dahdi-linux/drivers/dahdi/wctdm.c
Shaun Ruffell 779d62791c Add #include <linux/slab.h> to all files that call kzalloc|kmalloc|kfree.
Some architectures, like arm, do not automatically pull in the definitions for
kzalloc and friends. This allows DAHDI to build on those platforms.

Originally reported to the asterisk-users mailing list here
http://lists.digium.com/pipermail/asterisk-users/2014-February/282338.html

Signed-off-by: Shaun Ruffell <sruffell@digium.com>
Acked-by: Tzafrir Cohen <tzafrir.cohen@xorcom.com>
Signed-off-by: Russ Meyerriecks <rmeyerriecks@digium.com>
2014-05-20 11:36:23 -05:00

2883 lines
82 KiB
C

/*
* Wildcard TDM400P TDM FXS/FXO Interface Driver for DAHDI Telephony interface
*
* Written by Mark Spencer <markster@digium.com>
* Matthew Fredrickson <creslin@digium.com>
*
* Copyright (C) 2001-2008, Digium, Inc.
*
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <asm/io.h>
#include "proslic.h"
/*
* Define for audio vs. register based ring detection
*
*/
/* #define AUDIO_RINGCHECK */
/*
Experimental max loop current limit for the proslic
Loop current limit is from 20 mA to 41 mA in steps of 3
(according to datasheet)
So set the value below to:
0x00 : 20mA (default)
0x01 : 23mA
0x02 : 26mA
0x03 : 29mA
0x04 : 32mA
0x05 : 35mA
0x06 : 37mA
0x07 : 41mA
*/
static int loopcurrent = 20;
#define POLARITY_XOR (\
(reversepolarity != 0) ^ (fxs->reversepolarity != 0) ^\
(fxs->vmwi_lrev != 0) ^\
((fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVAC) != 0))
static int reversepolarity = 0;
static alpha indirect_regs[] =
{
{0,255,"DTMF_ROW_0_PEAK",0x55C2},
{1,255,"DTMF_ROW_1_PEAK",0x51E6},
{2,255,"DTMF_ROW2_PEAK",0x4B85},
{3,255,"DTMF_ROW3_PEAK",0x4937},
{4,255,"DTMF_COL1_PEAK",0x3333},
{5,255,"DTMF_FWD_TWIST",0x0202},
{6,255,"DTMF_RVS_TWIST",0x0202},
{7,255,"DTMF_ROW_RATIO_TRES",0x0198},
{8,255,"DTMF_COL_RATIO_TRES",0x0198},
{9,255,"DTMF_ROW_2ND_ARM",0x0611},
{10,255,"DTMF_COL_2ND_ARM",0x0202},
{11,255,"DTMF_PWR_MIN_TRES",0x00E5},
{12,255,"DTMF_OT_LIM_TRES",0x0A1C},
{13,0,"OSC1_COEF",0x7B30},
{14,1,"OSC1X",0x0063},
{15,2,"OSC1Y",0x0000},
{16,3,"OSC2_COEF",0x7870},
{17,4,"OSC2X",0x007D},
{18,5,"OSC2Y",0x0000},
{19,6,"RING_V_OFF",0x0000},
{20,7,"RING_OSC",0x7EF0},
{21,8,"RING_X",0x0160},
{22,9,"RING_Y",0x0000},
{23,255,"PULSE_ENVEL",0x2000},
{24,255,"PULSE_X",0x2000},
{25,255,"PULSE_Y",0x0000},
//{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower
{26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower
{27,14,"XMIT_DIGITAL_GAIN",0x4000},
//{27,14,"XMIT_DIGITAL_GAIN",0x2000},
{28,15,"LOOP_CLOSE_TRES",0x1000},
{29,16,"RING_TRIP_TRES",0x3600},
{30,17,"COMMON_MIN_TRES",0x1000},
{31,18,"COMMON_MAX_TRES",0x0200},
{32,19,"PWR_ALARM_Q1Q2",0x07C0},
{33,20,"PWR_ALARM_Q3Q4",0x2600},
{34,21,"PWR_ALARM_Q5Q6",0x1B80},
{35,22,"LOOP_CLOSURE_FILTER",0x8000},
{36,23,"RING_TRIP_FILTER",0x0320},
{37,24,"TERM_LP_POLE_Q1Q2",0x008C},
{38,25,"TERM_LP_POLE_Q3Q4",0x0100},
{39,26,"TERM_LP_POLE_Q5Q6",0x0010},
{40,27,"CM_BIAS_RINGING",0x0C00},
{41,64,"DCDC_MIN_V",0x0C00},
{42,255,"DCDC_XTRA",0x1000},
{43,66,"LOOP_CLOSE_TRES_LOW",0x1000},
};
#include <dahdi/kernel.h>
#include <dahdi/wctdm_user.h>
#include "fxo_modes.h"
#define NUM_FXO_REGS 60
#define WC_MAX_IFACES 128
#define WC_CNTL 0x00
#define WC_OPER 0x01
#define WC_AUXC 0x02
#define WC_AUXD 0x03
#define WC_MASK0 0x04
#define WC_MASK1 0x05
#define WC_INTSTAT 0x06
#define WC_AUXR 0x07
#define WC_DMAWS 0x08
#define WC_DMAWI 0x0c
#define WC_DMAWE 0x10
#define WC_DMARS 0x18
#define WC_DMARI 0x1c
#define WC_DMARE 0x20
#define WC_AUXFUNC 0x2b
#define WC_SERCTL 0x2d
#define WC_FSCDELAY 0x2f
#define WC_REGBASE 0xc0
#define WC_SYNC 0x0
#define WC_TEST 0x1
#define WC_CS 0x2
#define WC_VER 0x3
#define BIT_CS (1 << 2)
#define BIT_SCLK (1 << 3)
#define BIT_SDI (1 << 4)
#define BIT_SDO (1 << 5)
#define FLAG_EMPTY 0
#define FLAG_WRITE 1
#define FLAG_READ 2
#define DEFAULT_RING_DEBOUNCE 64 /* Ringer Debounce (64 ms) */
#define POLARITY_DEBOUNCE 64 /* Polarity debounce (64 ms) */
#define OHT_TIMER 6000 /* How long after RING to retain OHT */
/* NEON MWI pulse width - Make larger for longer period time
* For more information on NEON MWI generation using the proslic
* refer to Silicon Labs App Note "AN33-SI321X NEON FLASHING"
* RNGY = RNGY 1/2 * Period * 8000
*/
#define NEON_MWI_RNGY_PULSEWIDTH 0x3e8 /*=> period of 250 mS */
#define FLAG_3215 (1 << 0)
#define NUM_CARDS 4
#define MAX_ALARMS 10
#define MOD_TYPE_FXS 0
#define MOD_TYPE_FXO 1
#define MINPEGTIME 10 * 8 /* 30 ms peak to peak gets us no more than 100 Hz */
#define PEGTIME 50 * 8 /* 50ms peak to peak gets us rings of 10 Hz or more */
#define PEGCOUNT 5 /* 5 cycles of pegging means RING */
#define NUM_CAL_REGS 12
struct calregs {
unsigned char vals[NUM_CAL_REGS];
};
enum proslic_power_warn {
PROSLIC_POWER_UNKNOWN = 0,
PROSLIC_POWER_ON,
PROSLIC_POWER_WARNED,
};
enum battery_state {
BATTERY_UNKNOWN = 0,
BATTERY_PRESENT,
BATTERY_LOST,
};
struct wctdm {
struct pci_dev *dev;
char *variety;
struct dahdi_span span;
struct dahdi_device *ddev;
unsigned char ios;
int usecount;
unsigned int intcount;
int dead;
int pos;
int flags[NUM_CARDS];
int freeregion;
int alt;
int curcard;
int cardflag; /* Bit-map of present cards */
enum proslic_power_warn proslic_power;
spinlock_t lock;
union {
struct fxo {
#ifdef AUDIO_RINGCHECK
unsigned int pegtimer;
int pegcount;
int peg;
int ring;
#else
int wasringing;
int lastrdtx;
#endif
int ringdebounce;
int offhook;
unsigned int battdebounce;
unsigned int battalarm;
enum battery_state battery;
int lastpol;
int polarity;
int polaritydebounce;
} fxo;
struct fxs {
int oldrxhook;
int debouncehook;
int lastrxhook;
int debounce;
int ohttimer;
int idletxhookstate; /* IDLE changing hook state */
int lasttxhook;
int palarms;
int reversepolarity; /* Reverse Line */
int mwisendtype;
struct dahdi_vmwi_info vmwisetting;
int vmwi_active_messages;
u32 vmwi_lrev:1; /*MWI Line Reversal*/
u32 vmwi_hvdc:1; /*MWI High Voltage DC Idle line*/
u32 vmwi_hvac:1; /*MWI Neon High Voltage AC Idle line*/
u32 neonringing:1; /*Ring Generator is set for NEON*/
struct calregs calregs;
} fxs;
} mod[NUM_CARDS];
/* Receive hook state and debouncing */
int modtype[NUM_CARDS];
unsigned char reg0shadow[NUM_CARDS];
unsigned char reg1shadow[NUM_CARDS];
unsigned long ioaddr;
dma_addr_t readdma;
dma_addr_t writedma;
volatile unsigned int *writechunk; /* Double-word aligned write memory */
volatile unsigned int *readchunk; /* Double-word aligned read memory */
struct dahdi_chan _chans[NUM_CARDS];
struct dahdi_chan *chans[NUM_CARDS];
};
struct wctdm_desc {
char *name;
int flags;
};
static struct wctdm_desc wctdm = { "Wildcard S400P Prototype", 0 };
static struct wctdm_desc wctdme = { "Wildcard TDM400P REV E/F", 0 };
static struct wctdm_desc wctdmh = { "Wildcard TDM400P REV H", 0 };
static struct wctdm_desc wctdmi = { "Wildcard TDM400P REV I", 0 };
static int acim2tiss[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 };
static struct wctdm *ifaces[WC_MAX_IFACES];
static void wctdm_release(struct wctdm *wc);
static unsigned int fxovoltage;
static unsigned int battdebounce;
static unsigned int battalarm;
static unsigned int battthresh;
static int ringdebounce = DEFAULT_RING_DEBOUNCE;
/* times 4, because must be a multiple of 4ms: */
static int dialdebounce = 8 * 8;
static int fwringdetect = 0;
static int debug = 0;
static int robust = 0;
static int timingonly = 0;
static int lowpower = 0;
static int boostringer = 0;
static int fastringer = 0;
static int _opermode = 0;
static char *opermode = "FCC";
static int fxshonormode = 0;
static int alawoverride = 0;
static int fastpickup = 0;
static int fxotxgain = 0;
static int fxorxgain = 0;
static int fxstxgain = 0;
static int fxsrxgain = 0;
static int wctdm_init_proslic(struct wctdm *wc, int card, int fast , int manual, int sane);
static int wctdm_init_ring_generator_mode(struct wctdm *wc, int card);
static int wctdm_set_ring_generator_mode(struct wctdm *wc, int card, int mode);
static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char ints)
{
volatile unsigned int *writechunk;
int x;
if (ints & 0x01)
/* Write is at interrupt address. Start writing from normal offset */
writechunk = wc->writechunk;
else
writechunk = wc->writechunk + DAHDI_CHUNKSIZE;
/* Calculate Transmission */
dahdi_transmit(&wc->span);
for (x=0;x<DAHDI_CHUNKSIZE;x++) {
/* Send a sample, as a 32-bit word */
writechunk[x] = 0;
#ifdef __BIG_ENDIAN
if (wc->cardflag & (1 << 3))
writechunk[x] |= (wc->chans[3]->writechunk[x]);
if (wc->cardflag & (1 << 2))
writechunk[x] |= (wc->chans[2]->writechunk[x] << 8);
if (wc->cardflag & (1 << 1))
writechunk[x] |= (wc->chans[1]->writechunk[x] << 16);
if (wc->cardflag & (1 << 0))
writechunk[x] |= (wc->chans[0]->writechunk[x] << 24);
#else
if (wc->cardflag & (1 << 3))
writechunk[x] |= (wc->chans[3]->writechunk[x] << 24);
if (wc->cardflag & (1 << 2))
writechunk[x] |= (wc->chans[2]->writechunk[x] << 16);
if (wc->cardflag & (1 << 1))
writechunk[x] |= (wc->chans[1]->writechunk[x] << 8);
if (wc->cardflag & (1 << 0))
writechunk[x] |= (wc->chans[0]->writechunk[x]);
#endif
}
}
#ifdef AUDIO_RINGCHECK
static inline void ring_check(struct wctdm *wc, int card)
{
int x;
short sample;
if (wc->modtype[card] != MOD_TYPE_FXO)
return;
wc->mod[card].fxo.pegtimer += DAHDI_CHUNKSIZE;
for (x=0;x<DAHDI_CHUNKSIZE;x++) {
/* Look for pegging to indicate ringing */
sample = DAHDI_XLAW(wc->chans[card].readchunk[x], (&(wc->chans[card])));
if ((sample > 10000) && (wc->mod[card].fxo.peg != 1)) {
if (debug > 1) printk(KERN_DEBUG "High peg!\n");
if ((wc->mod[card].fxo.pegtimer < PEGTIME) && (wc->mod[card].fxo.pegtimer > MINPEGTIME))
wc->mod[card].fxo.pegcount++;
wc->mod[card].fxo.pegtimer = 0;
wc->mod[card].fxo.peg = 1;
} else if ((sample < -10000) && (wc->mod[card].fxo.peg != -1)) {
if (debug > 1) printk(KERN_DEBUG "Low peg!\n");
if ((wc->mod[card].fxo.pegtimer < (PEGTIME >> 2)) && (wc->mod[card].fxo.pegtimer > (MINPEGTIME >> 2)))
wc->mod[card].fxo.pegcount++;
wc->mod[card].fxo.pegtimer = 0;
wc->mod[card].fxo.peg = -1;
}
}
