dahdi-linux/drivers/dahdi/voicebus/vpmoct.c
Russ Meyerriecks f2c0bcd0f2 wcte12xp, wctdm24xxp: Load VPMOCT032 firmware in background.
The firmware load has been moved into a workqueue to prevent the module load
from blocking for the duration of the firmware upload. This could be up to 40
seconds. Driver prevents configuration until firmware load is finished and
is_initialized() returns true.

Signed-off-by: Russ Meyerriecks <rmeyerriecks@digium.com>
Signed-off-by: Shaun Ruffell <sruffell@digium.com>

git-svn-id: http://svn.asterisk.org/svn/dahdi/linux/trunk@9998 a0bf4364-ded3-4de4-8d8a-66a801d63aff
2011-06-28 22:29:00 +00:00

815 lines
20 KiB
C

/*
* VPMOCT Driver.
*
* Written by Russ Meyerriecks <rmeyerriecks@digium.com>
*
* Copyright (C) 2010-2011 Digium, Inc.
*
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/jiffies.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/crc32.h>
#include "voicebus/vpmoct.h"
#include "linux/firmware.h"
struct vpmoct_header {
u8 header[6];
__le32 chksum;
u8 pad[20];
u8 major;
u8 minor;
} __packed;
static int _vpmoct_read(struct vpmoct *vpm, u8 address,
void *data, size_t size,
u8 *new_command, u8 *new_address)
{
struct vpmoct_cmd *cmd;
unsigned long flags;
if (unlikely(size >= ARRAY_SIZE(cmd->data))) {
memset(data, -1, size);
return -1;
}
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
dev_info(vpm->dev, "Unable to allocate memory for vpmoct_cmd\n");
return 0;
}
init_completion(&cmd->complete);
cmd->command = 0x60 + size;
cmd->address = address;
cmd->chunksize = size;
spin_lock_irqsave(&vpm->list_lock, flags);
list_add_tail(&cmd->node, &vpm->pending_list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
/* Wait for receiveprep to process our result */
if (!wait_for_completion_timeout(&cmd->complete, HZ/5)) {
spin_lock_irqsave(&vpm->list_lock, flags);
list_del(&cmd->node);
spin_unlock_irqrestore(&vpm->list_lock, flags);
kfree(cmd);
dev_err(vpm->dev, "vpmoct_read_byte cmd timed out :O(\n");
return 0;
}
memcpy(data, &cmd->data[0], size);
if (new_command)
*new_command = cmd->command;
if (new_address)
*new_address = cmd->address;
kfree(cmd);
return 0;
}
static u8 vpmoct_read_byte(struct vpmoct *vpm, u8 address)
{
u8 val;
_vpmoct_read(vpm, address, &val, sizeof(val), NULL, NULL);
return val;
}
static u32 vpmoct_read_dword(struct vpmoct *vpm, u8 address)
{
__le32 val;
_vpmoct_read(vpm, address, &val, sizeof(val), NULL, NULL);
return le32_to_cpu(val);
}
static void vpmoct_write_byte(struct vpmoct *vpm, u8 address, u8 data)
{
struct vpmoct_cmd *cmd;
unsigned long flags;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
dev_info(vpm->dev, "Unable to allocate memory for vpmoct_cmd\n");
return;
}
cmd->command = 0x21;
cmd->address = address;
cmd->data[0] = data;
cmd->chunksize = 1;
spin_lock_irqsave(&vpm->list_lock, flags);
list_add_tail(&cmd->node, &vpm->pending_list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
}
static void vpmoct_write_dword(struct vpmoct *vpm, u8 address, u32 data)
{
struct vpmoct_cmd *cmd;
unsigned long flags;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
dev_info(vpm->dev, "Unable to allocate memory for vpmoct_cmd\n");
return;
}
cmd->command = 0x20 + sizeof(data);
cmd->address = address;
*(__le32 *)(&cmd->data[0]) = cpu_to_le32(data);
cmd->chunksize = sizeof(data);
spin_lock_irqsave(&vpm->list_lock, flags);
list_add_tail(&cmd->node, &vpm->pending_list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
}
static void vpmoct_write_chunk(struct vpmoct *vpm, u8 address,
const u8 *data, u8 chunksize)
{
struct vpmoct_cmd *cmd;
unsigned long flags;
if (unlikely(chunksize > ARRAY_SIZE(cmd->data)))
return;
cmd = kzalloc(sizeof(*cmd), GFP_ATOMIC);
if (unlikely(!cmd)) {
dev_info(vpm->dev, "Unable to allocate memory for vpmoct_cmd\n");
return;
}
cmd->command = 0x20 + chunksize;
cmd->address = address;
cmd->chunksize = chunksize;
memcpy(cmd->data, data, chunksize);
spin_lock_irqsave(&vpm->list_lock, flags);
list_add_tail(&cmd->node, &vpm->pending_list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
}
static u8 vpmoct_resync(struct vpmoct *vpm)
{
unsigned long time;
u8 status = 0xff;
u8 address;
u8 command;
/* Poll the status register until it returns valid values
* This is because we have to wait on the bootloader to do
* its thing.
