dahdi-linux/drivers/dahdi/dahdi_dynamic_ethmf.c
Shaun Ruffell 34b9c77c9a Use proc_ops on kernels >= 5.6
In commit (d56c0d45f0e27 "proc: decouple proc from VFS with "struct proc_ops"")
[1], proc_create_data no longer takes a file_operations structure, but instead
takes a struct proc_ops in order to conserve memory in the kernel.

This change is necessary for DAHDI to work with kernels >= 5.6

[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d56c0d45f0e27f814e87a1676b6bd

Signed-off-by: Shaun Ruffell <sruffell@sruffell.net>
2020-02-23 19:39:24 -06:00

799 lines
21 KiB
C

/*
* Dynamic Span Interface for DAHDI (Multi-Span Ethernet Interface)
*
* Written by Joseph Benden <joe@thrallingpenguin.com>
*
* Copyright (C) 2007-2010, Thralling Penguin LLC.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/kmod.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/notifier.h>
#include <linux/crc32.h>
#include <linux/seq_file.h>
/**
* Undefine USE_PROC_FS, if you do not want the /proc/dahdi/dynamic-ethmf
* support. Undefining this would give a slight performance increase.
*/
#define USE_PROC_FS
#ifdef USE_PROC_FS
# include <linux/proc_fs.h>
# include <asm/atomic.h>
#endif
#ifdef CONFIG_DEVFS_FS
# include <linux/devfs_fs_kernel.h>
#endif
#include <dahdi/kernel.h>
#include <dahdi/user.h>
#define ETH_P_ZTDETH 0xd00d
#define ETHMF_MAX_PER_SPAN_GROUP 8
#define ETHMF_MAX_GROUPS 16
#define ETHMF_FLAG_IGNORE_CHAN0 (1 << 3)
#define ETHMF_MAX_SPANS 4
struct ztdeth_header {
unsigned short subaddr;
};
/* Timer for enabling spans - used to combat a lock problem */
static struct timer_list timer;
/* Whether or not the timer has been deleted */
static atomic_t timer_deleted = ATOMIC_INIT(0);
/* Global error counter */
static atomic_t errcount = ATOMIC_INIT(0);
/* Whether or not we are in shutdown */
static atomic_t shutdown = ATOMIC_INIT(0);
static struct sk_buff_head skbs;
#ifdef USE_PROC_FS
struct ethmf_group {
unsigned int hash_addr;
atomic_t spans;
atomic_t rxframecount;
atomic_t txframecount;
atomic_t rxbytecount;
atomic_t txbytecount;
atomic_t devupcount;
atomic_t devdowncount;
};
static struct ethmf_group ethmf_groups[ETHMF_MAX_GROUPS];
#endif
struct ztdeth {
/* Destination MAC address */
unsigned char addr[ETH_ALEN];
/* Destination MAC address hash value */
unsigned int addr_hash;
/* span sub-address, in network byte order */
unsigned short subaddr;
/* DAHDI span associated with this TDMoE-mf span */
struct dahdi_span *span;
/* Ethernet interface name */
char ethdev[IFNAMSIZ];
/* Ethernet device reference */
struct net_device *dev;
/* trx buffer */
unsigned char *msgbuf;
/* trx buffer length */
int msgbuf_len;
/* wether or not this frame is ready for trx */
atomic_t ready;
/* delay counter, to ensure all spans are added, prior to usage */
atomic_t delay;
/* rvc buffer */
unsigned char *rcvbuf;
/* the number of channels in this span */
int real_channels;
/* use padding if 1, else no padding */
atomic_t no_front_padding;
/* counter to pseudo lock the rcvbuf */
atomic_t refcnt;
struct list_head list;
};
/**
* Lock for adding and removing items in ethmf_list
*/
static DEFINE_SPINLOCK(ethmf_lock);
/**
* The active list of all running spans
*/
static LIST_HEAD(ethmf_list);
static inline void ethmf_errors_inc(void)
{
#ifdef USE_PROC_FS
atomic_inc(&errcount);
#endif
}
#ifdef USE_PROC_FS
static inline int hashaddr_to_index(unsigned int hash_addr)
{
int i, z = -1;
for (i = 0; i < ETHMF_MAX_GROUPS; ++i) {
if (z == -1 && ethmf_groups[i].hash_addr == 0)
z = i;
if (ethmf_groups[i].hash_addr == hash_addr)
return i;
}
if (z != -1) {
ethmf_groups[z].hash_addr = hash_addr;
}
return z;
}
#endif
/**
* Find the Ztdeth Struct and DAHDI span for a given MAC address and subaddr.