if (wc->mod[card].fxo.pegtimer > PEGTIME) {
/* Reset pegcount if our timer expires */
wc->mod[card].fxo.pegcount = 0;
}
/* Decrement debouncer if appropriate */
if (wc->mod[card].fxo.ringdebounce)
wc->mod[card].fxo.ringdebounce--;
if (!wc->mod[card].fxo.offhook && !wc->mod[card].fxo.ringdebounce) {
if (!wc->mod[card].fxo.ring && (wc->mod[card].fxo.pegcount > PEGCOUNT)) {
/* It's ringing */
if (debug)
printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
if (!wc->mod[card].fxo.offhook)
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
wc->mod[card].fxo.ring = 1;
}
if (wc->mod[card].fxo.ring && !wc->mod[card].fxo.pegcount) {
/* No more ring */
if (debug)
printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
wc->mod[card].fxo.ring = 0;
}
}
}
#endif
static inline void wctdm_receiveprep(struct wctdm *wc, unsigned char ints)
{
volatile unsigned int *readchunk;
int x;
if (ints & 0x08)
readchunk = wc->readchunk + DAHDI_CHUNKSIZE;
else
/* Read is at interrupt address. Valid data is available at normal offset */
readchunk = wc->readchunk;
for (x=0;x<DAHDI_CHUNKSIZE;x++) {
#ifdef __BIG_ENDIAN
if (wc->cardflag & (1 << 3))
wc->chans[3]->readchunk[x] = (readchunk[x]) & 0xff;
if (wc->cardflag & (1 << 2))
wc->chans[2]->readchunk[x] = (readchunk[x] >> 8) & 0xff;
if (wc->cardflag & (1 << 1))
wc->chans[1]->readchunk[x] = (readchunk[x] >> 16) & 0xff;
if (wc->cardflag & (1 << 0))
wc->chans[0]->readchunk[x] = (readchunk[x] >> 24) & 0xff;
#else
if (wc->cardflag & (1 << 3))
wc->chans[3]->readchunk[x] = (readchunk[x] >> 24) & 0xff;
if (wc->cardflag & (1 << 2))
wc->chans[2]->readchunk[x] = (readchunk[x] >> 16) & 0xff;
if (wc->cardflag & (1 << 1))
wc->chans[1]->readchunk[x] = (readchunk[x] >> 8) & 0xff;
if (wc->cardflag & (1 << 0))
wc->chans[0]->readchunk[x] = (readchunk[x]) & 0xff;
#endif
}
#ifdef AUDIO_RINGCHECK
for (x=0;x<wc->cards;x++)
ring_check(wc, x);
#endif
/* XXX We're wasting 8 taps. We should get closer :( */
for (x = 0; x < NUM_CARDS; x++) {
if (wc->cardflag & (1 << x))
dahdi_ec_chunk(wc->chans[x], wc->chans[x]->readchunk, wc->chans[x]->writechunk);
}
dahdi_receive(&wc->span);
}
static void wctdm_stop_dma(struct wctdm *wc);
static void wctdm_reset_tdm(struct wctdm *wc);
static void wctdm_restart_dma(struct wctdm *wc);
static inline void __write_8bits(struct wctdm *wc, unsigned char bits)
{
/* Out BIT_CS --\________________________________/---- */
/* Out BIT_SCLK ---\_/-\_/-\_/-\_/-\_/-\_/-\_/-\_/------ */
/* Out BIT_SDI ---\___/---\___/---\___/---\___/-------- */
/* Data Bit 7 6 5 4 3 2 1 0 */
/* Data written 0 1 0 1 0 1 0 1 */
int x;
/* Drop chip select */
wc->ios &= ~BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
for (x=0;x<8;x++) {
/* Send out each bit, MSB first, drop SCLK as we do so */
if (bits & 0x80)
wc->ios |= BIT_SDI;
else
wc->ios &= ~BIT_SDI;
wc->ios &= ~BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Now raise SCLK high again and repeat */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
bits <<= 1;
}
/* Finally raise CS back high again */
wc->ios |= BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
}
static inline void __reset_spi(struct wctdm *wc)
{
/* Drop chip select and clock once and raise and clock once */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
wc->ios &= ~BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
wc->ios |= BIT_SDI;
wc->ios &= ~BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Now raise SCLK high again and repeat */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Finally raise CS back high again */
wc->ios |= BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Clock again */
wc->ios &= ~BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Now raise SCLK high again and repeat */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
}
static inline unsigned char __read_8bits(struct wctdm *wc)
{
/* Out BIT_CS --\________________________________________/----*/
/* Out BIT_SCLK ---\_/--\_/--\_/--\_/--\_/--\_/--\_/--\_/-------*/
/* In BIT_SDO ????/1111\0000/1111\0000/1111\0000/1111\0000/???*/
/* Data bit 7 6 5 4 3 2 1 0 */
/* Data Read 1 0 1 0 1 0 1 0 */
/* Note: Clock High time is 2x Low time, due to input read */
unsigned char res=0, c;
int x;
/* Drop chip select */
wc->ios &= ~BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
for (x=0;x<8;x++) {
res <<= 1;
/* Drop SCLK */
wc->ios &= ~BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Now raise SCLK high again */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Read back the value */
c = inb(wc->ioaddr + WC_AUXR);
if (c & BIT_SDO)
res |= 1;
}
/* Finally raise CS back high again */
wc->ios |= BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* And return our result */
return res;
}
static void __wctdm_setcreg(struct wctdm *wc, unsigned char reg, unsigned char val)
{
outb(val, wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2));
}
static unsigned char __wctdm_getcreg(struct wctdm *wc, unsigned char reg)
{
return inb(wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2));
}
static inline void __wctdm_setcard(struct wctdm *wc, int card)
{
if (wc->curcard != card) {
__wctdm_setcreg(wc, WC_CS, (1 << card));
wc->curcard = card;
}
}
static void __wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value)
{
__wctdm_setcard(wc, card);
if (wc->modtype[card] == MOD_TYPE_FXO) {
__write_8bits(wc, 0x20);
__write_8bits(wc, reg & 0x7f);
} else {
__write_8bits(wc, reg & 0x7f);
}
__write_8bits(wc, value);
}
static void wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value)
{
unsigned long flags;
spin_lock_irqsave(&wc->lock, flags);
__wctdm_setreg(wc, card, reg, value);
spin_unlock_irqrestore(&wc->lock, flags);
}
static unsigned char __wctdm_getreg(struct wctdm *wc, int card, unsigned char reg)
{
__wctdm_setcard(wc, card);
if (wc->modtype[card] == MOD_TYPE_FXO) {
__write_8bits(wc, 0x60);
__write_8bits(wc, reg & 0x7f);
} else {
__write_8bits(wc, reg | 0x80);
}
return __read_8bits(wc);
}
static inline void reset_spi(struct wctdm *wc, int card)
{
unsigned long flags;
spin_lock_irqsave(&wc->lock, flags);
__wctdm_setcard(wc, card);
__reset_spi(wc);
__reset_spi(wc);
spin_unlock_irqrestore(&wc->lock, flags);
}
static unsigned char wctdm_getreg(struct wctdm *wc, int card, unsigned char reg)
{
unsigned long flags;
unsigned char res;
spin_lock_irqsave(&wc->lock, flags);
res = __wctdm_getreg(wc, card, reg);
spin_unlock_irqrestore(&wc->lock, flags);
return res;
}
static int __wait_access(struct wctdm *wc, int card)
{
unsigned char data = 0;
int count = 0;
#define MAX 6000 /* attempts */
/* Wait for indirect access */
while (count++ < MAX)
{
data = __wctdm_getreg(wc, card, I_STATUS);
if (!data)
return 0;
}
if(count > (MAX-1)) printk(KERN_NOTICE " ##### Loop error (%02x) #####\n", data);
return 0;
}
static unsigned char translate_3215(unsigned char address)
{
int x;
for (x=0;x<sizeof(indirect_regs)/sizeof(indirect_regs[0]);x++) {
if (indirect_regs[x].address == address) {
address = indirect_regs[x].altaddr;
break;
}
}
return address;
}
static int wctdm_proslic_setreg_indirect(struct wctdm *wc, int card, unsigned char address, unsigned short data)
{
unsigned long flags;
int res = -1;
/* Translate 3215 addresses */
if (wc->flags[card] & FLAG_3215) {
address = translate_3215(address);
if (address == 255)
return 0;
}
spin_lock_irqsave(&wc->lock, flags);
if(!__wait_access(wc, card)) {
__wctdm_setreg(wc, card, IDA_LO,(unsigned char)(data & 0xFF));
__wctdm_setreg(wc, card, IDA_HI,(unsigned char)((data & 0xFF00)>>8));
__wctdm_setreg(wc, card, IAA,address);
res = 0;
};
spin_unlock_irqrestore(&wc->lock, flags);
return res;
}
static int wctdm_proslic_getreg_indirect(struct wctdm *wc, int card, unsigned char address)
{
unsigned long flags;
int res = -1;
char *p=NULL;
/* Translate 3215 addresses */
if (wc->flags[card] & FLAG_3215) {
address = translate_3215(address);
if (address == 255)
return 0;
}
spin_lock_irqsave(&wc->lock, flags);
if (!__wait_access(wc, card)) {
__wctdm_setreg(wc, card, IAA, address);
if (!__wait_access(wc, card)) {
unsigned char data1, data2;
data1 = __wctdm_getreg(wc, card, IDA_LO);
data2 = __wctdm_getreg(wc, card, IDA_HI);
res = data1 | (data2 << 8);
} else
p = "Failed to wait inside\n";
} else
p = "failed to wait\n";
spin_unlock_irqrestore(&wc->lock, flags);
if (p)
printk(KERN_NOTICE "%s", p);
return res;
}
static int wctdm_proslic_init_indirect_regs(struct wctdm *wc, int card)
{
unsigned char i;
for (i=0; i<sizeof(indirect_regs) / sizeof(indirect_regs[0]); i++)
{
if(wctdm_proslic_setreg_indirect(wc, card, indirect_regs[i].address,indirect_regs[i].initial))
return -1;
}
return 0;
}
static int wctdm_proslic_verify_indirect_regs(struct wctdm *wc, int card)
{
int passed = 1;
unsigned short i, initial;
int j;
for (i=0; i<sizeof(indirect_regs) / sizeof(indirect_regs[0]); i++)
{
if((j = wctdm_proslic_getreg_indirect(wc, card, (unsigned char) indirect_regs[i].address)) < 0) {
printk(KERN_NOTICE "Failed to read indirect register %d\n", i);
return -1;
}
initial= indirect_regs[i].initial;
if ( j != initial && (!(wc->flags[card] & FLAG_3215) || (indirect_regs[i].altaddr != 255)))
{
printk(KERN_NOTICE "!!!!!!! %s iREG %X = %X should be %X\n",
indirect_regs[i].name,indirect_regs[i].address,j,initial );
passed = 0;
}
}
if (passed) {
if (debug)
printk(KERN_DEBUG "Init Indirect Registers completed successfully.\n");
} else {
printk(KERN_NOTICE " !!!!! Init Indirect Registers UNSUCCESSFULLY.\n");
return -1;
}
return 0;
}
static inline void wctdm_proslic_recheck_sanity(struct wctdm *wc, int card)
{
struct fxs *const fxs = &wc->mod[card].fxs;
int res;
/* Check loopback */
res = wc->reg1shadow[card];
if (!res && (res != fxs->lasttxhook)) {
res = wctdm_getreg(wc, card, 8);
if (res) {
printk(KERN_NOTICE "Ouch, part reset, quickly restoring reality (%d)\n", card);
wctdm_init_proslic(wc, card, 1, 0, 1);
} else {
if (fxs->palarms++ < MAX_ALARMS) {
printk(KERN_NOTICE "Power alarm on module %d, resetting!\n", card + 1);
if (fxs->lasttxhook == SLIC_LF_RINGING)
fxs->lasttxhook = SLIC_LF_ACTIVE_FWD;
wctdm_setreg(wc, card, 64, fxs->lasttxhook);