* Timeout after 3 seconds
*/
time = jiffies + 3*HZ;
while (time_after(time, jiffies) && (0xff == status)) {
status = _vpmoct_read(vpm, VPMOCT_BOOT_STATUS, &status,
sizeof(status), &command, &address);
/* Throw out invalid statuses */
if ((0x55 != command) || (0xaa != address))
status = 0xff;
}
if ((status != 0xff) && status)
dev_info(vpm->dev, "Resync with status %x\n", status);
return status;
}
static inline short vpmoct_erase_flash(struct vpmoct *vpm)
{
short res;
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_FLASH_ERASE);
res = vpmoct_resync(vpm);
if (res)
dev_info(vpm->dev, "Unable to erase flash\n");
return res;
}
static inline short
vpmoct_send_firmware_header(struct vpmoct *vpm, const struct firmware *fw)
{
unsigned short i;
short res;
/* Send the encrypted firmware header */
for (i = 0; i < VPMOCT_FIRM_HEADER_LEN; i++) {
vpmoct_write_byte(vpm, VPMOCT_BOOT_RAM+i,
fw->data[i + sizeof(struct vpmoct_header)]);
}
/* Decrypt header */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_DECRYPT);
res = vpmoct_resync(vpm);
if (res)
dev_info(vpm->dev, "Unable to send firmware header\n");
return res;
}
static inline short
vpmoct_send_firmware_body(struct vpmoct *vpm, const struct firmware *fw)
{
unsigned int i, ram_index, flash_index, flash_address;
const u8 *buf;
u8 chunksize;
/* Load the body of the firmware */
ram_index = 0;
flash_index = 0;
flash_address = 0;
for (i = VPMOCT_FIRM_HEADER_LEN*2; i < fw->size;) {
if (ram_index >= VPMOCT_BOOT_RAM_LEN) {
/* Tell bootloader to load ram buffer into buffer */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD,
0x10 + flash_index);
/* Assuming the memory load doesn't take longer than 1
* eframe just insert a blank eframe before continuing
* the firmware load */
vpmoct_read_byte(vpm, VPMOCT_BOOT_STATUS);
ram_index = 0;
flash_index++;
}
if (flash_index >= VPMOCT_FLASH_BUF_SECTIONS) {
/* Tell the bootloader the memory address for load */
vpmoct_write_dword(vpm, VPMOCT_BOOT_ADDRESS1,
flash_address);
/* Tell the bootloader to load from flash buffer */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD,
VPMOCT_BOOT_FLASH_COPY);
if (vpmoct_resync(vpm))
goto error;
flash_index = 0;
flash_address = i-VPMOCT_FIRM_HEADER_LEN*2;
}
/* Try to buffer for batch writes if possible */
chunksize = VPMOCT_BOOT_RAM_LEN - ram_index;
if (chunksize > VPMOCT_MAX_CHUNK)
chunksize = VPMOCT_MAX_CHUNK;
buf = &fw->data[i];
vpmoct_write_chunk(vpm, VPMOCT_BOOT_RAM+ram_index,
buf, chunksize);
ram_index += chunksize;
i += chunksize;
}
/* Flush remaining ram buffer to flash buffer */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD,
VPMOCT_BOOT_FLASHLOAD + flash_index);
if (vpmoct_resync(vpm))
goto error;
/* Tell boot loader the memory address to flash load */
vpmoct_write_dword(vpm, VPMOCT_BOOT_ADDRESS1, flash_address);
/* Tell the bootloader to load flash from flash buffer */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_FLASH_COPY);
if (vpmoct_resync(vpm))
goto error;
return 0;
error:
dev_info(vpm->dev, "Unable to load firmware body\n");
return -1;
}
/**
* vpmoct_get_mode - Return the current operating mode of the VPMOCT032.