*
* NOTE: RCU read lock must already be held.
*/
static inline void find_ethmf(const unsigned char *addr,
const unsigned short subaddr, struct ztdeth **ze,
struct dahdi_span **span)
{
struct ztdeth *z;
list_for_each_entry_rcu(z, &ethmf_list, list) {
if (!atomic_read(&z->delay)) {
if (!memcmp(addr, z->addr, ETH_ALEN)
&& z->subaddr == subaddr) {
*ze = z;
*span = z->span;
return;
}
}
}
/* no results */
*ze = NULL;
*span = NULL;
}
/**
* Determines if all spans are ready for transmit. If all spans are ready,
* we return the number of spans which indeed are ready and populate the
* array of pointers to those spans..
*
* NOTE: RCU read lock must already be held.
*/
static inline int ethmf_trx_spans_ready(unsigned int addr_hash, struct ztdeth *(*ready_spans)[ETHMF_MAX_PER_SPAN_GROUP])
{
struct ztdeth *t;
int span_count = 0, spans_ready = 0;
list_for_each_entry_rcu(t, &ethmf_list, list) {
if (!atomic_read(&t->delay) && t->addr_hash == addr_hash) {
++span_count;
if (atomic_read(&t->ready)) {
short subaddr = ntohs(t->subaddr);
if (subaddr < ETHMF_MAX_PER_SPAN_GROUP) {
(*ready_spans)[subaddr] = t;
++spans_ready;
} else {
printk(KERN_ERR "More than %d spans per multi-frame group are not currently supported.",
ETHMF_MAX_PER_SPAN_GROUP);
}
}
}
}
if (span_count && spans_ready && span_count == spans_ready) {
return spans_ready;
}
return 0;
}
/**
* Ethernet receiving side processing function.
*/
static int ztdethmf_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
int num_spans = 0, span_index = 0;
unsigned char *data;
struct dahdi_span *span;
struct ztdeth *z = NULL;
struct ztdeth_header *zh;
unsigned int samples, channels, rbslen, flags;
unsigned int skip = 0;
zh = (struct ztdeth_header *) skb_network_header(skb);
if (ntohs(zh->subaddr) & 0x8000) {
/* got a multi-span frame */
num_spans = ntohs(zh->subaddr) & 0xFF;
/* Currently max of 4 spans supported */
if (unlikely(num_spans > ETHMF_MAX_SPANS)) {
kfree_skb(skb);
return 0;
}
skb_pull(skb, sizeof(struct ztdeth_header));
#ifdef NEW_SKB_LINEARIZE
if (skb_is_nonlinear(skb))
skb_linearize(skb);
#else
if (skb_is_nonlinear(skb))
skb_linearize(skb, GFP_KERNEL);
#endif
data = (unsigned char *) skb->data;
rcu_read_lock();
do {
find_ethmf(eth_hdr(skb)->h_source,
htons(span_index), &z, &span);
if (unlikely(!z || !span)) {
/* The recv'd span does not belong to us */
/* ethmf_errors_inc(); */
++span_index;
continue;
}
samples = data[(span_index * 6)] & 0xFF;
flags = data[((span_index * 6) + 1)] & 0xFF;
channels = data[((span_index * 6) + 5)] & 0xFF;
/* Precomputed defaults for most typical values */
if (channels == 24)
rbslen = 12;
else if (channels == 31)
rbslen = 16;
else
rbslen = ((channels + 3) / 4) * 2;
if (unlikely(samples != 8 || channels >= 32 || channels == 0)) {
ethmf_errors_inc();
++span_index;
continue;
}
if (atomic_dec_and_test(&z->refcnt) == 0) {
memcpy(z->rcvbuf, data + 6*span_index, 6); /* TDM Header */
/*
* If we ignore channel zero we must skip the first eight bytes and
* ensure that ztdynamic doesn't get confused by this new flag
*/
if (flags & ETHMF_FLAG_IGNORE_CHAN0) {
