
if (vpm450m->chanflags[channel] & (FLAG_DTMF|FLAG_MUTE)) {
if (!(vpm450m->chanflags[channel] & FLAG_ECHO)) {
vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_HT_RESET);
vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_HT_FREEZE);
}
} else {
if (!(vpm450m->chanflags[channel] & FLAG_ECHO))
vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_DIGITAL);
}
ulResult = Oct6100ChannelModify(vpm450m->pApiInstance, modify);
if (ulResult != GENERIC_OK) {
printk(KERN_NOTICE "Failed to apply dtmf mute changes on channel %d!\n", channel);
}
/* printk(KERN_DEBUG "VPM450m: Setting DTMF on channel %d: %s / %s\n", channel, (detect ? "DETECT" : "NO DETECT"), (mute ? "MUTE" : "NO MUTE")); */
kfree(modify);
}
void vpm450m_setec(struct vpm450m *vpm450m, int channel, int eclen)
{
if (eclen) {
vpm450m->chanflags[channel] |= FLAG_ECHO;
vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_HT_RESET);
vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_NORMAL);
} else {
vpm450m->chanflags[channel] &= ~FLAG_ECHO;
if (vpm450m->chanflags[channel] & (FLAG_DTMF | FLAG_MUTE)) {
vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_HT_RESET);
vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_HT_FREEZE);
} else
vpm450m_setecmode(vpm450m, channel, cOCT6100_ECHO_OP_MODE_DIGITAL);
}
/* printk(KERN_DEBUG "VPM450m: Setting EC on channel %d to %d\n", channel, eclen); */
}
int vpm450m_checkirq(struct vpm450m *vpm450m)
{
tOCT6100_INTERRUPT_FLAGS InterruptFlags;
Oct6100InterruptServiceRoutineDef(&InterruptFlags);
Oct6100InterruptServiceRoutine(vpm450m->pApiInstance, &InterruptFlags);
return InterruptFlags.fToneEventsPending ? 1 : 0;
}
int vpm450m_getdtmf(struct vpm450m *vpm450m, int *channel, int *tone, int *start)
{
tOCT6100_TONE_EVENT tonefound;
tOCT6100_EVENT_GET_TONE tonesearch;
Oct6100EventGetToneDef(&tonesearch);
tonesearch.pToneEvent = &tonefound;
tonesearch.ulMaxToneEvent = 1;
Oct6100EventGetTone(vpm450m->pApiInstance, &tonesearch);
if (tonesearch.ulNumValidToneEvent) {
if (channel)
*channel = tonefound.ulUserChanId;
if (tone) {
switch(tonefound.ulToneDetected) {
case SOUT_DTMF_1:
*tone = '1';
break;
case SOUT_DTMF_2:
*tone = '2';
break;
case SOUT_DTMF_3:
*tone = '3';
break;
case SOUT_DTMF_A:
*tone = 'A';
break;
case SOUT_DTMF_4:
*tone = '4';
break;
case SOUT_DTMF_5:
*tone = '5';
break;
case SOUT_DTMF_6:
*tone = '6';
break;
case SOUT_DTMF_B:
*tone = 'B';
break;
case SOUT_DTMF_7:
*tone = '7';
break;
case SOUT_DTMF_8:
*tone = '8';
break;
case SOUT_DTMF_9:
*tone = '9';
break;
case SOUT_DTMF_C:
*tone = 'C';
break;
case SOUT_DTMF_STAR:
*tone = '*';
break;
case SOUT_DTMF_0:
*tone = '0';
break;
case SOUT_DTMF_POUND:
*tone = '#';
break;
case SOUT_DTMF_D:
*tone = 'D';
break;
case SOUT_G168_1100GB_ON:
*tone = 'f';
break;
default:
#ifdef OCTASIC_DEBUG
printk(KERN_DEBUG "Unknown tone value %08x\n", tonefound.ulToneDetected);
#endif
*tone = 'u';
break;
}
}
if (start)
*start = (tonefound.ulEventType == cOCT6100_TONE_PRESENT);
return 1;
}
return 0;
}
unsigned int get_vpm450m_capacity(void *wc)
{
UINT32 ulResult;
tOCT6100_API_GET_CAPACITY_PINS CapacityPins;
Oct6100ApiGetCapacityPinsDef(&CapacityPins);
CapacityPins.pProcessContext = wc;
CapacityPins.ulMemoryType = cOCT6100_MEM_TYPE_DDR;
CapacityPins.fEnableMemClkOut = TRUE;
CapacityPins.ulMemClkFreq = cOCT6100_MCLK_FREQ_133_MHZ;
ulResult = Oct6100ApiGetCapacityPins(&CapacityPins);