* @vpm: The vpm to query.
*
* Will be either BOOTLOADER, APPLICATION, or UNKNOWN.
*
*/
static enum vpmoct_mode vpmoct_get_mode(struct vpmoct *vpm)
{
int i;
enum vpmoct_mode ret = UNKNOWN;
char identifier[11] = {0};
for (i = 0; i < ARRAY_SIZE(identifier) - 1; i++)
identifier[i] = vpmoct_read_byte(vpm, VPMOCT_IDENT+i);
if (!memcmp(identifier, "bootloader", sizeof(identifier) - 1))
ret = BOOTLOADER;
else if (!memcmp(identifier, "VPMOCT032\0", sizeof(identifier) - 1))
ret = APPLICATION;
dev_dbg(vpm->dev, "vpmoct identifier: %s\n", identifier);
return ret;
}
static inline short
vpmoct_check_firmware_crc(struct vpmoct *vpm, size_t size, u8 major, u8 minor)
{
short ret = 0;
u8 status;
/* Load firmware size */
vpmoct_write_dword(vpm, VPMOCT_BOOT_RAM, size);
/* Load firmware version */
vpmoct_write_byte(vpm, VPMOCT_BOOT_RAM+8, major);
vpmoct_write_byte(vpm, VPMOCT_BOOT_RAM+9, minor);
/* Validate the firmware load */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_IMAGE_VALIDATE);
status = vpmoct_resync(vpm);
if (status) {
dev_info(vpm->dev,
"vpmoct firmware CRC check failed: %x\n", status);
/* TODO: Try the load again */
ret = -1;
} else {
/* Switch to application code */
vpmoct_write_dword(vpm, VPMOCT_BOOT_ADDRESS2, 0xDEADBEEF);
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_REBOOT);
msleep(250);
status = vpmoct_resync(vpm);
if (APPLICATION != vpmoct_get_mode(vpm)) {
dev_info(vpm->dev,
"vpmoct firmware failed to switch to "
"application. (%x)\n", status);
ret = -1;
} else {
vpm->mode = APPLICATION;
dev_info(vpm->dev,
"vpmoct firmware uploaded successfully\n");
}
}
return ret;
}
static inline short vpmoct_switch_to_boot(struct vpmoct *vpm)
{
vpmoct_write_dword(vpm, 0x74, 0x00009876);
vpmoct_write_byte(vpm, 0x71, 0x02);
if (vpmoct_resync(vpm)) {
dev_info(vpm->dev, "Failed to switch to bootloader\n");
return -1;
}
vpm->mode = BOOTLOADER;
return 0;
}
struct vpmoct_load_work {
struct vpmoct *vpm;
struct work_struct work;
struct workqueue_struct *wq;
load_complete_func_t load_complete;
bool operational;
};
/**
* vpmoct_load_complete_fn -
*
* This function should run in the context of one of the system workqueues so
* that it can destroy any workqueues that may have been created to setup a
* long running firmware load.