skip = 8;
/* Remove this flag since ztdynamic may not understand it */
z->rcvbuf[1] = flags & ~(ETHMF_FLAG_IGNORE_CHAN0);
/* Additionally, now we will transmit with front padding */
atomic_set(&z->no_front_padding, 0);
} else {
/* Disable front padding if we recv'd a packet without it */
atomic_set(&z->no_front_padding, 1);
}
memcpy(z->rcvbuf + 6, data + 6*num_spans + 16
*span_index, rbslen); /* RBS Header */
/* 256 == 32*8; if padding lengths change, this must be modified */
memcpy(z->rcvbuf + 6 + rbslen, data + 6*num_spans + 16
*num_spans + (256)*span_index + skip, channels
* 8); /* Payload */
dahdi_dynamic_receive(span, z->rcvbuf, 6 + rbslen
+ channels*8);
} else {
ethmf_errors_inc();
printk(KERN_INFO "TDMoE span overflow detected. Span %d was dropped.", span_index);
}
atomic_inc(&z->refcnt);
#ifdef USE_PROC_FS
if (span_index == 0) {
atomic_inc(&(ethmf_groups[hashaddr_to_index(z->addr_hash)].rxframecount));
atomic_add(skb->len + z->dev->hard_header_len +
sizeof(struct ztdeth_header),
&(ethmf_groups[hashaddr_to_index(z->addr_hash)].rxbytecount));
}
#endif
++span_index;
} while (!atomic_read(&shutdown) && span_index < num_spans);
rcu_read_unlock();
}
kfree_skb(skb);
return 0;
}
static int ztdethmf_notifier(struct notifier_block *block, unsigned long event,
void *ptr)
{
struct net_device *dev = ptr;
struct ztdeth *z;
switch (event) {
case NETDEV_GOING_DOWN:
case NETDEV_DOWN:
rcu_read_lock();
list_for_each_entry_rcu(z, &ethmf_list, list) {
/* Note that the device no longer exists */
if (z->dev == dev) {
z->dev = NULL;
#ifdef USE_PROC_FS
atomic_inc(&(ethmf_groups[hashaddr_to_index(z->addr_hash)].devdowncount));
#endif
}
}
rcu_read_unlock();
break;
case NETDEV_UP:
rcu_read_lock();
list_for_each_entry_rcu(z, &ethmf_list, list) {
/* Now that the device exists again, use it */
if (!strcmp(z->ethdev, dev->name)) {
z->dev = dev;
#ifdef USE_PROC_FS
atomic_inc(&(ethmf_groups[hashaddr_to_index(z->addr_hash)].devupcount));
#endif
}
}
rcu_read_unlock();
break;
}
return 0;
}
static void ztdethmf_transmit(struct dahdi_dynamic *dyn, u8 *msg, size_t msglen)
{
struct ztdeth *z = dyn->pvt, *ready_spans[ETHMF_MAX_PER_SPAN_GROUP];
struct sk_buff *skb;
struct ztdeth_header *zh;
struct net_device *dev;
unsigned char addr[ETH_ALEN];
int spans_ready = 0, index = 0;
if (atomic_read(&shutdown))
return;
rcu_read_lock();
if (unlikely(!z || !z->dev)) {
rcu_read_unlock();
return;
}
if (!atomic_read(&z->ready)) {
if (atomic_inc_return(&z->ready) == 1) {
memcpy(z->msgbuf, msg, msglen);
z->msgbuf_len = msglen;
}
}
spans_ready = ethmf_trx_spans_ready(z->addr_hash, &ready_spans);
if (spans_ready) {
int pad[ETHMF_MAX_SPANS], rbs[ETHMF_MAX_SPANS];
dev = z->dev;
memcpy(addr, z->addr, sizeof(z->addr));
for (index = 0; index < spans_ready; index++) {
int chan = ready_spans[index]->real_channels;
/* By default we pad to 32 channels, but if
* no_front_padding is false then we have a pad
* in the front of 8 bytes, so this implies one
* less channel
*/
if (atomic_read(&(ready_spans[index]->no_front_padding)))
pad[index] = (32 - chan)*8;
