dahdi-linux/drivers/dahdi/voicebus/voicebus.c
Shaun Ruffell 40945a2a00 wcte12xp, wctdm24xxp: decriptor_list.count does not need to be atomic.
It is only ever accessed in interrupt context anyway. Saves several
hundred nanoseconds from hard interrupt context.

Signed-off-by: Shaun Ruffell <sruffell@digium.com>
Acked-by: Michael Spiceland <mspiceland@digium.com>
Acked-by: Kinsey Moore <kmoore@digium.com>

git-svn-id: http://svn.asterisk.org/svn/dahdi/linux/trunk@9888 a0bf4364-ded3-4de4-8d8a-66a801d63aff
2011-04-04 16:25:47 +00:00

2045 lines
52 KiB
C

/*
* VoiceBus(tm) Interface Library.
*
* Written by Shaun Ruffell <sruffell@digium.com>
* and based on previous work by Mark Spencer <markster@digium.com>,
* Matthew Fredrickson <creslin@digium.com>, and
* Michael Spiceland <mspiceland@digium.com>
*
* Copyright (C) 2007-2010 Digium, Inc.
*
* All rights reserved.
* VoiceBus is a registered trademark of Digium.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/version.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <dahdi/kernel.h>
#include "voicebus.h"
#include "voicebus_net.h"
#include "vpmadtreg.h"
#include "GpakCust.h"
#if VOICEBUS_DEFERRED == TIMER
#if HZ < 1000
/* \todo Put an error message here. */
#endif
#endif
/* Interrupt status' reported in SR_CSR5 */
#define TX_COMPLETE_INTERRUPT 0x00000001
#define TX_STOPPED_INTERRUPT 0x00000002
#define TX_UNAVAILABLE_INTERRUPT 0x00000004
#define TX_JABBER_TIMEOUT_INTERRUPT 0x00000008
#define TX_UNDERFLOW_INTERRUPT 0x00000020
#define RX_COMPLETE_INTERRUPT 0x00000040
#define RX_UNAVAILABLE_INTERRUPT 0x00000080
#define RX_STOPPED_INTERRUPT 0x00000100
#define RX_WATCHDOG_TIMEOUT_INTERRUPT 0x00000200
#define TIMER_INTERRUPT 0x00000800
#define FATAL_BUS_ERROR_INTERRUPT 0x00002000
#define ABNORMAL_INTERRUPT_SUMMARY 0x00008000
#define NORMAL_INTERRUPT_SUMMARY 0x00010000
#define SR_CSR5 0x0028
#define NAR_CSR6 0x0030
#define IER_CSR7 0x0038
#define CSR7_TCIE 0x00000001 /* tx complete */
#define CSR7_TPSIE 0x00000002 /* tx processor stopped */
#define CSR7_TDUIE 0x00000004 /* tx desc unavailable */
#define CSR7_TUIE 0x00000020 /* tx underflow */
#define CSR7_RCIE 0x00000040 /* rx complete */
#define CSR7_RUIE 0x00000080 /* rx desc unavailable */
#define CSR7_RSIE 0x00000100 /* rx processor stopped */
#define CSR7_FBEIE 0x00002000 /* fatal bus error */
#define CSR7_AIE 0x00008000 /* abnormal enable */
#define CSR7_NIE 0x00010000 /* normal enable */
#define DEFAULT_COMMON_INTERRUPTS (CSR7_TCIE|CSR7_TPSIE|CSR7_RUIE|CSR7_RSIE|\
CSR7_FBEIE|CSR7_AIE|CSR7_NIE)
#define DEFAULT_NORMAL_INTERRUPTS (DEFAULT_COMMON_INTERRUPTS|CSR7_TDUIE)
#define DEFAULT_NO_IDLE_INTERRUPTS (DEFAULT_COMMON_INTERRUPTS|CSR7_RCIE)
#define CSR9 0x0048
#define CSR9_MDC 0x00010000
#define CSR9_MDO 0x00020000
#define CSR9_MMC 0x00040000
#define CSR9_MDI 0x00080000
#define OWN_BIT cpu_to_le32(1 << 31)
#ifdef CONFIG_VOICEBUS_ECREFERENCE
/*
* These dahdi_fifo_xxx functions are currently only used by the voicebus
* drivers, but are named more generally to facilitate moving out in the
* future. They probably also could stand to be changed in order to use a
* kfifo implementation from the kernel if one is available.