} else {
if (fxs->palarms == MAX_ALARMS)
printk(KERN_NOTICE "Too many power alarms on card %d, NOT resetting!\n", card + 1);
}
}
}
}
static inline void wctdm_voicedaa_check_hook(struct wctdm *wc, int card)
{
#define MS_PER_CHECK_HOOK 16
#ifndef AUDIO_RINGCHECK
unsigned char res;
#endif
signed char b;
int errors = 0;
struct fxo *fxo = &wc->mod[card].fxo;
/* Try to track issues that plague slot one FXO's */
b = wc->reg0shadow[card];
if ((b & 0x2) || !(b & 0x8)) {
/* Not good -- don't look at anything else */
if (debug)
printk(KERN_DEBUG "Error (%02x) on card %d!\n", b, card + 1);
errors++;
}
b &= 0x9b;
if (fxo->offhook) {
if (b != 0x9)
wctdm_setreg(wc, card, 5, 0x9);
} else {
if (b != 0x8)
wctdm_setreg(wc, card, 5, 0x8);
}
if (errors)
return;
if (!fxo->offhook) {
if (fwringdetect) {
res = wc->reg0shadow[card] & 0x60;
if (fxo->ringdebounce) {
--fxo->ringdebounce;
if (res && (res != fxo->lastrdtx) &&
(fxo->battery == BATTERY_PRESENT)) {
if (!fxo->wasringing) {
fxo->wasringing = 1;
if (debug)
printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
}
fxo->lastrdtx = res;
fxo->ringdebounce = 10;
} else if (!res) {
if ((fxo->ringdebounce == 0) && fxo->wasringing) {
fxo->wasringing = 0;
if (debug)
printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
}
}
} else if (res && (fxo->battery == BATTERY_PRESENT)) {
fxo->lastrdtx = res;
fxo->ringdebounce = 10;
}
} else {
res = wc->reg0shadow[card];
if ((res & 0x60) && (fxo->battery == BATTERY_PRESENT)) {
fxo->ringdebounce += (DAHDI_CHUNKSIZE * 16);
if (fxo->ringdebounce >= DAHDI_CHUNKSIZE * ringdebounce) {
if (!fxo->wasringing) {
fxo->wasringing = 1;
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
if (debug)
printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
}
fxo->ringdebounce = DAHDI_CHUNKSIZE * ringdebounce;
}
} else {
fxo->ringdebounce -= DAHDI_CHUNKSIZE * 4;
if (fxo->ringdebounce <= 0) {
if (fxo->wasringing) {
fxo->wasringing = 0;
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
if (debug)
printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
}
fxo->ringdebounce = 0;
}
}
}
}
b = wc->reg1shadow[card];
if (fxovoltage) {
static int count = 0;
if (!(count++ % 100)) {
printk(KERN_DEBUG "Card %d: Voltage: %d Debounce %d\n", card + 1, b, fxo->battdebounce);
}
}
if (unlikely(DAHDI_RXSIG_INITIAL == wc->chans[card]->rxhooksig)) {
/*
* dahdi-base will set DAHDI_RXSIG_INITIAL after a
* DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events
* will be queued on the channel with the current received
* hook state. Channels that use robbed-bit signalling always
* report the current received state via the dahdi_rbsbits
* call. Since we only call dahdi_hooksig when we've detected
* a change to report, let's forget our current state in order
* to force us to report it again via dahdi_hooksig.
*
*/
fxo->battery = BATTERY_UNKNOWN;
}
if (abs(b) < battthresh) {
/* possible existing states:
battery lost, no debounce timer
battery lost, debounce timer (going to battery present)
battery present or unknown, no debounce timer
battery present or unknown, debounce timer (going to battery lost)
*/
if (fxo->battery == BATTERY_LOST) {
if (fxo->battdebounce) {
/* we were going to BATTERY_PRESENT, but battery was lost again,
so clear the debounce timer */
fxo->battdebounce = 0;
}
} else {
if (fxo->battdebounce) {
/* going to BATTERY_LOST, see if we are there yet */
if (--fxo->battdebounce == 0) {
fxo->battery = BATTERY_LOST;
if (debug)
printk(KERN_DEBUG "NO BATTERY on %d/%d!\n", wc->span.spanno, card + 1);
#ifdef JAPAN
if (!wc->ohdebounce && wc->offhook) {
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
if (debug)
printk(KERN_DEBUG "Signalled On Hook\n");
#ifdef ZERO_BATT_RING
wc->onhook++;
#endif
}
#else
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
/* set the alarm timer, taking into account that part of its time
period has already passed while debouncing occurred */
fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK;
#endif
}
} else {
/* start the debounce timer to verify that battery has been lost */
fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK;
}
}
} else {
/* possible existing states:
battery lost or unknown, no debounce timer
battery lost or unknown, debounce timer (going to battery present)
battery present, no debounce timer
battery present, debounce timer (going to battery lost)
*/
if (fxo->battery == BATTERY_PRESENT) {
if (fxo->battdebounce) {
/* we were going to BATTERY_LOST, but battery appeared again,
so clear the debounce timer */
fxo->battdebounce = 0;
}
} else {
if (fxo->battdebounce) {
/* going to BATTERY_PRESENT, see if we are there yet */
if (--fxo->battdebounce == 0) {
fxo->battery = BATTERY_PRESENT;
if (debug)
printk(KERN_DEBUG "BATTERY on %d/%d (%s)!\n", wc->span.spanno, card + 1,
(b < 0) ? "-" : "+");
#ifdef ZERO_BATT_RING
if (wc->onhook) {
wc->onhook = 0;
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
if (debug)
printk(KERN_DEBUG "Signalled Off Hook\n");
}
#else
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
#endif
/* set the alarm timer, taking into account that part of its time
period has already passed while debouncing occurred */
fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK;
}
} else {
/* start the debounce timer to verify that battery has appeared */
fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK;
}
}
}
if (fxo->lastpol >= 0) {
if (b < 0) {
fxo->lastpol = -1;
fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK;
}
}
if (fxo->lastpol <= 0) {
if (b > 0) {
fxo->lastpol = 1;
fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK;
}
}
if (fxo->battalarm) {
if (--fxo->battalarm == 0) {
/* the alarm timer has expired, so update the battery alarm state
for this channel */
dahdi_alarm_channel(wc->chans[card], fxo->battery == BATTERY_LOST ? DAHDI_ALARM_RED : DAHDI_ALARM_NONE);
}
}
if (fxo->polaritydebounce) {
if (--fxo->polaritydebounce == 0) {
if (fxo->lastpol != fxo->polarity) {
if (debug)
printk(KERN_DEBUG "%lu Polarity reversed (%d -> %d)\n", jiffies,
fxo->polarity,
fxo->lastpol);
if (fxo->polarity)
dahdi_qevent_lock(wc->chans[card], DAHDI_EVENT_POLARITY);
fxo->polarity = fxo->lastpol;
}
}
}
#undef MS_PER_CHECK_HOOK
}
static void wctdm_fxs_hooksig(struct wctdm *wc, const int card, enum dahdi_txsig txsig)
{
struct fxs *const fxs = &wc->mod[card].fxs;
switch (txsig) {
case DAHDI_TXSIG_ONHOOK:
switch (wc->span.chans[card]->sig) {
case DAHDI_SIG_FXOKS:
case DAHDI_SIG_FXOLS:
/* Can't change Ring Generator during OHT */
if (!fxs->ohttimer) {
wctdm_set_ring_generator_mode(wc,
card, fxs->vmwi_hvac);
fxs->lasttxhook = fxs->vmwi_hvac ?
SLIC_LF_RINGING :
fxs->idletxhookstate;
} else {
fxs->lasttxhook = fxs->idletxhookstate;
}
break;
case DAHDI_SIG_EM:
fxs->lasttxhook = fxs->idletxhookstate;
break;
case DAHDI_SIG_FXOGS:
fxs->lasttxhook = SLIC_LF_TIP_OPEN;
break;
}
break;
case DAHDI_TXSIG_OFFHOOK:
switch (wc->span.chans[card]->sig) {
case DAHDI_SIG_EM:
fxs->lasttxhook = SLIC_LF_ACTIVE_REV;
break;
default:
fxs->lasttxhook = fxs->idletxhookstate;
break;
}
break;
case DAHDI_TXSIG_START:
/* Set ringer mode */
wctdm_set_ring_generator_mode(wc, card, 0);
fxs->lasttxhook = SLIC_LF_RINGING;
break;
case DAHDI_TXSIG_KEWL:
fxs->lasttxhook = SLIC_LF_OPEN;
break;
default:
printk(KERN_NOTICE "wctdm: Can't set tx state to %d\n", txsig);
return;
}
if (debug) {
printk(KERN_DEBUG
"Setting FXS hook state to %d (%02x)\n",
txsig, fxs->lasttxhook);
}
wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook);
}
static inline void wctdm_proslic_check_hook(struct wctdm *wc, int card)
{
struct fxs *const fxs = &wc->mod[card].fxs;
char res;
int hook;
/* For some reason we have to debounce the
hook detector. */
res = wc->reg0shadow[card];
hook = (res & 1);
if (hook != fxs->lastrxhook) {
/* Reset the debounce (must be multiple of 4ms) */
fxs->debounce = dialdebounce * 4;
#if 0
printk(KERN_DEBUG "Resetting debounce card %d hook %d, %d\n",
card, hook, fxs->debounce);
#endif
} else {
if (fxs->debounce > 0) {
fxs->debounce -= 16 * DAHDI_CHUNKSIZE;
#if 0
printk(KERN_DEBUG "Sustaining hook %d, %d\n",
hook, fxs->debounce);
#endif
if (!fxs->debounce) {
#if 0
printk(KERN_DEBUG "Counted down debounce, newhook: %d...\n", hook);
#endif
fxs->debouncehook = hook;
}
if (!fxs->oldrxhook && fxs->debouncehook) {
/* Off hook */
#if 1
if (debug)
#endif
printk(KERN_DEBUG "wctdm: Card %d Going off hook\n", card);
switch (fxs->lasttxhook) {
case SLIC_LF_RINGING:
case SLIC_LF_OHTRAN_FWD:
case SLIC_LF_OHTRAN_REV:
/* just detected OffHook, during
* Ringing or OnHookTransfer */
fxs->idletxhookstate =
POLARITY_XOR ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
break;
}
wctdm_fxs_hooksig(wc, card, DAHDI_TXSIG_OFFHOOK);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
if (robust)
wctdm_init_proslic(wc, card, 1, 0, 1);
fxs->oldrxhook = 1;
} else if (fxs->oldrxhook && !fxs->debouncehook) {
/* On hook */
#if 1
if (debug)
#endif
printk(KERN_DEBUG "wctdm: Card %d Going on hook\n", card);
wctdm_fxs_hooksig(wc, card, DAHDI_TXSIG_ONHOOK);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
fxs->oldrxhook = 0;
}
}
}
fxs->lastrxhook = hook;
}
DAHDI_IRQ_HANDLER(wctdm_interrupt)
{
struct wctdm *wc = dev_id;
unsigned char ints;
int x;
int mode;
ints = inb(wc->ioaddr + WC_INTSTAT);
if (!ints)
return IRQ_NONE;
outb(ints, wc->ioaddr + WC_INTSTAT);
if (ints & 0x10) {
/* Stop DMA, wait for watchdog */
printk(KERN_INFO "TDM PCI Master abort\n");
wctdm_stop_dma(wc);
return IRQ_RETVAL(1);
}
if (ints & 0x20) {
printk(KERN_INFO "PCI Target abort\n");
return IRQ_RETVAL(1);
}
for (x=0;x<4;x++) {
if (wc->cardflag & (1 << x) &&
(wc->modtype[x] == MOD_TYPE_FXS)) {
struct fxs *const fxs = &wc->mod[x].fxs;
if (fxs->lasttxhook == SLIC_LF_RINGING &&
!fxs->neonringing) {
/* RINGing, prepare for OHT */
fxs->ohttimer = OHT_TIMER << 3;
/* logical XOR 3 variables
module parameter 'reversepolarity', global reverse all FXS lines.
ioctl channel variable fxs 'reversepolarity', Line Reversal Alert Signal if required.
ioctl channel variable fxs 'vmwi_lrev', VMWI pending.