*
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpmoct_load_complete_fn(void *data)
{
struct vpmoct_load_work *work = data;
#else
static void vpmoct_load_complete_fn(struct work_struct *data)
{
struct vpmoct_load_work *work =
container_of(data, struct vpmoct_load_work, work);
#endif
/* Do not touch work->vpm after calling load complete. It may have
* been freed in the function by the board driver. */
work->load_complete(work->vpm->dev, work->operational);
destroy_workqueue(work->wq);
kfree(work);
}
/**
* vpmoct_load_complete - Call the load_complete function in a system workqueue.
* @work:
* @operational: Whether the VPM is functioning or not.
*
*/
static void
vpmoct_load_complete(struct vpmoct_load_work *work, bool operational)
{
work->operational = operational;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&work->work, vpmoct_load_complete_fn, work);
#else
INIT_WORK(&work->work, vpmoct_load_complete_fn);
#endif
schedule_work(&work->work);
}
static bool is_valid_vpmoct_firmware(const struct firmware *fw)
{
const struct vpmoct_header *header =
(const struct vpmoct_header *)fw->data;
u32 crc = crc32(~0, &fw->data[10], fw->size - 10) ^ ~0;
return (!memcmp("DIGIUM", header->header, sizeof(header->header)) &&
(le32_to_cpu(header->chksum) == crc));
}
static void vpmoct_set_defaults(struct vpmoct *vpm)
{
vpmoct_write_dword(vpm, 0x40, 0);
vpmoct_write_dword(vpm, 0x30, 0);
}
/**
* vpmoct_load_flash - Check the current flash version and possibly load.
* @vpm: The VPMOCT032 module to check / load.
*
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpmoct_load_flash(void *data)
{
struct vpmoct_load_work *work = data;
#else
static void vpmoct_load_flash(struct work_struct *data)
{
struct vpmoct_load_work *work =
container_of(data, struct vpmoct_load_work, work);
#endif
int res;
struct vpmoct *const vpm = work->vpm;
const struct firmware *fw;
const struct vpmoct_header *header;
char serial[VPMOCT_SERIAL_SIZE+1];
const char *const FIRMWARE_NAME = "dahdi-fw-vpmoct032.bin";
int i;
res = request_firmware(&fw, FIRMWARE_NAME, vpm->dev);
if (res) {
dev_warn(vpm->dev,
"vpmoct: Failed to load firmware from userspace! %d\n",
res);
header = NULL;
fw = NULL;
} else {
header = (const struct vpmoct_header *)fw->data;
}
if (vpm->mode == APPLICATION) {
/* Check the running application firmware
* for the proper version */
vpm->major = vpmoct_read_byte(vpm, VPMOCT_MAJOR);
vpm->minor = vpmoct_read_byte(vpm, VPMOCT_MINOR);
for (i = 0; i < VPMOCT_SERIAL_SIZE; i++)
serial[i] = vpmoct_read_byte(vpm, VPMOCT_SERIAL+i);
serial[VPMOCT_SERIAL_SIZE] = '\0';
dev_info(vpm->dev,
"vpmoct: Detected firmware v%d.%d Serial: %s\n",
vpm->major, vpm->minor,
(serial[0] != -1) ? serial : "(None)");
if (!fw) {
/* Again, we'll use the existing loaded firmware. */
vpmoct_set_defaults(vpm);
vpmoct_load_complete(work, true);
return;
}
if (!is_valid_vpmoct_firmware(fw)) {
dev_warn(vpm->dev,
"%s is invalid. Please reinstall.\n",
FIRMWARE_NAME);
/* Just use the old version of the fimware. */
release_firmware(fw);
vpmoct_set_defaults(vpm);
vpmoct_load_complete(work, true);
return;
}
if (vpm->minor == header->minor &&
vpm->major == header->major) {
/* Proper version is running */
release_firmware(fw);
vpmoct_set_defaults(vpm);
vpmoct_load_complete(work, true);
return;