*
*/
struct dahdi_fifo {
size_t total_size;
u32 start;
u32 end;
u8 data[0];
};
static unsigned int dahdi_fifo_used_space(struct dahdi_fifo *fifo)
{
return (fifo->end >= fifo->start) ? fifo->end - fifo->start :
fifo->total_size - fifo->start + fifo->end;
}
unsigned int __dahdi_fifo_put(struct dahdi_fifo *fifo, u8 *data, size_t size)
{
int newinsertposition;
int cpy_one_len, cpy_two_len;
if ((size + dahdi_fifo_used_space(fifo)) > (fifo->total_size - 1))
return -1;
if ((fifo->end + size) >= fifo->total_size) {
cpy_one_len = fifo->total_size - fifo->end;
cpy_two_len = fifo->end + size - fifo->total_size;
newinsertposition = cpy_two_len;
} else {
cpy_one_len = size;
cpy_two_len = 0;
newinsertposition = fifo->end + size;
}
memcpy(&fifo->data[fifo->end], data, cpy_one_len);
if (cpy_two_len)
memcpy(&fifo->data[0], &data[cpy_one_len], cpy_two_len);
fifo->end = newinsertposition;
return size;
}
EXPORT_SYMBOL(__dahdi_fifo_put);
unsigned int __dahdi_fifo_get(struct dahdi_fifo *fifo, u8 *data, size_t size)
{
int newbegin;
int cpy_one_len, cpy_two_len;
if (size > dahdi_fifo_used_space(fifo))
return 0;
if ((fifo->start + size) >= fifo->total_size) {
cpy_one_len = fifo->total_size - fifo->start;
cpy_two_len = fifo->start + size - fifo->total_size;
newbegin = cpy_two_len;
} else {
cpy_one_len = size;
cpy_two_len = 0;
newbegin = fifo->start + size;
}
memcpy(&data[0], &fifo->data[fifo->start], cpy_one_len);
if (cpy_two_len)
memcpy(&data[cpy_one_len], &fifo->data[0], cpy_two_len);
fifo->start = newbegin;
return size;
}
EXPORT_SYMBOL(__dahdi_fifo_get);
void dahdi_fifo_free(struct dahdi_fifo *fifo)
{
kfree(fifo);
}
EXPORT_SYMBOL(dahdi_fifo_free);
struct dahdi_fifo *dahdi_fifo_alloc(u32 maxsize, gfp_t alloc_flags)
{
struct dahdi_fifo *fifo;
fifo = kmalloc(maxsize + sizeof(*fifo) + 1, alloc_flags);
if (!fifo)
return NULL;
fifo->start = fifo->end = 0;
fifo->total_size = maxsize + 1;
return fifo;
}
EXPORT_SYMBOL(dahdi_fifo_alloc);
#endif /* CONFIG_VOICEBUS_ECREFERENCE */
/* In memory structure shared by the host and the adapter. */
struct voicebus_descriptor {
volatile __le32 des0;
volatile __le32 des1;
volatile __le32 buffer1;
volatile __le32 container; /* Unused */
} __attribute__((packed));
static inline void
handle_transmit(struct voicebus *vb, struct list_head *buffers)
{
vb->ops->handle_transmit(vb, buffers);
}
static inline void
handle_receive(struct voicebus *vb, struct list_head *buffers)
{
vb->ops->handle_receive(vb, buffers);
}
static inline struct voicebus_descriptor *
vb_descriptor(const struct voicebus_descriptor_list *dl,
const unsigned int index)
{
struct voicebus_descriptor *d;
d = (struct voicebus_descriptor *)((u8*)dl->desc +
((sizeof(*d) + dl->padding) * index));
return d;
}
static int
vb_initialize_descriptors(struct voicebus *vb, struct voicebus_descriptor_list *dl,
u32 des1, unsigned int direction)
{
int i;
struct voicebus_descriptor *d;
const u32 END_OF_RING = 0x02000000;
u8 cacheline_size;
BUG_ON(!dl);
/*
* Add some padding to each descriptor to ensure that they are
* aligned on host system cache-line boundaries, but only for the
* cache-line sizes that we support.
*
*/
if (pci_read_config_byte(vb->pdev, PCI_CACHE_LINE_SIZE,
&cacheline_size)) {
dev_err(&vb->pdev->dev, "Failed read of cache line "
"size from PCI configuration space.\n");
return -EIO;
}
if ((0x08 == cacheline_size) || (0x10 == cacheline_size) ||
(0x20 == cacheline_size)) {
dl->padding = (cacheline_size*sizeof(u32)) - sizeof(*d);
} else {
dl->padding = 0;
}
dl->desc = pci_alloc_consistent(vb->pdev,
(sizeof(*d) + dl->padding) * DRING_SIZE, &dl->desc_dma);
if (!dl->desc)
return -ENOMEM;
memset(dl->desc, 0, (sizeof(*d) + dl->padding) * DRING_SIZE);
for (i = 0; i < DRING_SIZE; ++i) {
d = vb_descriptor(dl, i);
d->des1 = cpu_to_le32(des1);
}
d->des1 |= cpu_to_le32(END_OF_RING);
dl->count = 0;
return 0;
}
#define OWNED(_d_) (((_d_)->des0)&OWN_BIT)
#define SET_OWNED(_d_) do { wmb(); (_d_)->des0 |= OWN_BIT; wmb(); } while (0)
static int
vb_initialize_tx_descriptors(struct voicebus *vb)
{
int i;
int des1 = 0xe4800000 | VOICEBUS_SFRAME_SIZE;
struct voicebus_descriptor *d;
struct voicebus_descriptor_list *dl = &vb->txd;
const u32 END_OF_RING = 0x02000000;
u8 cacheline_size;
WARN_ON(!dl);
WARN_ON((NULL == vb->idle_vbb) || (0 == vb->idle_vbb_dma_addr));
/*
* Add some padding to each descriptor to ensure that they are
* aligned on host system cache-line boundaries, but only for the
* cache-line sizes that we support.