else
pad[index] = (31 - chan)*8;
if (chan == 24)
rbs[index] = 12;
else if (chan == 31)
rbs[index] = 16;
else
/* Shouldn't this be index, not spans_ready? */
rbs[spans_ready] = ((chan + 3) / 4) * 2;
}
/* Allocate the standard size for a 32-chan frame */
skb = dev_alloc_skb(1112 + dev->hard_header_len
+ sizeof(struct ztdeth_header) + 32);
if (unlikely(!skb)) {
rcu_read_unlock();
ethmf_errors_inc();
return;
}
/* Reserve header space */
skb_reserve(skb, dev->hard_header_len
+ sizeof(struct ztdeth_header));
/* copy each spans header */
for (index = 0; index < spans_ready; index++) {
if (!atomic_read(&(ready_spans[index]->no_front_padding)))
ready_spans[index]->msgbuf[1]
|= ETHMF_FLAG_IGNORE_CHAN0;
memcpy(skb_put(skb, 6), ready_spans[index]->msgbuf, 6);
}
/* copy each spans RBS payload */
for (index = 0; index < spans_ready; index++) {
memcpy(skb_put(skb, 16), ready_spans[index]->msgbuf + 6,
rbs[index]);
}
/* copy each spans data/voice payload */
for (index = 0; index < spans_ready; index++) {
int chan = ready_spans[index]->real_channels;
if (!atomic_read(&(ready_spans[index]->no_front_padding))) {
/* This adds an additional (padded) channel to our total */
memset(skb_put(skb, 8), 0xA5, 8); /* ETHMF_IGNORE_CHAN0 */
}
memcpy(skb_put(skb, chan*8), ready_spans[index]->msgbuf
+ (6 + rbs[index]), chan*8);
if (pad[index] > 0) {
memset(skb_put(skb, pad[index]), 0xDD, pad[index]);
}
/* mark span as ready for new data/voice */
atomic_set(&(ready_spans[index]->ready), 0);
}
/* Throw on header */
zh = (struct ztdeth_header *)skb_push(skb,
sizeof(struct ztdeth_header));
zh->subaddr = htons((unsigned short)(0x8000 | (unsigned char)(spans_ready & 0xFF)));
/* Setup protocol type */
skb->protocol = __constant_htons(ETH_P_ZTDETH);
skb_set_network_header(skb, 0);
skb->dev = dev;
dev_hard_header(skb, dev, ETH_P_ZTDETH, addr, dev->dev_addr, skb->len);
/* queue frame for delivery */
if (dev) {
skb_queue_tail(&skbs, skb);
}
#ifdef USE_PROC_FS
atomic_inc(&(ethmf_groups[hashaddr_to_index(z->addr_hash)].txframecount));
atomic_add(skb->len, &(ethmf_groups[hashaddr_to_index(z->addr_hash)].txbytecount));
#endif
}
rcu_read_unlock();
return;
}
static int ztdethmf_flush(void)
{
struct sk_buff *skb;
/* Handle all transmissions now */
while ((skb = skb_dequeue(&skbs))) {
dev_queue_xmit(skb);
}
return 0;
}
static struct packet_type ztdethmf_ptype = {
.type = __constant_htons(ETH_P_ZTDETH), /* Protocol */
.dev = NULL, /* Device (NULL = wildcard) */
.func = ztdethmf_rcv, /* Receiver */
};
static void ztdethmf_destroy(struct dahdi_dynamic *dyn)
{
struct ztdeth *z = dyn->pvt;
unsigned long flags;
atomic_set(&shutdown, 1);
synchronize_rcu();
spin_lock_irqsave(&ethmf_lock, flags);
list_del_rcu(&z->list);
spin_unlock_irqrestore(&ethmf_lock, flags);
synchronize_rcu();
atomic_dec(&(ethmf_groups[hashaddr_to_index(z->addr_hash)].spans));
if (z) { /* Successfully removed */
printk(KERN_INFO "Removed interface for %s\n",
z->span->name);
kfree(z->msgbuf);
kfree(z);
} else {
if (z && z->span && z->span->name) {
printk(KERN_ERR "Cannot find interface for %s\n",