} else {
/* Incorrect version of application code is
* loaded. Reset to bootloader mode */
if (vpmoct_switch_to_boot(vpm))
goto error;
}
}
if (!fw) {
vpmoct_load_complete(work, false);
return;
} else if (!is_valid_vpmoct_firmware(fw)) {
dev_warn(vpm->dev,
"%s is invalid. Please reinstall.\n", FIRMWARE_NAME);
goto error;
}
dev_info(vpm->dev, "vpmoct: Uploading firmware, v%d.%d. This can "\
"take up to 1 minute\n",
header->major, header->minor);
if (vpmoct_erase_flash(vpm))
goto error;
if (vpmoct_send_firmware_header(vpm, fw))
goto error;
if (vpmoct_send_firmware_body(vpm, fw))
goto error;
if (vpmoct_check_firmware_crc(vpm, fw->size-VPMOCT_FIRM_HEADER_LEN*2,
header->major, header->minor))
goto error;
release_firmware(fw);
vpmoct_set_defaults(vpm);
vpmoct_load_complete(work, true);
return;
error:
dev_info(vpm->dev, "Unable to load firmware\n");
release_firmware(fw);
/* TODO: Should we disable module if the firmware doesn't load? */
vpmoct_load_complete(work, false);
return;
}
struct vpmoct *vpmoct_alloc(void)
{
struct vpmoct *vpm;
vpm = kzalloc(sizeof(*vpm), GFP_KERNEL);
if (!vpm)
return NULL;
spin_lock_init(&vpm->list_lock);
INIT_LIST_HEAD(&vpm->pending_list);
INIT_LIST_HEAD(&vpm->active_list);
mutex_init(&vpm->mutex);
return vpm;
}
EXPORT_SYMBOL(vpmoct_alloc);
void vpmoct_free(struct vpmoct *vpm)
{
unsigned long flags;
struct vpmoct_cmd *cmd;
LIST_HEAD(list);
if (!vpm)
return;
spin_lock_irqsave(&vpm->list_lock, flags);
list_splice(&vpm->active_list, &list);
list_splice(&vpm->pending_list, &list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
while (!list_empty(&list)) {
cmd = list_entry(list.next, struct vpmoct_cmd, node);
list_del(&cmd->node);
kfree(cmd);
}
kfree(vpm);
}
EXPORT_SYMBOL(vpmoct_free);
/**
* vpmoct_init - Check for / initialize VPMOCT032 module.
* @vpm: struct vpmoct allocated with vpmoct_alloc
* @load_complete_fn: Function to call when the load is complete.
*
* Check to see if there is a VPMOCT module installed. If there appears to be
* one return 0 and perform any necessary setup in the background. The
* load_complete function will be called in a system global workqueue when the
* initialization is complete.
*
* Must be called in process context.
*/
int vpmoct_init(struct vpmoct *vpm, load_complete_func_t load_complete)
{
struct vpmoct_load_work *work;
if (!vpm || !vpm->dev || !load_complete)
return -EINVAL;
if (vpmoct_resync(vpm)) {
load_complete(vpm->dev, false);
return -ENODEV;
}
vpm->mode = vpmoct_get_mode(vpm);
if (UNKNOWN == vpm->mode) {
load_complete(vpm->dev, false);
return -ENODEV;
}
work = kzalloc(sizeof(*work), GFP_KERNEL);
if (!work) {
load_complete(vpm->dev, false);
return -ENOMEM;
}
work->wq = create_singlethread_workqueue("vpmoct");
if (!work->wq) {
kfree(work);
load_complete(vpm->dev, false);
return -ENOMEM;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&work->work, vpmoct_load_flash, work);
#else
INIT_WORK(&work->work, vpmoct_load_flash);
#endif
work->vpm = vpm;
work->load_complete = load_complete;
queue_work(work->wq, &work->work);
return 0;
}
EXPORT_SYMBOL(vpmoct_init);
static void
vpmoct_set_companding(struct vpmoct *vpm, int channo, int companding)
{
u32 new_companding;
bool do_update = false;
mutex_lock(&vpm->mutex);
new_companding = (DAHDI_LAW_MULAW == companding) ?