*/
/* OHT mode when idle */
fxs->idletxhookstate = POLARITY_XOR ?
SLIC_LF_OHTRAN_REV :
SLIC_LF_OHTRAN_FWD;
} else if (fxs->ohttimer) {
/* check if still OnHook */
if (!fxs->oldrxhook) {
fxs->ohttimer -= DAHDI_CHUNKSIZE;
if (!fxs->ohttimer) {
fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; /* Switch to Active, Rev or Fwd */
/* if currently OHT */
if ((fxs->lasttxhook == SLIC_LF_OHTRAN_FWD) || (fxs->lasttxhook == SLIC_LF_OHTRAN_REV)) {
if (fxs->vmwi_hvac) {
/* force idle polarity Forward if ringing */
fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD;
/* Set ring generator for neon */
wctdm_set_ring_generator_mode(wc, x, 1);
fxs->lasttxhook = SLIC_LF_RINGING;
} else {
fxs->lasttxhook = fxs->idletxhookstate;
}
/* Apply the change as appropriate */
wctdm_setreg(wc, x, LINE_STATE, fxs->lasttxhook);
}
}
} else {
fxs->ohttimer = 0;
/* Switch to Active, Rev or Fwd */
fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;
}
}
}
}
if (ints & 0x0f) {
wc->intcount++;
x = wc->intcount & 0x3;
mode = wc->intcount & 0xc;
if (wc->cardflag & (1 << x)) {
switch(mode) {
case 0:
/* Rest */
break;
case 4:
/* Read first shadow reg */
if (wc->modtype[x] == MOD_TYPE_FXS)
wc->reg0shadow[x] = wctdm_getreg(wc, x, 68);
else if (wc->modtype[x] == MOD_TYPE_FXO)
wc->reg0shadow[x] = wctdm_getreg(wc, x, 5);
break;
case 8:
/* Read second shadow reg */
if (wc->modtype[x] == MOD_TYPE_FXS)
wc->reg1shadow[x] = wctdm_getreg(wc, x, LINE_STATE);
else if (wc->modtype[x] == MOD_TYPE_FXO)
wc->reg1shadow[x] = wctdm_getreg(wc, x, 29);
break;
case 12:
/* Perform processing */
if (wc->modtype[x] == MOD_TYPE_FXS) {
wctdm_proslic_check_hook(wc, x);
if (!(wc->intcount & 0xf0)) {
wctdm_proslic_recheck_sanity(wc, x);
}
} else if (wc->modtype[x] == MOD_TYPE_FXO) {
wctdm_voicedaa_check_hook(wc, x);
}
break;
}
}
if (!(wc->intcount % 10000)) {
/* Accept an alarm once per 10 seconds */
for (x=0;x<4;x++)
if (wc->modtype[x] == MOD_TYPE_FXS) {
if (wc->mod[x].fxs.palarms)
wc->mod[x].fxs.palarms--;
}
}
wctdm_receiveprep(wc, ints);
wctdm_transmitprep(wc, ints);
}
return IRQ_RETVAL(1);
}
static int wctdm_voicedaa_insane(struct wctdm *wc, int card)
{
int blah;
blah = wctdm_getreg(wc, card, 2);
if (blah != 0x3)
return -2;
blah = wctdm_getreg(wc, card, 11);
if (debug)
printk(KERN_DEBUG "VoiceDAA System: %02x\n", blah & 0xf);
return 0;
}
static int wctdm_proslic_insane(struct wctdm *wc, int card)
{
int blah,insane_report;
insane_report=0;
blah = wctdm_getreg(wc, card, 0);
if (debug)
printk(KERN_DEBUG "ProSLIC on module %d, product %d, version %d\n", card, (blah & 0x30) >> 4, (blah & 0xf));
#if 0
if ((blah & 0x30) >> 4) {
printk(KERN_DEBUG "ProSLIC on module %d is not a 3210.\n", card);
return -1;
}
#endif
if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) {
/* SLIC not loaded */
return -1;
}
if ((blah & 0xf) < 2) {
printk(KERN_NOTICE "ProSLIC 3210 version %d is too old\n", blah & 0xf);
return -1;
}
if (wctdm_getreg(wc, card, 1) & 0x80)
/* ProSLIC 3215, not a 3210 */
wc->flags[card] |= FLAG_3215;
blah = wctdm_getreg(wc, card, 8);
if (blah != 0x2) {
printk(KERN_NOTICE "ProSLIC on module %d insane (1) %d should be 2\n", card, blah);
return -1;
} else if ( insane_report)
printk(KERN_NOTICE "ProSLIC on module %d Reg 8 Reads %d Expected is 0x2\n",card,blah);
blah = wctdm_getreg(wc, card, 64);
if (blah != 0x0) {
printk(KERN_NOTICE "ProSLIC on module %d insane (2)\n", card);
return -1;
} else if ( insane_report)
printk(KERN_NOTICE "ProSLIC on module %d Reg 64 Reads %d Expected is 0x0\n",card,blah);
blah = wctdm_getreg(wc, card, 11);
if (blah != 0x33) {
printk(KERN_NOTICE "ProSLIC on module %d insane (3)\n", card);
return -1;
} else if ( insane_report)
printk(KERN_NOTICE "ProSLIC on module %d Reg 11 Reads %d Expected is 0x33\n",card,blah);
/* Just be sure it's setup right. */
wctdm_setreg(wc, card, 30, 0);
if (debug)
printk(KERN_DEBUG "ProSLIC on module %d seems sane.\n", card);
return 0;
}
static int wctdm_proslic_powerleak_test(struct wctdm *wc, int card)
{
unsigned long origjiffies;
unsigned char vbat;
/* Turn off linefeed */
wctdm_setreg(wc, card, 64, 0);
/* Power down */
wctdm_setreg(wc, card, 14, 0x10);
/* Wait for one second */
origjiffies = jiffies;
while((vbat = wctdm_getreg(wc, card, 82)) > 0x6) {
if ((jiffies - origjiffies) >= (HZ/2))
break;;
}
if (vbat < 0x06) {
printk(KERN_NOTICE "Excessive leakage detected on module %d: %d volts (%02x) after %d ms\n", card,
376 * vbat / 1000, vbat, (int)((jiffies - origjiffies) * 1000 / HZ));
return -1;
} else if (debug) {
printk(KERN_NOTICE "Post-leakage voltage: %d volts\n", 376 * vbat / 1000);
}
return 0;
}
static int wctdm_powerup_proslic(struct wctdm *wc, int card, int fast)
{
unsigned char vbat;
unsigned long origjiffies;
int lim;
/* Set period of DC-DC converter to 1/64 khz */
wctdm_setreg(wc, card, 92, 0xff /* was 0xff */);
/* Wait for VBat to powerup */
origjiffies = jiffies;
/* Disable powerdown */
wctdm_setreg(wc, card, 14, 0);
/* If fast, don't bother checking anymore */
if (fast)
return 0;
while((vbat = wctdm_getreg(wc, card, 82)) < 0xc0) {
/* Wait no more than 500ms */
if ((jiffies - origjiffies) > HZ/2) {
break;
}
}
if (vbat < 0xc0) {
if (wc->proslic_power == PROSLIC_POWER_UNKNOWN)
printk(KERN_NOTICE "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM400P??\n",
card, (int)(((jiffies - origjiffies) * 1000 / HZ)),
vbat * 375);
wc->proslic_power = PROSLIC_POWER_WARNED;
return -1;
} else if (debug) {
printk(KERN_DEBUG "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n",
card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ)));
}
wc->proslic_power = PROSLIC_POWER_ON;
/* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */
/* If out of range, just set it to the default value */
lim = (loopcurrent - 20) / 3;
if ( loopcurrent > 41 ) {
lim = 0;
if (debug)
printk(KERN_DEBUG "Loop current out of range! Setting to default 20mA!\n");
}
else if (debug)
printk(KERN_DEBUG "Loop current set to %dmA!\n",(lim*3)+20);
wctdm_setreg(wc,card,LOOP_I_LIMIT,lim);
/* Engage DC-DC converter */
wctdm_setreg(wc, card, 93, 0x19 /* was 0x19 */);
#if 0
origjiffies = jiffies;
while(0x80 & wctdm_getreg(wc, card, 93)) {
if ((jiffies - origjiffies) > 2 * HZ) {
printk(KERN_DEBUG "Timeout waiting for DC-DC calibration on module %d\n", card);
return -1;
}
}
#if 0
/* Wait a full two seconds */
while((jiffies - origjiffies) < 2 * HZ);
/* Just check to be sure */
vbat = wctdm_getreg(wc, card, 82);
printk(KERN_DEBUG "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n",
card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ)));
#endif
#endif
return 0;
}
static int wctdm_proslic_manual_calibrate(struct wctdm *wc, int card){
unsigned long origjiffies;
unsigned char i;
wctdm_setreg(wc, card, 21, 0);//(0) Disable all interupts in DR21
wctdm_setreg(wc, card, 22, 0);//(0)Disable all interupts in DR21
wctdm_setreg(wc, card, 23, 0);//(0)Disable all interupts in DR21
wctdm_setreg(wc, card, 64, 0);//(0)
wctdm_setreg(wc, card, 97, 0x18); //(0x18)Calibrations without the ADC and DAC offset and without common mode calibration.
wctdm_setreg(wc, card, 96, 0x47); //(0x47) Calibrate common mode and differential DAC mode DAC + ILIM
origjiffies=jiffies;
while( wctdm_getreg(wc,card,96)!=0 ){
if((jiffies-origjiffies)>80)
return -1;
}
//Initialized DR 98 and 99 to get consistant results.
// 98 and 99 are the results registers and the search should have same intial conditions.