z->span->name);
}
}
}
static int ztdethmf_create(struct dahdi_dynamic *dyn, const char *addr)
{
struct ztdeth *z;
char src[256];
char *src_ptr;
int x, bufsize, num_matched;
unsigned long flags;
struct dahdi_span *const span = &dyn->span;
BUG_ON(!span);
BUG_ON(!addr);
z = kmalloc(sizeof(struct ztdeth), GFP_KERNEL);
if (!z)
return -ENOMEM;
/* Zero it out */
memset(z, 0, sizeof(struct ztdeth));
/* set a delay for xmit/recv to workaround Zaptel problems */
atomic_set(&z->delay, 4);
/* create a msg buffer. MAX OF 31 CHANNELS!!!! */
bufsize = 31 * DAHDI_CHUNKSIZE + 31 / 4 + 48;
z->msgbuf = kmalloc(bufsize, GFP_KERNEL);
z->rcvbuf = kmalloc(bufsize, GFP_KERNEL);
/* Address should be <dev>/<macaddr>/subaddr */
strlcpy(src, addr, sizeof(src));
/* replace all / with space; otherwise kernel sscanf does not work */
src_ptr = src;
while (*src_ptr) {
if (*src_ptr == '/')
*src_ptr = ' ';
++src_ptr;
}
num_matched = sscanf(src,
"%16s %hhx:%hhx:%hhx:%hhx:%hhx:%hhx %hu",
z->ethdev, &z->addr[0], &z->addr[1],
&z->addr[2], &z->addr[3], &z->addr[4],
&z->addr[5], &z->subaddr);
if (8 != num_matched) {
printk(KERN_ERR "Only matched %d entries in '%s'\n", num_matched, src);
printk(KERN_ERR "Invalid TDMoE Multiframe address: %s\n", addr);
kfree(z);
return -EINVAL;
}
z->dev = dev_get_by_name(&init_net, z->ethdev);
if (!z->dev) {
printk(KERN_ERR "TDMoE Multiframe: Invalid device '%s'\n", z->ethdev);
kfree(z);
return -EINVAL;
}
z->span = span;
z->subaddr = htons(z->subaddr);
z->addr_hash = crc32_le(0, z->addr, ETH_ALEN);
z->real_channels = span->channels;
src[0] = '\0';
for (x = 0; x < 5; x++)
sprintf(src + strlen(src), "%02x:", z->dev->dev_addr[x]);
sprintf(src + strlen(src), "%02x", z->dev->dev_addr[5]);
printk(KERN_INFO "TDMoEmf: Added new interface for %s at %s "
"(addr=%s, src=%s, subaddr=%d)\n", span->name, z->dev->name,
addr, src, ntohs(z->subaddr));
atomic_set(&z->ready, 0);
atomic_set(&z->refcnt, 0);
spin_lock_irqsave(&ethmf_lock, flags);
list_add_rcu(&z->list, &ethmf_list);
spin_unlock_irqrestore(&ethmf_lock, flags);
atomic_inc(&(ethmf_groups[hashaddr_to_index(z->addr_hash)].spans));
/* enable the timer for enabling the spans */
mod_timer(&timer, jiffies + HZ);
atomic_set(&shutdown, 0);
dyn->pvt = z;
return 0;
}
static struct dahdi_dynamic_driver ztd_ethmf = {
.owner = THIS_MODULE,
.name = "ethmf",
.desc = "Ethernet",
.create = ztdethmf_create,
.destroy = ztdethmf_destroy,
.transmit = ztdethmf_transmit,
.flush = ztdethmf_flush,
};
static struct notifier_block ztdethmf_nblock = {
.notifier_call = ztdethmf_notifier,
};
/**
* Decrements each delay counter in the ethmf_list and returns the number of
* delay counters that are not equal to zero.
*/
static int ethmf_delay_dec(void)
{
struct ztdeth *z;
int count_nonzero = 0;
rcu_read_lock();
list_for_each_entry_rcu(z, &ethmf_list, list) {
if (atomic_read(&z->delay)) {
atomic_dec(&z->delay);
++count_nonzero;
} else
atomic_set(&z->delay, 0);
}
rcu_read_unlock();
return count_nonzero;
}
/**
* Timer callback function to allow all spans to be added, prior to any of
* them being used.