if (ulResult != cOCT6100_ERR_OK) {
printk(KERN_DEBUG "Failed to get chip capacity, code %08x!\n", ulResult);
return 0;
}
return CapacityPins.ulCapacityValue;
}
struct vpm450m *init_vpm450m(void *wc, int *isalaw, int numspans, const struct firmware *firmware)
{
tOCT6100_CHIP_OPEN *ChipOpen;
tOCT6100_GET_INSTANCE_SIZE InstanceSize;
tOCT6100_CHANNEL_OPEN *ChannelOpen;
UINT32 ulResult;
const unsigned int mask = (8 == numspans) ? 0x7 : 0x3;
unsigned int sout_stream, rout_stream;
struct vpm450m *vpm450m;
int x,y,law;
if (!(vpm450m = kmalloc(sizeof(struct vpm450m), GFP_KERNEL)))
return NULL;
memset(vpm450m, 0, sizeof(struct vpm450m));
if (!(ChipOpen = kmalloc(sizeof(tOCT6100_CHIP_OPEN), GFP_KERNEL))) {
kfree(vpm450m);
return NULL;
}
memset(ChipOpen, 0, sizeof(tOCT6100_CHIP_OPEN));
if (!(ChannelOpen = kmalloc(sizeof(tOCT6100_CHANNEL_OPEN), GFP_KERNEL))) {
kfree(vpm450m);
kfree(ChipOpen);
return NULL;
}
memset(ChannelOpen, 0, sizeof(tOCT6100_CHANNEL_OPEN));
for (x = 0; x < ARRAY_SIZE(vpm450m->ecmode); x++)
vpm450m->ecmode[x] = -1;
vpm450m->numchans = numspans * 32;
printk(KERN_INFO "VPM450: echo cancellation for %d channels\n", vpm450m->numchans);
Oct6100ChipOpenDef(ChipOpen);
/* Setup Chip Open Parameters */
ChipOpen->ulUpclkFreq = cOCT6100_UPCLK_FREQ_33_33_MHZ;
Oct6100GetInstanceSizeDef(&InstanceSize);
ChipOpen->pProcessContext = wc;
ChipOpen->pbyImageFile = firmware->data;
ChipOpen->ulImageSize = firmware->size;
ChipOpen->fEnableMemClkOut = TRUE;
ChipOpen->ulMemClkFreq = cOCT6100_MCLK_FREQ_133_MHZ;
ChipOpen->ulMaxChannels = vpm450m->numchans;
ChipOpen->ulMemoryType = cOCT6100_MEM_TYPE_DDR;
ChipOpen->ulMemoryChipSize = cOCT6100_MEMORY_CHIP_SIZE_32MB;
ChipOpen->ulNumMemoryChips = 1;
ChipOpen->aulTdmStreamFreqs[0] = cOCT6100_TDM_STREAM_FREQ_8MHZ;
ChipOpen->ulMaxFlexibleConfParticipants = 0;
ChipOpen->ulMaxConfBridges = 0;
ChipOpen->ulMaxRemoteDebugSessions = 0;
ChipOpen->fEnableChannelRecording = FALSE;
ChipOpen->ulSoftToneEventsBufSize = 64;
if (vpm450m->numchans <= 128) {
ChipOpen->ulMaxTdmStreams = 4;
ChipOpen->ulTdmSampling = cOCT6100_TDM_SAMPLE_AT_FALLING_EDGE;
} else {
ChipOpen->ulMaxTdmStreams = 32;
ChipOpen->fEnableFastH100Mode = TRUE;
ChipOpen->ulTdmSampling = cOCT6100_TDM_SAMPLE_AT_RISING_EDGE;
}
#if 0
ChipOpen->fEnableAcousticEcho = TRUE;
#endif
ulResult = Oct6100GetInstanceSize(ChipOpen, &InstanceSize);
if (ulResult != cOCT6100_ERR_OK) {
printk(KERN_NOTICE "Failed to get instance size, code %08x!\n", ulResult);
kfree(vpm450m);
kfree(ChipOpen);
kfree(ChannelOpen);
return NULL;
}
vpm450m->pApiInstance = vmalloc(InstanceSize.ulApiInstanceSize);
if (!vpm450m->pApiInstance) {
printk(KERN_NOTICE "Out of memory (can't allocate %d bytes)!\n", InstanceSize.ulApiInstanceSize);
kfree(vpm450m);
kfree(ChipOpen);
kfree(ChannelOpen);
return NULL;
}
ulResult = Oct6100ChipOpen(vpm450m->pApiInstance, ChipOpen);
if (ulResult != cOCT6100_ERR_OK) {
printk(KERN_NOTICE "Failed to open chip, code %08x!\n", ulResult);
vfree(vpm450m->pApiInstance);
kfree(vpm450m);
kfree(ChipOpen);
kfree(ChannelOpen);
return NULL;
}
sout_stream = (8 == numspans) ? 29 : 2;
rout_stream = (8 == numspans) ? 24 : 3;
for (x = 0; x < ((8 == numspans) ? 256 : 128); x++) {
/* execute this loop always on 4 span cards but
* on 2 span cards only execute for the channels related to our spans */
if (( numspans > 2) || ((x & 0x03) <2)) {
/* span timeslots are interleaved 12341234...