/*******************************The following is the manual gain mismatch calibration****************************/
/*******************************This is also available as a function *******************************************/
// Delay 10ms
origjiffies=jiffies;
while((jiffies-origjiffies)<1);
wctdm_proslic_setreg_indirect(wc, card, 88, 0);
wctdm_proslic_setreg_indirect(wc, card, 89, 0);
wctdm_proslic_setreg_indirect(wc, card, 90, 0);
wctdm_proslic_setreg_indirect(wc, card, 91, 0);
wctdm_proslic_setreg_indirect(wc, card, 92, 0);
wctdm_proslic_setreg_indirect(wc, card, 93, 0);
wctdm_setreg(wc, card, 98, 0x10); // This is necessary if the calibration occurs other than at reset time
wctdm_setreg(wc, card, 99, 0x10);
for ( i=0x1f; i>0; i--)
{
wctdm_setreg(wc, card, 98, i);
origjiffies=jiffies;
while((jiffies-origjiffies)<4);
if((wctdm_getreg(wc, card, 88)) == 0)
break;
} // for
for ( i=0x1f; i>0; i--)
{
wctdm_setreg(wc, card, 99, i);
origjiffies=jiffies;
while((jiffies-origjiffies)<4);
if((wctdm_getreg(wc, card, 89)) == 0)
break;
}//for
/*******************************The preceding is the manual gain mismatch calibration****************************/
/**********************************The following is the longitudinal Balance Cal***********************************/
wctdm_setreg(wc,card,64,1);
while((jiffies-origjiffies)<10); // Sleep 100?
wctdm_setreg(wc, card, 64, 0);
wctdm_setreg(wc, card, 23, 0x4); // enable interrupt for the balance Cal
wctdm_setreg(wc, card, 97, 0x1); // this is a singular calibration bit for longitudinal calibration
wctdm_setreg(wc, card, 96, 0x40);
wctdm_getreg(wc, card, 96); /* Read Reg 96 just cause */
wctdm_setreg(wc, card, 21, 0xFF);
wctdm_setreg(wc, card, 22, 0xFF);
wctdm_setreg(wc, card, 23, 0xFF);
/**The preceding is the longitudinal Balance Cal***/
return(0);
}
#if 1
static int wctdm_proslic_calibrate(struct wctdm *wc, int card)
{
unsigned long origjiffies;
int x;
/* Perform all calibrations */
wctdm_setreg(wc, card, 97, 0x1f);
/* Begin, no speedup */
wctdm_setreg(wc, card, 96, 0x5f);
/* Wait for it to finish */
origjiffies = jiffies;
while(wctdm_getreg(wc, card, 96)) {
if ((jiffies - origjiffies) > 2 * HZ) {
printk(KERN_NOTICE "Timeout waiting for calibration of module %d\n", card);
return -1;
}
}
if (debug) {
/* Print calibration parameters */
printk(KERN_DEBUG "Calibration Vector Regs 98 - 107: \n");
for (x=98;x<108;x++) {
printk(KERN_DEBUG "%d: %02x\n", x, wctdm_getreg(wc, card, x));
}
}
return 0;
}
#endif
static void wait_just_a_bit(int foo)
{
long newjiffies;
newjiffies = jiffies + foo;
while(jiffies < newjiffies);
}
/*********************************************************************
* Set the hwgain on the analog modules
*
* card = the card position for this module (0-23)
* gain = gain in dB x10 (e.g. -3.5dB would be gain=-35)
* tx = (0 for rx; 1 for tx)
*
*******************************************************************/
static int wctdm_set_hwgain(struct wctdm *wc, int card, __s32 gain, __u32 tx)
{
if (!(wc->modtype[card] == MOD_TYPE_FXO)) {
printk(KERN_NOTICE "Cannot adjust gain. Unsupported module type!\n");
return -1;
}
if (tx) {
if (debug)
printk(KERN_DEBUG "setting FXO tx gain for card=%d to %d\n", card, gain);
if (gain >= -150 && gain <= 0) {
wctdm_setreg(wc, card, 38, 16 + (gain/-10));
wctdm_setreg(wc, card, 40, 16 + (-gain%10));
} else if (gain <= 120 && gain > 0) {
wctdm_setreg(wc, card, 38, gain/10);
wctdm_setreg(wc, card, 40, (gain%10));
} else {
printk(KERN_INFO "FXO tx gain is out of range (%d)\n", gain);
return -1;
}
} else { /* rx */
if (debug)
printk(KERN_DEBUG "setting FXO rx gain for card=%d to %d\n", card, gain);
if (gain >= -150 && gain <= 0) {
wctdm_setreg(wc, card, 39, 16+ (gain/-10));
wctdm_setreg(wc, card, 41, 16 + (-gain%10));
} else if (gain <= 120 && gain > 0) {
wctdm_setreg(wc, card, 39, gain/10);
wctdm_setreg(wc, card, 41, (gain%10));
} else {
printk(KERN_INFO "FXO rx gain is out of range (%d)\n", gain);
return -1;
}
}
return 0;
}
static int set_vmwi(struct wctdm * wc, int chan_idx)
{
struct fxs *const fxs = &wc->mod[chan_idx].fxs;
if (fxs->vmwi_active_messages) {
fxs->vmwi_lrev =
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV) ? 1 : 0;
fxs->vmwi_hvdc =
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVDC) ? 1 : 0;
fxs->vmwi_hvac =
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVAC) ? 1 : 0;
} else {
fxs->vmwi_lrev = 0;
fxs->vmwi_hvdc = 0;
fxs->vmwi_hvac = 0;
}
if (debug) {
printk(KERN_DEBUG "Setting VMWI on channel %d, messages=%d, "
"lrev=%d, hvdc=%d, hvac=%d\n",
chan_idx,
fxs->vmwi_active_messages,
fxs->vmwi_lrev,
fxs->vmwi_hvdc,
fxs->vmwi_hvac
);
}
if (fxs->vmwi_hvac) {
/* Can't change ring generator while in On Hook Transfer mode*/
if (!fxs->ohttimer) {
if (POLARITY_XOR)
fxs->idletxhookstate |= SLIC_LF_REVMASK;
else
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
/* Set ring generator for neon */
wctdm_set_ring_generator_mode(wc, chan_idx, 1);
/* Activate ring to send neon pulses */
fxs->lasttxhook = SLIC_LF_RINGING;
wctdm_setreg(wc, chan_idx, LINE_STATE, fxs->lasttxhook);
}
} else {
if (fxs->neonringing) {
/* Set ring generator for normal ringer */
wctdm_set_ring_generator_mode(wc, chan_idx, 0);
/* ACTIVE, polarity determined later */
fxs->lasttxhook = SLIC_LF_ACTIVE_FWD;
} else if ((fxs->lasttxhook == SLIC_LF_RINGING) ||
(fxs->lasttxhook == SLIC_LF_OPEN)) {
/* Can't change polarity while ringing or when open,
set idlehookstate instead */
if (POLARITY_XOR)
fxs->idletxhookstate |= SLIC_LF_REVMASK;
else
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
printk(KERN_DEBUG "Unable to change polarity on channel"
"%d, lasttxhook=0x%X\n",
chan_idx,
fxs->lasttxhook
);
return 0;
}
if (POLARITY_XOR) {
fxs->idletxhookstate |= SLIC_LF_REVMASK;
fxs->lasttxhook |= SLIC_LF_REVMASK;
} else {
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
fxs->lasttxhook &= ~SLIC_LF_REVMASK;
}
wctdm_setreg(wc, chan_idx, LINE_STATE, fxs->lasttxhook);
}
return 0;
}
static int wctdm_init_voicedaa(struct wctdm *wc, int card, int fast, int manual, int sane)
{
unsigned char reg16=0, reg26=0, reg30=0, reg31=0;
long newjiffies;
wc->modtype[card] = MOD_TYPE_FXO;
/* Sanity check the ProSLIC */
reset_spi(wc, card);
if (!sane && wctdm_voicedaa_insane(wc, card))
return -2;
/* Software reset */
wctdm_setreg(wc, card, 1, 0x80);
/* Wait just a bit */
wait_just_a_bit(HZ/10);
/* Enable PCM, ulaw */
if (alawoverride){
wctdm_setreg(wc, card, 33, 0x20);
} else {
wctdm_setreg(wc, card, 33, 0x28);
}
/* Set On-hook speed, Ringer impedence, and ringer threshold */
reg16 |= (fxo_modes[_opermode].ohs << 6);
reg16 |= (fxo_modes[_opermode].rz << 1);
reg16 |= (fxo_modes[_opermode].rt);
wctdm_setreg(wc, card, 16, reg16);
if(fwringdetect) {
/* Enable ring detector full-wave rectifier mode */
wctdm_setreg(wc, card, 18, 2);
wctdm_setreg(wc, card, 24, 0);
} else {
/* Set to the device defaults */
wctdm_setreg(wc, card, 18, 0);
wctdm_setreg(wc, card, 24, 0x19);
}
/* Set DC Termination:
Tip/Ring voltage adjust, minimum operational current, current limitation */
reg26 |= (fxo_modes[_opermode].dcv << 6);
reg26 |= (fxo_modes[_opermode].mini << 4);
reg26 |= (fxo_modes[_opermode].ilim << 1);
wctdm_setreg(wc, card, 26, reg26);
/* Set AC Impedence */
reg30 = (fxo_modes[_opermode].acim);
wctdm_setreg(wc, card, 30, reg30);
/* Misc. DAA parameters */
if (fastpickup)
reg31 = 0xe3;
else
reg31 = 0xa3;
reg31 |= (fxo_modes[_opermode].ohs2 << 3);
wctdm_setreg(wc, card, 31, reg31);
/* Set Transmit/Receive timeslot */
wctdm_setreg(wc, card, 34, (3-card) * 8);
wctdm_setreg(wc, card, 35, 0x00);
wctdm_setreg(wc, card, 36, (3-card) * 8);
wctdm_setreg(wc, card, 37, 0x00);
/* Enable ISO-Cap */
wctdm_setreg(wc, card, 6, 0x00);
if (fastpickup)
wctdm_setreg(wc, card, 17, wctdm_getreg(wc, card, 17) | 0x20);
/* Wait 1000ms for ISO-cap to come up */
newjiffies = jiffies;
newjiffies += 2 * HZ;
while((jiffies < newjiffies) && !(wctdm_getreg(wc, card, 11) & 0xf0))
wait_just_a_bit(HZ/10);
if (!(wctdm_getreg(wc, card, 11) & 0xf0)) {
printk(KERN_NOTICE "VoiceDAA did not bring up ISO link properly!\n");
return -1;
}
if (debug)
printk(KERN_DEBUG "ISO-Cap is now up, line side: %02x rev %02x\n",
wctdm_getreg(wc, card, 11) >> 4,
(wctdm_getreg(wc, card, 13) >> 2) & 0xf);
/* Enable on-hook line monitor */
wctdm_setreg(wc, card, 5, 0x08);
/* Take values for fxotxgain and fxorxgain and apply them to module */
wctdm_set_hwgain(wc, card, fxotxgain, 1);
wctdm_set_hwgain(wc, card, fxorxgain, 0);
/* NZ -- crank the tx gain up by 7 dB */
if (!strcmp(fxo_modes[_opermode].name, "NEWZEALAND")) {
printk(KERN_INFO "Adjusting gain\n");
wctdm_set_hwgain(wc, card, 7, 1);
}
if(debug)
printk(KERN_DEBUG "DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wctdm_getreg(wc, card, 38)/16)?-(wctdm_getreg(wc, card, 38) - 16) : wctdm_getreg(wc, card, 38), (wctdm_getreg(wc, card, 40)/16)? -(wctdm_getreg(wc, card, 40) - 16):wctdm_getreg(wc, card, 40), (wctdm_getreg(wc, card, 39)/16)? -(wctdm_getreg(wc, card, 39) - 16) : wctdm_getreg(wc, card, 39),(wctdm_getreg(wc, card, 41)/16)?-(wctdm_getreg(wc, card, 41) - 16):wctdm_getreg(wc, card, 41));
return 0;
}
static int wctdm_init_proslic(struct wctdm *wc, int card, int fast, int manual, int sane)
{
unsigned short tmp[5];
unsigned char r19,r9;
int x;
int fxsmode=0;
struct fxs *const fxs = &wc->mod[card].fxs;
/* Sanity check the ProSLIC */
if (!sane && wctdm_proslic_insane(wc, card))
return -2;
/* default messages to none and method to FSK */
memset(&fxs->vmwisetting, 0, sizeof(fxs->vmwisetting));
fxs->vmwi_lrev = 0;
fxs->vmwi_hvdc = 0;
fxs->vmwi_hvac = 0;
/* By default, don't send on hook */
if (!reversepolarity != !fxs->reversepolarity)
fxs->idletxhookstate = SLIC_LF_ACTIVE_REV;
else
fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD;
if (sane) {
/* Make sure we turn off the DC->DC converter to prevent anything from blowing up */
wctdm_setreg(wc, card, 14, 0x10);
}
if (wctdm_proslic_init_indirect_regs(wc, card)) {
printk(KERN_INFO "Indirect Registers failed to initialize on module %d.\n", card);
return -1;
}
/* Clear scratch pad area */
wctdm_proslic_setreg_indirect(wc, card, 97,0);
/* Clear digital loopback */
wctdm_setreg(wc, card, 8, 0);
/* Revision C optimization */
wctdm_setreg(wc, card, 108, 0xeb);
/* Disable automatic VBat switching for safety to prevent
Q7 from accidently turning on and burning out. */
wctdm_setreg(wc, card, 67, 0x07); /* Note, if pulse dialing has problems at high REN loads
change this to 0x17 */
/* Turn off Q7 */
wctdm_setreg(wc, card, 66, 1);
/* Flush ProSLIC digital filters by setting to clear, while
saving old values */
for (x=0;x<5;x++) {
tmp[x] = wctdm_proslic_getreg_indirect(wc, card, x + 35);
wctdm_proslic_setreg_indirect(wc, card, x + 35, 0x8000);
}
/* Power up the DC-DC converter */
if (wctdm_powerup_proslic(wc, card, fast)) {
printk(KERN_NOTICE "Unable to do INITIAL ProSLIC powerup on module %d\n", card);
return -1;
}
if (!fast) {
/* Check for power leaks */
if (wctdm_proslic_powerleak_test(wc, card)) {
printk(KERN_NOTICE "ProSLIC module %d failed leakage test. Check for short circuit\n", card);
}
/* Power up again */
if (wctdm_powerup_proslic(wc, card, fast)) {
printk(KERN_NOTICE "Unable to do FINAL ProSLIC powerup on module %d\n", card);
return -1;
}
#ifndef NO_CALIBRATION
/* Perform calibration */
if(manual) {
if (wctdm_proslic_manual_calibrate(wc, card)) {
//printk(KERN_NOTICE "Proslic failed on Manual Calibration\n");
if (wctdm_proslic_manual_calibrate(wc, card)) {
printk(KERN_NOTICE "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n");
return -1;
}
printk(KERN_NOTICE "Proslic Passed Manual Calibration on Second Attempt\n");
}
}
else {
if(wctdm_proslic_calibrate(wc, card)) {
//printk(KERN_NOTICE "ProSlic died on Auto Calibration.\n");
if (wctdm_proslic_calibrate(wc, card)) {
printk(KERN_NOTICE "Proslic Failed on Second Attempt to Auto Calibrate\n");
return -1;
}
printk(KERN_NOTICE "Proslic Passed Auto Calibration on Second Attempt\n");
}
}
/* Perform DC-DC calibration */
wctdm_setreg(wc, card, 93, 0x99);
r19 = wctdm_getreg(wc, card, 107);
if ((r19 < 0x2) || (r19 > 0xd)) {
printk(KERN_NOTICE "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19);
wctdm_setreg(wc, card, 107, 0x8);
}
/* Save calibration vectors */
for (x=0;x<NUM_CAL_REGS;x++)
fxs->calregs.vals[x] = wctdm_getreg(wc, card, 96 + x);
#endif
} else {
/* Restore calibration registers */
for (x=0;x<NUM_CAL_REGS;x++)
wctdm_setreg(wc, card, 96 + x, fxs->calregs.vals[x]);
}
/* Calibration complete, restore original values */
for (x=0;x<5;x++) {
wctdm_proslic_setreg_indirect(wc, card, x + 35, tmp[x]);
}
if (wctdm_proslic_verify_indirect_regs(wc, card)) {
printk(KERN_INFO "Indirect Registers failed verification.\n");
return -1;
}
#if 0
/* Disable Auto Power Alarm Detect and other "features" */
wctdm_setreg(wc, card, 67, 0x0e);
blah = wctdm_getreg(wc, card, 67);
#endif
#if 0
if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix
printk(KERN_INFO "ProSlic IndirectReg Died.\n");
return -1;
}
#endif
if (alawoverride)
wctdm_setreg(wc, card, 1, 0x20);
else
wctdm_setreg(wc, card, 1, 0x28);
// U-Law 8-bit interface
wctdm_setreg(wc, card, 2, (3-card) * 8); // Tx Start count low byte 0
wctdm_setreg(wc, card, 3, 0); // Tx Start count high byte 0
wctdm_setreg(wc, card, 4, (3-card) * 8); // Rx Start count low byte 0
wctdm_setreg(wc, card, 5, 0); // Rx Start count high byte 0
wctdm_setreg(wc, card, 18, 0xff); // clear all interrupt
wctdm_setreg(wc, card, 19, 0xff);
wctdm_setreg(wc, card, 20, 0xff);
wctdm_setreg(wc, card, 73, 0x04);
if (fxshonormode) {
fxsmode = acim2tiss[fxo_modes[_opermode].acim];
wctdm_setreg(wc, card, 10, 0x08 | fxsmode);
}
if (lowpower)
wctdm_setreg(wc, card, 72, 0x10);
#if 0
wctdm_setreg(wc, card, 21, 0x00); // enable interrupt
wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt
wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt
#endif
#if 0
/* Enable loopback */
wctdm_setreg(wc, card, 8, 0x2);
wctdm_setreg(wc, card, 14, 0x0);
wctdm_setreg(wc, card, 64, 0x0);
wctdm_setreg(wc, card, 1, 0x08);
#endif
if (wctdm_init_ring_generator_mode(wc, card)) {
return -1;
}
if(fxstxgain || fxsrxgain) {
r9 = wctdm_getreg(wc, card, 9);
switch (fxstxgain) {
case 35:
r9+=8;
break;
case -35:
r9+=4;
break;
case 0:
break;
}
switch (fxsrxgain) {
case 35:
r9+=2;
break;
case -35:
r9+=1;
break;
case 0:
break;
}
wctdm_setreg(wc,card,9,r9);
}
if(debug)
printk(KERN_DEBUG "DEBUG: fxstxgain:%s fxsrxgain:%s\n",((wctdm_getreg(wc, card, 9)/8) == 1)?"3.5":(((wctdm_getreg(wc,card,9)/4) == 1)?"-3.5":"0.0"),((wctdm_getreg(wc, card, 9)/2) == 1)?"3.5":((wctdm_getreg(wc,card,9)%2)?"-3.5":"0.0"));
fxs->lasttxhook = fxs->idletxhookstate;
wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook);
return 0;
}
static int wctdm_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
struct wctdm_stats stats;
struct wctdm_regs regs;
struct wctdm_regop regop;
struct wctdm_echo_coefs echoregs;
struct dahdi_hwgain hwgain;
struct wctdm *wc = chan->pvt;
struct fxs *const fxs = &wc->mod[chan->chanpos - 1].fxs;
int x;
switch (cmd) {
case DAHDI_ONHOOKTRANSFER:
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
fxs->ohttimer = x << 3;
/* Active mode when idle */
fxs->idletxhookstate = POLARITY_XOR ?
SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;
if (fxs->neonringing) {
/* keep same Forward polarity */
fxs->lasttxhook = SLIC_LF_OHTRAN_FWD;
printk(KERN_INFO "ioctl: Start OnHookTrans, card %d\n",
chan->chanpos - 1);
wctdm_setreg(wc, chan->chanpos - 1,
LINE_STATE, fxs->lasttxhook);
} else if (fxs->lasttxhook == SLIC_LF_ACTIVE_FWD ||
fxs->lasttxhook == SLIC_LF_ACTIVE_REV) {
/* Apply the change if appropriate */
fxs->lasttxhook = POLARITY_XOR ?
SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD;
printk(KERN_INFO "ioctl: Start OnHookTrans, card %d\n",
chan->chanpos - 1);
wctdm_setreg(wc, chan->chanpos - 1,
LINE_STATE, fxs->lasttxhook);
}
break;
case DAHDI_SETPOLARITY:
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
/* Can't change polarity while ringing or when open */
if ((fxs->lasttxhook == SLIC_LF_RINGING) ||
(fxs->lasttxhook == SLIC_LF_OPEN))
return -EINVAL;
fxs->reversepolarity = x;
if (POLARITY_XOR) {
fxs->lasttxhook |= SLIC_LF_REVMASK;
printk(KERN_INFO "ioctl: Reverse Polarity, card %d\n",
chan->chanpos - 1);
} else {
fxs->lasttxhook &= ~SLIC_LF_REVMASK;
printk(KERN_INFO "ioctl: Normal Polarity, card %d\n",
chan->chanpos - 1);
}
wctdm_setreg(wc, chan->chanpos - 1,
LINE_STATE, fxs->lasttxhook);
break;
case DAHDI_VMWI_CONFIG:
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
if (copy_from_user(&(fxs->vmwisetting), (__user void *) data,
sizeof(fxs->vmwisetting)))
return -EFAULT;
set_vmwi(wc, chan->chanpos - 1);
break;
case DAHDI_VMWI:
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
if (0 > x)
return -EFAULT;
fxs->vmwi_active_messages = x;
set_vmwi(wc, chan->chanpos - 1);
break;
case WCTDM_GET_STATS:
if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
stats.tipvolt = wctdm_getreg(wc, chan->chanpos - 1, 80) * -376;
stats.ringvolt = wctdm_getreg(wc, chan->chanpos - 1, 81) * -376;
stats.batvolt = wctdm_getreg(wc, chan->chanpos - 1, 82) * -376;
} else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) {
stats.tipvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
stats.ringvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
stats.batvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
} else
return -EINVAL;
if (copy_to_user((__user void *)data, &stats, sizeof(stats)))
return -EFAULT;
break;
case WCTDM_GET_REGS:
if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
for (x=0;x<NUM_INDIRECT_REGS;x++)
regs.indirect[x] = wctdm_proslic_getreg_indirect(wc, chan->chanpos -1, x);
for (x=0;x<NUM_REGS;x++)
regs.direct[x] = wctdm_getreg(wc, chan->chanpos - 1, x);
} else {
memset(&regs, 0, sizeof(regs));
for (x=0;x<NUM_FXO_REGS;x++)
regs.direct[x] = wctdm_getreg(wc, chan->chanpos - 1, x);
}
if (copy_to_user((__user void *)data, &regs, sizeof(regs)))
return -EFAULT;
break;
case WCTDM_SET_REG:
if (copy_from_user(&regop, (__user void *) data, sizeof(regop)))
return -EFAULT;
if (regop.indirect) {
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
printk(KERN_INFO "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos);
wctdm_proslic_setreg_indirect(wc, chan->chanpos - 1, regop.reg, regop.val);
} else {
regop.val &= 0xff;
printk(KERN_INFO "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos);
wctdm_setreg(wc, chan->chanpos - 1, regop.reg, regop.val);
}
break;
case WCTDM_SET_ECHOTUNE:
printk(KERN_INFO "-- Setting echo registers: \n");
if (copy_from_user(&echoregs, (__user void *)data, sizeof(echoregs)))
return -EFAULT;
if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) {
/* Set the ACIM register */
wctdm_setreg(wc, chan->chanpos - 1, 30, echoregs.acim);
/* Set the digital echo canceller registers */
wctdm_setreg(wc, chan->chanpos - 1, 45, echoregs.coef1);
wctdm_setreg(wc, chan->chanpos - 1, 46, echoregs.coef2);
wctdm_setreg(wc, chan->chanpos - 1, 47, echoregs.coef3);
wctdm_setreg(wc, chan->chanpos - 1, 48, echoregs.coef4);
wctdm_setreg(wc, chan->chanpos - 1, 49, echoregs.coef5);
wctdm_setreg(wc, chan->chanpos - 1, 50, echoregs.coef6);
wctdm_setreg(wc, chan->chanpos - 1, 51, echoregs.coef7);
wctdm_setreg(wc, chan->chanpos - 1, 52, echoregs.coef8);
printk(KERN_INFO "-- Set echo registers successfully\n");
break;
} else {
return -EINVAL;
}
break;
case DAHDI_SET_HWGAIN:
if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain)))
return -EFAULT;
wctdm_set_hwgain(wc, chan->chanpos-1, hwgain.newgain, hwgain.tx);
if (debug)
printk(KERN_DEBUG "Setting hwgain on channel %d to %d for %s direction\n",
chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx");
break;
default:
return -ENOTTY;
}
return 0;
}
static int wctdm_open(struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
if (!(wc->cardflag & (1 << (chan->chanpos - 1))))
return -ENODEV;
if (wc->dead)
return -ENODEV;
wc->usecount++;
return 0;
}
static inline struct wctdm *wctdm_from_span(struct dahdi_span *span)
{
return container_of(span, struct wctdm, span);
}
static int wctdm_watchdog(struct dahdi_span *span, int event)
{
printk(KERN_INFO "TDM: Restarting DMA\n");
wctdm_restart_dma(wctdm_from_span(span));
return 0;
}
static int wctdm_close(struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
struct fxs *const fxs = &wc->mod[chan->chanpos - 1].fxs;
wc->usecount--;
if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
int idlehookstate;
idlehookstate = POLARITY_XOR ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
fxs->idletxhookstate = idlehookstate;
}
/* If we're dead, release us now */
if (!wc->usecount && wc->dead)
wctdm_release(wc);
return 0;
}
static int wctdm_init_ring_generator_mode(struct wctdm *wc, int card)
{
wctdm_setreg(wc, card, 34, 0x00); /* Ringing Osc. Control */
/* neon trapezoid timers */
wctdm_setreg(wc, card, 48, 0xe0); /* Active Timer low byte */
wctdm_setreg(wc, card, 49, 0x01); /* Active Timer high byte */
wctdm_setreg(wc, card, 50, 0xF0); /* Inactive Timer low byte */
wctdm_setreg(wc, card, 51, 0x05); /* Inactive Timer high byte */
wctdm_set_ring_generator_mode(wc, card, 0);
return 0;
}
static int wctdm_set_ring_generator_mode(struct wctdm *wc, int card, int mode)
{
int reg20, reg21, reg74; /* RCO, RNGX, VBATH */
struct fxs *const fxs = &wc->mod[card].fxs;
fxs->neonringing = mode; /* track ring generator mode */
if (mode) { /* Neon */
if (debug)
printk(KERN_DEBUG "NEON ring on chan %d, "
"lasttxhook was 0x%x\n", card, fxs->lasttxhook);
/* Must be in FORWARD ACTIVE before setting ringer */
fxs->lasttxhook = SLIC_LF_ACTIVE_FWD;
wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook);
wctdm_proslic_setreg_indirect(wc, card, 22,
NEON_MWI_RNGY_PULSEWIDTH);
wctdm_proslic_setreg_indirect(wc, card, 21,
0x7bef); /* RNGX (91.5Vpk) */
wctdm_proslic_setreg_indirect(wc, card, 20,
0x009f); /* RCO (RNGX, t rise)*/
wctdm_setreg(wc, card, 34, 0x19); /* Ringing Osc. Control */
wctdm_setreg(wc, card, 74, 0x3f); /* VBATH 94.5V */
wctdm_proslic_setreg_indirect(wc, card, 29, 0x4600); /* RPTP */
/* A write of 0x04 to register 64 will turn on the VM led */
} else {
wctdm_setreg(wc, card, 34, 0x00); /* Ringing Osc. Control */
/* RNGY Initial Phase */
wctdm_proslic_setreg_indirect(wc, card, 22, 0x0000);
wctdm_proslic_setreg_indirect(wc, card, 29, 0x3600); /* RPTP */
/* A write of 0x04 to register 64 will turn on the ringer */
if (fastringer) {
/* Speed up Ringer */
reg20 = 0x7e6d;
reg74 = 0x32; /* Default */
/* Beef up Ringing voltage to 89V */
if (boostringer) {
reg74 = 0x3f;
reg21 = 0x0247; /* RNGX */
if (debug)
printk(KERN_DEBUG "Boosting fast ringer"
" on chan %d (89V peak)\n",
card);
} else if (lowpower) {
reg21 = 0x014b; /* RNGX */
if (debug)
printk(KERN_DEBUG "Reducing fast ring "
"power on chan %d (50V peak)\n",
card);
} else if (fxshonormode &&
fxo_modes[_opermode].ring_x) {
reg21 = fxo_modes[_opermode].ring_x;
if (debug)
printk(KERN_DEBUG "fxshonormode: fast "
"ring_x power on chan %d\n",
card);
} else {
reg21 = 0x01b9;
if (debug)
printk(KERN_DEBUG "Speeding up ringer "
"on chan %d (25Hz)\n",
card);
}
/* VBATH */
wctdm_setreg(wc, card, 74, reg74);
/*RCO*/
wctdm_proslic_setreg_indirect(wc, card, 20, reg20);
/*RNGX*/
wctdm_proslic_setreg_indirect(wc, card, 21, reg21);
} else {
/* Ringer Speed */
if (fxshonormode && fxo_modes[_opermode].ring_osc) {
reg20 = fxo_modes[_opermode].ring_osc;
if (debug)
printk(KERN_DEBUG "fxshonormode: "
"ring_osc speed on chan %d\n",
card);
} else {
reg20 = 0x7ef0; /* Default */
}
reg74 = 0x32; /* Default */
/* Beef up Ringing voltage to 89V */
if (boostringer) {
reg74 = 0x3f;
reg21 = 0x1d1;
if (debug)
printk(KERN_DEBUG "Boosting ringer on "
"chan %d (89V peak)\n",
card);
} else if (lowpower) {
reg21 = 0x108;
if (debug)
printk(KERN_DEBUG "Reducing ring power "
"on chan %d (50V peak)\n",
card);
} else if (fxshonormode &&
fxo_modes[_opermode].ring_x) {
reg21 = fxo_modes[_opermode].ring_x;
if (debug)
printk(KERN_DEBUG "fxshonormode: ring_x"
" power on chan %d\n",
card);
} else {
reg21 = 0x160;
if (debug)
printk(KERN_DEBUG "Normal ring power on"
" chan %d\n",
card);
}
/* VBATH */
wctdm_setreg(wc, card, 74, reg74);
/* RCO */
wctdm_proslic_setreg_indirect(wc, card, 20, reg20);
/* RNGX */
wctdm_proslic_setreg_indirect(wc, card, 21, reg21);
}
}
return 0;
}
static int wctdm_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig)
{
struct wctdm *wc = chan->pvt;
int chan_entry = chan->chanpos - 1;
if (wc->modtype[chan_entry] == MOD_TYPE_FXO) {
/* XXX Enable hooksig for FXO XXX */
switch(txsig) {
case DAHDI_TXSIG_START:
case DAHDI_TXSIG_OFFHOOK:
wc->mod[chan_entry].fxo.offhook = 1;
wctdm_setreg(wc, chan_entry, 5, 0x9);
break;
case DAHDI_TXSIG_ONHOOK:
wc->mod[chan_entry].fxo.offhook = 0;
wctdm_setreg(wc, chan_entry, 5, 0x8);
break;
default:
printk(KERN_NOTICE "wcfxo: Can't set tx state to %d\n", txsig);
}
} else {
wctdm_fxs_hooksig(wc, chan_entry, txsig);
}
return 0;
}
static const struct dahdi_span_ops wctdm_span_ops = {
.owner = THIS_MODULE,
.hooksig = wctdm_hooksig,
.open = wctdm_open,
.close = wctdm_close,
.ioctl = wctdm_ioctl,
.watchdog = wctdm_watchdog,
};
static int wctdm_initialize(struct wctdm *wc)
{
int x;
wc->ddev = dahdi_create_device();
if (!wc->ddev)
return -ENOMEM;
/* DAHDI stuff */
sprintf(wc->span.name, "WCTDM/%d", wc->pos);
snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Board %d", wc->variety, wc->pos + 1);
wc->ddev->location = kasprintf(GFP_KERNEL,
"PCI Bus %02d Slot %02d",
wc->dev->bus->number,
PCI_SLOT(wc->dev->devfn) + 1);
if (!wc->ddev->location) {
dahdi_free_device(wc->ddev);
wc->ddev = NULL;
return -ENOMEM;
}
wc->ddev->manufacturer = "Digium";
wc->ddev->devicetype = wc->variety;
if (alawoverride) {
printk(KERN_INFO "ALAW override parameter detected. Device will be operating in ALAW\n");
wc->span.deflaw = DAHDI_LAW_ALAW;
} else {
wc->span.deflaw = DAHDI_LAW_MULAW;
}
for (x = 0; x < NUM_CARDS; x++) {
sprintf(wc->chans[x]->name, "WCTDM/%d/%d", wc->pos, x);
wc->chans[x]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
wc->chans[x]->sigcap |= DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR;
wc->chans[x]->chanpos = x+1;
wc->chans[x]->pvt = wc;
}
wc->span.chans = wc->chans;
wc->span.channels = NUM_CARDS;
wc->span.flags = DAHDI_FLAG_RBS;
wc->span.ops = &wctdm_span_ops;
list_add_tail(&wc->span.device_node, &wc->ddev->spans);
if (dahdi_register_device(wc->ddev, &wc->dev->dev)) {
printk(KERN_NOTICE "Unable to register span with DAHDI\n");
kfree(wc->ddev->location);
dahdi_free_device(wc->ddev);
wc->ddev = NULL;
return -1;
}
return 0;
}
static void wctdm_post_initialize(struct wctdm *wc)
{
int x;
/* Finalize signalling */
for (x = 0; x < NUM_CARDS; x++) {
if (wc->cardflag & (1 << x)) {
if (wc->modtype[x] == MOD_TYPE_FXO)
wc->chans[x]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR;
else
wc->chans[x]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
} else if (!(wc->chans[x]->sigcap & DAHDI_SIG_BROKEN)) {
wc->chans[x]->sigcap = 0;
}
}
}
static int wctdm_hardware_init(struct wctdm *wc)
{
/* Hardware stuff */
unsigned char ver;
unsigned char x,y;
int failed;
/* Signal Reset */
outb(0x01, wc->ioaddr + WC_CNTL);
/* Check Freshmaker chip */
x=inb(wc->ioaddr + WC_CNTL);
ver = __wctdm_getcreg(wc, WC_VER);
failed = 0;
if (ver != 0x59) {
printk(KERN_INFO "Freshmaker version: %02x\n", ver);
for (x=0;x<255;x++) {
/* Test registers */
if (ver >= 0x70) {
__wctdm_setcreg(wc, WC_CS, x);
y = __wctdm_getcreg(wc, WC_CS);
} else {
__wctdm_setcreg(wc, WC_TEST, x);
y = __wctdm_getcreg(wc, WC_TEST);
}
if (x != y) {
printk(KERN_INFO "%02x != %02x\n", x, y);
failed++;
}
}
if (!failed) {
printk(KERN_INFO "Freshmaker passed register test\n");
} else {
printk(KERN_NOTICE "Freshmaker failed register test\n");
return -1;
}
/* Go to half-duty FSYNC */
__wctdm_setcreg(wc, WC_SYNC, 0x01);
y = __wctdm_getcreg(wc, WC_SYNC);
} else {
printk(KERN_INFO "No freshmaker chip\n");
}
/* Reset PCI Interface chip and registers (and serial) */
outb(0x06, wc->ioaddr + WC_CNTL);
/* Setup our proper outputs for when we switch for our "serial" port */
wc->ios = BIT_CS | BIT_SCLK | BIT_SDI;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Set all to outputs except AUX 5, which is an input */
outb(0xdf, wc->ioaddr + WC_AUXC);
/* Select alternate function for AUX0 */
outb(0x4, wc->ioaddr + WC_AUXFUNC);
/* Wait 1/4 of a sec */
wait_just_a_bit(HZ/4);
/* Back to normal, with automatic DMA wrap around */
outb(0x30 | 0x01, wc->ioaddr + WC_CNTL);
/* Make sure serial port and DMA are out of reset */
outb(inb(wc->ioaddr + WC_CNTL) & 0xf9, wc->ioaddr + WC_CNTL);
/* Configure serial port for MSB->LSB operation */
outb(0xc1, wc->ioaddr + WC_SERCTL);
/* Delay FSC by 0 so it's properly aligned */
outb(0x0, wc->ioaddr + WC_FSCDELAY);
/* Setup DMA Addresses */
outl(wc->writedma, wc->ioaddr + WC_DMAWS); /* Write start */
outl(wc->writedma + DAHDI_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMAWI); /* Middle (interrupt) */
outl(wc->writedma + DAHDI_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMAWE); /* End */
outl(wc->readdma, wc->ioaddr + WC_DMARS); /* Read start */