(vpm->companding & ~(1 << channo)) :
(vpm->companding | (1 << channo));
if (vpm->companding != new_companding) {
vpm->companding = new_companding;
if (!vpm->companding_update_active) {
do_update = true;
vpm->companding_update_active = 1;
}
}
mutex_unlock(&vpm->mutex);
while (do_update) {
u32 update;
vpmoct_write_dword(vpm, 0x40, new_companding);
update = vpmoct_read_dword(vpm, 0x40);
WARN_ON(new_companding != update);
mutex_lock(&vpm->mutex);
if (vpm->companding != new_companding) {
new_companding = vpm->companding;
} else {
vpm->companding_update_active = 0;
do_update = false;
}
mutex_unlock(&vpm->mutex);
}
}
/**
* vpmoct_echo_update - Enable / Disable the VPMOCT032 echocan state
* @vpm: The echocan to operate on.
* @channo: Which echocan timeslot to enable / disable.
* @echo_on: Whether we're turning the echocan on or off.
*
* When this function returns, the echocan is scheduled to be enabled or
* disabled at some point in the near future.
*
* Must be called in process context.
*
*/
static void vpmoct_echo_update(struct vpmoct *vpm, int channo, bool echo_on)
{
u32 echo;
unsigned long timeout;
bool do_update = false;
mutex_lock(&vpm->mutex);
echo = (echo_on) ? (vpm->echo | (1 << channo)) :
(vpm->echo & ~(1 << channo));
if (vpm->echo != echo) {
vpm->echo = echo;
if (!vpm->echo_update_active) {
do_update = true;
vpm->echo_update_active = 1;
}
}
mutex_unlock(&vpm->mutex);
timeout = jiffies + 2*HZ;
while (do_update) {
u32 new;
vpmoct_write_dword(vpm, 0x30, echo);
new = vpmoct_read_dword(vpm, 0x10);
mutex_lock(&vpm->mutex);
if (((vpm->echo != echo) || (new != echo)) &&
time_before(jiffies, timeout)) {
echo = vpm->echo;
} else {
vpm->echo_update_active = 0;
do_update = false;
}
mutex_unlock(&vpm->mutex);
}
if (!time_before(jiffies, timeout))
dev_warn(vpm->dev, "vpmoct: Updating echo state timed out.\n");
}
int vpmoct_echocan_create(struct vpmoct *vpm, int channo, int companding)
{
vpmoct_set_companding(vpm, channo, companding);
vpmoct_echo_update(vpm, channo, true);
return 0;
}
EXPORT_SYMBOL(vpmoct_echocan_create);
void vpmoct_echocan_free(struct vpmoct *vpm, int channo)
{
vpmoct_echo_update(vpm, channo, false);
}
EXPORT_SYMBOL(vpmoct_echocan_free);
/* Enable a vpm debugging mode where the pre-echo-canceled audio
* stream is physically output on timeslot 24.
*/
int vpmoct_preecho_enable(struct vpmoct *vpm, const int channo)
{
int ret;
mutex_lock(&vpm->mutex);
if (!vpm->preecho_enabled) {
vpm->preecho_enabled = 1;
vpm->preecho_timeslot = channo;
vpmoct_write_dword(vpm, 0x74, channo);
/* Begin pre-echo stream on timeslot 24 */
vpmoct_write_byte(vpm, 0x71, 0x0a);
ret = 0;
} else {
ret = -EBUSY;
}
mutex_unlock(&vpm->mutex);
return ret;
}
EXPORT_SYMBOL(vpmoct_preecho_enable);
int vpmoct_preecho_disable(struct vpmoct *vpm, const int channo)
{
int ret;
mutex_lock(&vpm->mutex);
if (!vpm->preecho_enabled) {
ret = 0;
} else if (channo == vpm->preecho_timeslot) {
vpm->preecho_enabled = 0;
/* Disable pre-echo stream by loading in a non-existing
* channel number */
vpmoct_write_byte(vpm, 0x74, 0xff);
/* Stop pre-echo stream on timeslot 24 */
vpmoct_write_byte(vpm, 0x71, 0x0a);
ret = 0;
} else {
ret = -EINVAL;
}
mutex_unlock(&vpm->mutex);
return ret;
}
EXPORT_SYMBOL(vpmoct_preecho_disable);