* therefore, the lower 2 bits tell us which span this
* timeslot/channel
*/
if (isalaw[x & mask])
law = cOCT6100_PCM_A_LAW;
else
law = cOCT6100_PCM_U_LAW;
Oct6100ChannelOpenDef(ChannelOpen);
ChannelOpen->pulChannelHndl = &vpm450m->aulEchoChanHndl[x];
ChannelOpen->ulUserChanId = x;
ChannelOpen->TdmConfig.ulRinPcmLaw = law;
ChannelOpen->TdmConfig.ulRinStream = 0;
ChannelOpen->TdmConfig.ulRinTimeslot = x;
ChannelOpen->TdmConfig.ulSinPcmLaw = law;
ChannelOpen->TdmConfig.ulSinStream = 1;
ChannelOpen->TdmConfig.ulSinTimeslot = x;
ChannelOpen->TdmConfig.ulSoutPcmLaw = law;
ChannelOpen->TdmConfig.ulSoutStream = sout_stream;
ChannelOpen->TdmConfig.ulSoutTimeslot = x;
#if 1
ChannelOpen->TdmConfig.ulRoutPcmLaw = law;
ChannelOpen->TdmConfig.ulRoutStream = rout_stream;
ChannelOpen->TdmConfig.ulRoutTimeslot = x;
#endif
ChannelOpen->VqeConfig.fEnableNlp = TRUE;
ChannelOpen->VqeConfig.fRinDcOffsetRemoval = TRUE;
ChannelOpen->VqeConfig.fSinDcOffsetRemoval = TRUE;
ChannelOpen->fEnableToneDisabler = TRUE;
ChannelOpen->ulEchoOperationMode = cOCT6100_ECHO_OP_MODE_DIGITAL;
ulResult = Oct6100ChannelOpen(vpm450m->pApiInstance, ChannelOpen);
if (ulResult != GENERIC_OK) {
printk(KERN_NOTICE "Failed to open channel %d %x!\n", x, ulResult);
continue;
}
for (y = 0; y < ARRAY_SIZE(tones); y++) {
tOCT6100_TONE_DETECTION_ENABLE enable;
Oct6100ToneDetectionEnableDef(&enable);
enable.ulChannelHndl = vpm450m->aulEchoChanHndl[x];
enable.ulToneNumber = tones[y];
if (Oct6100ToneDetectionEnable(vpm450m->pApiInstance, &enable) != GENERIC_OK)
printk(KERN_NOTICE "Failed to enable tone detection on channel %d for tone %d!\n", x, y);
}
}
}
kfree(ChipOpen);
kfree(ChannelOpen);
return vpm450m;
}
void release_vpm450m(struct vpm450m *vpm450m)
{
UINT32 ulResult;
tOCT6100_CHIP_CLOSE ChipClose;
Oct6100ChipCloseDef(&ChipClose);
ulResult = Oct6100ChipClose(vpm450m->pApiInstance, &ChipClose);
if (ulResult != cOCT6100_ERR_OK) {
printk(KERN_NOTICE "Failed to close chip, code %08x!\n", ulResult);
}
vfree(vpm450m->pApiInstance);
kfree(vpm450m);
}