outl(wc->readdma + DAHDI_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMARI); /* Middle (interrupt) */
outl(wc->readdma + DAHDI_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMARE); /* End */
/* Clear interrupts */
outb(0xff, wc->ioaddr + WC_INTSTAT);
/* Wait 1/4 of a second more */
wait_just_a_bit(HZ/4);
for (x = 0; x < NUM_CARDS; x++) {
int sane=0,ret=0,readi=0;
#if 1
/* Init with Auto Calibration */
if (!(ret=wctdm_init_proslic(wc, x, 0, 0, sane))) {
wc->cardflag |= (1 << x);
if (debug) {
readi = wctdm_getreg(wc,x,LOOP_I_LIMIT);
printk(KERN_DEBUG "Proslic module %d loop current is %dmA\n",x,
((readi*3)+20));
}
printk(KERN_INFO "Module %d: Installed -- AUTO FXS/DPO\n",x);
} else {
if(ret!=-2) {
sane=1;
/* Init with Manual Calibration */
if (!wctdm_init_proslic(wc, x, 0, 1, sane)) {
wc->cardflag |= (1 << x);
if (debug) {
readi = wctdm_getreg(wc,x,LOOP_I_LIMIT);
printk(KERN_DEBUG "Proslic module %d loop current is %dmA\n",x,
((readi*3)+20));
}
printk(KERN_INFO "Module %d: Installed -- MANUAL FXS\n",x);
} else {
printk(KERN_NOTICE "Module %d: FAILED FXS (%s)\n", x, fxshonormode ? fxo_modes[_opermode].name : "FCC");
wc->chans[x]->sigcap = __DAHDI_SIG_FXO | DAHDI_SIG_BROKEN;
}
} else if (!(ret = wctdm_init_voicedaa(wc, x, 0, 0, sane))) {
wc->cardflag |= (1 << x);
printk(KERN_INFO "Module %d: Installed -- AUTO FXO (%s mode)\n",x, fxo_modes[_opermode].name);
} else
printk(KERN_NOTICE "Module %d: Not installed\n", x);
}
#endif
}
/* Return error if nothing initialized okay. */
if (!wc->cardflag && !timingonly)
return -1;
__wctdm_setcreg(wc, WC_SYNC, (wc->cardflag << 1) | 0x1);
return 0;
}
static void wctdm_enable_interrupts(struct wctdm *wc)
{
/* Enable interrupts (we care about all of them) */
outb(0x3f, wc->ioaddr + WC_MASK0);
/* No external interrupts */
outb(0x00, wc->ioaddr + WC_MASK1);
}
static void wctdm_restart_dma(struct wctdm *wc)
{
/* Reset Master and TDM */
outb(0x01, wc->ioaddr + WC_CNTL);
outb(0x01, wc->ioaddr + WC_OPER);
}
static void wctdm_start_dma(struct wctdm *wc)
{
/* Reset Master and TDM */
outb(0x0f, wc->ioaddr + WC_CNTL);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
outb(0x01, wc->ioaddr + WC_CNTL);
outb(0x01, wc->ioaddr + WC_OPER);
}
static void wctdm_stop_dma(struct wctdm *wc)
{
outb(0x00, wc->ioaddr + WC_OPER);
}
static void wctdm_reset_tdm(struct wctdm *wc)
{
/* Reset TDM */
outb(0x0f, wc->ioaddr + WC_CNTL);
}
static void wctdm_disable_interrupts(struct wctdm *wc)
{
outb(0x00, wc->ioaddr + WC_MASK0);
outb(0x00, wc->ioaddr + WC_MASK1);
}
static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int res;
struct wctdm *wc;
struct wctdm_desc *d = (struct wctdm_desc *)ent->driver_data;
int x;
int y;
for (x=0;x<WC_MAX_IFACES;x++)
if (!ifaces[x]) break;
if (x >= WC_MAX_IFACES) {
printk(KERN_NOTICE "Too many interfaces\n");
return -EIO;
}
if (pci_enable_device(pdev)) {
res = -EIO;
} else {
wc = kmalloc(sizeof(struct wctdm), GFP_KERNEL);
if (wc) {
int cardcount = 0;
ifaces[x] = wc;
memset(wc, 0, sizeof(struct wctdm));
for (x=0; x < sizeof(wc->chans)/sizeof(wc->chans[0]); ++x) {
wc->chans[x] = &wc->_chans[x];
}
spin_lock_init(&wc->lock);
wc->curcard = -1;
wc->ioaddr = pci_resource_start(pdev, 0);
wc->dev = pdev;
wc->pos = x;
wc->variety = d->name;
for (y=0;y<NUM_CARDS;y++)
wc->flags[y] = d->flags;
/* Keep track of whether we need to free the region */
if (request_region(wc->ioaddr, 0xff, "wctdm"))
wc->freeregion = 1;
/* Allocate enough memory for two zt chunks, receive and transmit. Each sample uses
32 bits. Allocate an extra set just for control too */
wc->writechunk = pci_alloc_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, &wc->writedma);
if (!wc->writechunk) {
printk(KERN_NOTICE "wctdm: Unable to allocate DMA-able memory\n");
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
return -ENOMEM;
}
wc->readchunk = wc->writechunk + DAHDI_MAX_CHUNKSIZE * 2; /* in doublewords */
wc->readdma = wc->writedma + DAHDI_MAX_CHUNKSIZE * 8; /* in bytes */
if (wctdm_initialize(wc)) {
printk(KERN_NOTICE "wctdm: Unable to intialize FXS\n");
/* Set Reset Low */
x=inb(wc->ioaddr + WC_CNTL);
outb((~0x1)&x, wc->ioaddr + WC_CNTL);
/* Free Resources */
free_irq(pdev->irq, wc);
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
kfree(wc);
return -EIO;
}
/* Enable bus mastering */
pci_set_master(pdev);
/* Keep track of which device we are */
pci_set_drvdata(pdev, wc);
if (request_irq(pdev->irq, wctdm_interrupt, DAHDI_IRQ_SHARED, "wctdm", wc)) {
printk(KERN_NOTICE "wctdm: Unable to request IRQ %d\n", pdev->irq);
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
pci_set_drvdata(pdev, NULL);
kfree(wc);
return -EIO;
}
if (wctdm_hardware_init(wc)) {
/* Set Reset Low */
x=inb(wc->ioaddr + WC_CNTL);
outb((~0x1)&x, wc->ioaddr + WC_CNTL);
/* Free Resources */
free_irq(pdev->irq, wc);
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
pci_set_drvdata(pdev, NULL);
dahdi_unregister_device(wc->ddev);
kfree(wc->ddev->location);
dahdi_free_device(wc->ddev);
kfree(wc);
return -EIO;
}
wctdm_post_initialize(wc);
/* Enable interrupts */
wctdm_enable_interrupts(wc);
/* Initialize Write/Buffers to all blank data */
memset((void *)wc->writechunk,0,DAHDI_MAX_CHUNKSIZE * 2 * 2 * 4);
/* Start DMA */
wctdm_start_dma(wc);
for (x = 0; x < NUM_CARDS; x++) {
if (wc->cardflag & (1 << x))
cardcount++;
}
printk(KERN_INFO "Found a Wildcard TDM: %s (%d modules)\n", wc->variety, cardcount);
res = 0;
} else
res = -ENOMEM;
}
return res;
}
static void wctdm_release(struct wctdm *wc)
{
dahdi_unregister_device(wc->ddev);
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
kfree(wc->ddev->location);
dahdi_free_device(wc->ddev);
kfree(wc);
printk(KERN_INFO "Freed a Wildcard\n");
}
static void __devexit wctdm_remove_one(struct pci_dev *pdev)
{
struct wctdm *wc = pci_get_drvdata(pdev);
if (wc) {
/* Stop any DMA */
wctdm_stop_dma(wc);
wctdm_reset_tdm(wc);
/* In case hardware is still there */
wctdm_disable_interrupts(wc);
/* Immediately free resources */
pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
free_irq(pdev->irq, wc);
/* Reset PCI chip and registers */
outb(0x0e, wc->ioaddr + WC_CNTL);
/* Release span, possibly delayed */
if (!wc->usecount)
wctdm_release(wc);
else
wc->dead = 1;
}
}
static DEFINE_PCI_DEVICE_TABLE(wctdm_pci_tbl) = {
{ 0xe159, 0x0001, 0xa159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm },
{ 0xe159, 0x0001, 0xe159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm },
{ 0xe159, 0x0001, 0xb100, PCI_ANY_ID, 0, 0, (unsigned long) &wctdme },
{ 0xe159, 0x0001, 0xb1d9, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
{ 0xe159, 0x0001, 0xb118, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
{ 0xe159, 0x0001, 0xb119, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
{ 0xe159, 0x0001, 0xa9fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa8fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa800, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa801, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa908, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa901, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
#ifdef TDM_REVH_MATCHALL
{ 0xe159, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
#endif
{ 0 }
};
MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl);
static int wctdm_suspend(struct pci_dev *pdev, pm_message_t state)
{
return -ENOSYS;
}
static struct pci_driver wctdm_driver = {
.name = "wctdm",
.probe = wctdm_init_one,
.remove =__devexit_p(wctdm_remove_one),
.suspend = wctdm_suspend,
.id_table = wctdm_pci_tbl,
};
static int __init wctdm_init(void)
{
int res;
int x;
for (x = 0; x < (sizeof(fxo_modes) / sizeof(fxo_modes[0])); x++) {
if (!strcmp(fxo_modes[x].name, opermode))
break;
}
if (x < sizeof(fxo_modes) / sizeof(fxo_modes[0])) {
_opermode = x;
} else {
printk(KERN_NOTICE "Invalid/unknown operating mode '%s' specified. Please choose one of:\n", opermode);
for (x = 0; x < sizeof(fxo_modes) / sizeof(fxo_modes[0]); x++)
printk(KERN_INFO " %s\n", fxo_modes[x].name);
printk(KERN_INFO "Note this option is CASE SENSITIVE!\n");
return -ENODEV;
}
if (!strcmp(opermode, "AUSTRALIA")) {
boostringer = 1;
fxshonormode = 1;
}
/* for the voicedaa_check_hook defaults, if the user has not overridden
them by specifying them as module parameters, then get the values
from the selected operating mode
*/
if (battdebounce == 0) {
battdebounce = fxo_modes[_opermode].battdebounce;
}
if (battalarm == 0) {
battalarm = fxo_modes[_opermode].battalarm;
}
if (battthresh == 0) {
battthresh = fxo_modes[_opermode].battthresh;
}
res = dahdi_pci_module(&wctdm_driver);
if (res)
return -ENODEV;
return 0;
}
static void __exit wctdm_cleanup(void)
{
pci_unregister_driver(&wctdm_driver);
}
module_param(debug, int, 0600);
module_param(fxovoltage, int, 0600);
module_param(loopcurrent, int, 0600);
module_param(reversepolarity, int, 0600);
module_param(robust, int, 0600);
module_param(opermode, charp, 0600);
module_param(timingonly, int, 0600);
module_param(lowpower, int, 0600);
module_param(boostringer, int, 0600);
module_param(fastringer, int, 0600);
module_param(fxshonormode, int, 0600);
module_param(battdebounce, uint, 0600);
module_param(battalarm, uint, 0600);
module_param(battthresh, uint, 0600);
module_param(ringdebounce, int, 0600);
module_param(dialdebounce, int, 0600);
module_param(fwringdetect, int, 0600);
module_param(alawoverride, int, 0600);
module_param(fastpickup, int, 0600);
module_param(fxotxgain, int, 0600);
module_param(fxorxgain, int, 0600);
module_param(fxstxgain, int, 0600);
module_param(fxsrxgain, int, 0600);
MODULE_DESCRIPTION("Wildcard TDM400P Driver");
MODULE_AUTHOR("Mark Spencer <markster@digium.com>");
MODULE_ALIAS("wcfxs");
MODULE_LICENSE("GPL v2");
module_init(wctdm_init);
module_exit(wctdm_cleanup);