*/
static void timer_callback(TIMER_DATA_TYPE unused)
{
if (ethmf_delay_dec()) {
if (!atomic_read(&timer_deleted))
mod_timer(&timer, jiffies + HZ);
} else {
printk(KERN_INFO "All TDMoE multiframe span groups are active.\n");
}
}
#ifdef USE_PROC_FS
static struct proc_dir_entry *proc_entry;
static const char *ztdethmf_procname = "dahdi/dynamic-ethmf";
static int ztdethmf_proc_show(struct seq_file *sfile, void *not_used)
{
struct ztdeth *z = NULL;
int i = 0;
unsigned int group = 0, c = 0;
rcu_read_lock();
seq_printf(sfile, "Errors: %d\n\n", atomic_read(&errcount));
for (group = 0; group < ETHMF_MAX_GROUPS; ++group) {
if (atomic_read(&(ethmf_groups[group].spans))) {
seq_printf(sfile, "Group #%d (0x%x)\n", i++,
ethmf_groups[group].hash_addr);
seq_printf(sfile, "Spans: %d\n",
atomic_read(&(ethmf_groups[group].spans)));
c = 1;
list_for_each_entry_rcu(z, &ethmf_list, list) {
if (z->addr_hash == ethmf_groups[group].hash_addr) {
if (c == 1) {
seq_printf(sfile,
" Device: %s (MAC: %02x:%02x:%02x:%02x:%02x:%02x)\n",
z->ethdev,
z->addr[0], z->addr[1], z->addr[2],
z->addr[3], z->addr[4], z->addr[5]);
}
seq_printf(sfile, " Span %d: subaddr=%u ready=%d delay=%d real_channels=%d no_front_padding=%d\n",
c++, ntohs(z->subaddr),
atomic_read(&z->ready), atomic_read(&z->delay),
z->real_channels, atomic_read(&z->no_front_padding));
}
}
seq_printf(sfile, " Device UPs: %u\n",
atomic_read(&(ethmf_groups[group].devupcount)));
seq_printf(sfile, " Device DOWNs: %u\n",
atomic_read(&(ethmf_groups[group].devdowncount)));
seq_printf(sfile, " Rx Frames: %u\n",
atomic_read(&(ethmf_groups[group].rxframecount)));
seq_printf(sfile, " Tx Frames: %u\n",
atomic_read(&(ethmf_groups[group].txframecount)));
seq_printf(sfile, " Rx Bytes: %u\n",
atomic_read(&(ethmf_groups[group].rxbytecount)));
seq_printf(sfile, " Tx Bytes: %u\n",
atomic_read(&(ethmf_groups[group].txbytecount)));
}
}
rcu_read_unlock();
return 0;
}
static int ztdethmf_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, ztdethmf_proc_show, NULL);
}
#ifdef DAHDI_HAVE_PROC_OPS
static const struct proc_ops ztdethmf_proc_fops = {
.proc_open = ztdethmf_proc_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = seq_release,
};
#else
static const struct file_operations ztdethmf_proc_fops = {
.owner = THIS_MODULE,
.open = ztdethmf_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
#endif /* DAHDI_HAVE_PROC_OPS */
#endif
static int __init ztdethmf_init(void)
{
timer_setup(&timer, timer_callback, 0);
mod_timer(&timer, jiffies + HZ);
dev_add_pack(&ztdethmf_ptype);
register_netdevice_notifier(&ztdethmf_nblock);
dahdi_dynamic_register_driver(&ztd_ethmf);
skb_queue_head_init(&skbs);
#ifdef USE_PROC_FS
proc_entry = proc_create_data(ztdethmf_procname, 0444, NULL,
&ztdethmf_proc_fops, NULL);
if (!proc_entry) {
printk(KERN_ALERT "create_proc_read_entry failed.\n");
}
#endif
return 0;
}
static void __exit ztdethmf_exit(void)
{
atomic_set(&timer_deleted, 1);
del_timer_sync(&timer);
dev_remove_pack(&ztdethmf_ptype);
unregister_netdevice_notifier(&ztdethmf_nblock);
dahdi_dynamic_unregister_driver(&ztd_ethmf);
#ifdef USE_PROC_FS
if (proc_entry)
remove_proc_entry(ztdethmf_procname, NULL);
#endif
}
MODULE_DESCRIPTION("DAHDI Dynamic TDMoEmf Support");
MODULE_AUTHOR("Joseph Benden <joe@thrallingpenguin.com>");
#ifdef MODULE_LICENSE
MODULE_LICENSE("GPL");
#endif
module_init(ztdethmf_init);
module_exit(ztdethmf_exit);