*
*/
if (pci_read_config_byte(vb->pdev, PCI_CACHE_LINE_SIZE,
&cacheline_size)) {
dev_err(&vb->pdev->dev, "Failed read of cache line "
"size from PCI configuration space.\n");
return -EIO;
}
if ((0x08 == cacheline_size) || (0x10 == cacheline_size) ||
(0x20 == cacheline_size)) {
dl->padding = (cacheline_size*sizeof(u32)) - sizeof(*d);
} else {
dl->padding = 0;
}
dl->desc = pci_alloc_consistent(vb->pdev,
(sizeof(*d) + dl->padding) *
DRING_SIZE, &dl->desc_dma);
if (!dl->desc)
return -ENOMEM;
memset(dl->desc, 0, (sizeof(*d) + dl->padding) * DRING_SIZE);
for (i = 0; i < DRING_SIZE; ++i) {
d = vb_descriptor(dl, i);
d->des1 = cpu_to_le32(des1);
dl->pending[i] = NULL;
d->buffer1 = 0;
}
d->des1 |= cpu_to_le32(END_OF_RING);
dl->count = 0;
return 0;
}
static int
vb_initialize_rx_descriptors(struct voicebus *vb)
{
return vb_initialize_descriptors(
vb, &vb->rxd, VOICEBUS_SFRAME_SIZE, DMA_FROM_DEVICE);
}
/*! \brief Use to set the minimum number of buffers queued to the hardware
* before enabling interrupts.
*/
int
voicebus_set_minlatency(struct voicebus *vb, unsigned int ms)
{
unsigned long flags;
/*
* One millisecond of latency means that we have 3 buffers pending,
* since two are always going to be waiting in the TX fifo on the
* interface chip.
*
*/
#define MESSAGE "%d ms is an invalid value for minumum latency. Setting to %d ms.\n"
if (DRING_SIZE < ms) {
dev_warn(&vb->pdev->dev, MESSAGE, ms, DRING_SIZE);
return -EINVAL;
} else if (VOICEBUS_DEFAULT_LATENCY > ms) {
dev_warn(&vb->pdev->dev, MESSAGE, ms, VOICEBUS_DEFAULT_LATENCY);
return -EINVAL;
}
spin_lock_irqsave(&vb->lock, flags);
vb->min_tx_buffer_count = ms;
spin_unlock_irqrestore(&vb->lock, flags);
return 0;
}
EXPORT_SYMBOL(voicebus_set_minlatency);
/*! \brief Returns the number of buffers currently on the transmit queue. */
int
voicebus_current_latency(struct voicebus *vb)
{
int latency;
unsigned long flags;
spin_lock_irqsave(&vb->lock, flags);
latency = vb->min_tx_buffer_count;
spin_unlock_irqrestore(&vb->lock, flags);
return latency;
}
EXPORT_SYMBOL(voicebus_current_latency);
/*!
* \brief Read one of the hardware control registers without acquiring locks.
*/
static inline u32
__vb_getctl(struct voicebus *vb, u32 addr)
{
u32 ret;
ret = readl(vb->iobase + addr);
rmb();
return ret;
}
/*!
* \brief Read one of the hardware control registers with locks held.
*/
static inline u32
vb_getctl(struct voicebus *vb, u32 addr)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&vb->lock, flags);
val = __vb_getctl(vb, addr);
spin_unlock_irqrestore(&vb->lock, flags);
return val;
}
static int
__vb_is_stopped(struct voicebus *vb)
{
u32 reg;
reg = __vb_getctl(vb, SR_CSR5);
reg = (reg >> 17) & 0x3f;
return ((0 == reg) || (3 == reg)) ? 1 : 0;
}
/*!
* \brief Returns whether or not the interface is running.
*
* NOTE: Running in this case means whether or not the hardware reports the
* transmit processor in any state but stopped.
*
* \return 1 of the process is stopped, 0 if running.
*/
static int
vb_is_stopped(struct voicebus *vb)
{
int ret;
unsigned long flags;
spin_lock_irqsave(&vb->lock, flags);
ret = __vb_is_stopped(vb);
spin_unlock_irqrestore(&vb->lock, flags);
return ret;
}
#if defined(CONFIG_VOICEBUS_INTERRUPT)
static inline void vb_disable_deferred(struct voicebus *vb)
{
if (atomic_inc_return(&vb->deferred_disabled_count) == 1)
disable_irq(vb->pdev->irq);
}
static inline void vb_enable_deferred(struct voicebus *vb)
{
if (atomic_dec_return(&vb->deferred_disabled_count) == 0)
enable_irq(vb->pdev->irq);
}
#else
static inline void vb_disable_deferred(struct voicebus *vb)
{
tasklet_disable(&vb->tasklet);
}
static inline void vb_enable_deferred(struct voicebus *vb)
{
tasklet_enable(&vb-tasklet);
}
#endif
static void
vb_cleanup_tx_descriptors(struct voicebus *vb)
{
unsigned int i;
struct voicebus_descriptor_list *dl = &vb->txd;
struct voicebus_descriptor *d;
struct vbb *vbb;
vb_disable_deferred(vb);
while (!list_empty(&vb->tx_complete)) {
vbb = list_entry(vb->tx_complete.next, struct vbb, entry);
list_del(&vbb->entry);
dma_pool_free(vb->pool, vbb, vbb->dma_addr);
}
for (i = 0; i < DRING_SIZE; ++i) {
d = vb_descriptor(dl, i);
if (d->buffer1 &&
(d->buffer1 != le32_to_cpu(vb->idle_vbb_dma_addr))) {
WARN_ON(!dl->pending[i]);
vbb = dl->pending[i];
dma_pool_free(vb->pool, vbb, vbb->dma_addr);
}
if (NORMAL == vb->mode) {
d->des1 |= cpu_to_le32(0x80000000);
d->buffer1 = cpu_to_le32(vb->idle_vbb_dma_addr);
dl->pending[i] = vb->idle_vbb;
SET_OWNED(d);
} else {
d->buffer1 = 0;
dl->pending[i] = NULL;
d->des0 &= ~OWN_BIT;
}
}
dl->head = dl->tail = 0;
dl->count = 0;
vb_enable_deferred(vb);
}
static void vb_cleanup_rx_descriptors(struct voicebus *vb)
{
unsigned int i;
struct voicebus_descriptor_list *dl = &vb->rxd;
struct voicebus_descriptor *d;
struct vbb *vbb;
vb_disable_deferred(vb);
for (i = 0; i < DRING_SIZE; ++i) {
d = vb_descriptor(dl, i);
if (d->buffer1) {
d->buffer1 = 0;
BUG_ON(!dl->pending[i]);
vbb = dl->pending[i];
list_add_tail(&vbb->entry, &vb->free_rx);
dl->pending[i] = NULL;
}
d->des0 &= ~OWN_BIT;
}
dl->head = 0;
dl->tail = 0;
dl->count = 0;
vb_enable_deferred(vb);
}
static void vb_cleanup_descriptors(struct voicebus *vb,
struct voicebus_descriptor_list *dl)
{
if (dl == &vb->txd)
vb_cleanup_tx_descriptors(vb);
else
vb_cleanup_rx_descriptors(vb);
}
static void
vb_free_descriptors(struct voicebus *vb, struct voicebus_descriptor_list *dl)
{
struct vbb *vbb;
if (NULL == dl->desc) {
WARN_ON(1);
return;
}
vb_cleanup_descriptors(vb, dl);
pci_free_consistent(
vb->pdev,
(sizeof(struct voicebus_descriptor)+dl->padding)*DRING_SIZE,
dl->desc, dl->desc_dma);
while (!list_empty(&vb->free_rx)) {
vbb = list_entry(vb->free_rx.next, struct vbb, entry);
list_del(&vbb->entry);
dma_pool_free(vb->pool, vbb, vbb->dma_addr);
}
}
/*!
* \brief Write one of the hardware control registers without acquiring locks.
*/
static inline void
__vb_setctl(struct voicebus *vb, u32 addr, u32 val)
{
wmb();
writel(val, vb->iobase + addr);
readl(vb->iobase + addr);
}
/*!
* \brief Write one of the hardware control registers with locks held.
*/
static inline void
vb_setctl(struct voicebus *vb, u32 addr, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&vb->lock, flags);
__vb_setctl(vb, addr, val);
spin_unlock_irqrestore(&vb->lock, flags);
}
static int
__vb_sdi_clk(struct voicebus *vb, u32 *sdi)
{
unsigned int ret;
*sdi &= ~CSR9_MDC;
__vb_setctl(vb, 0x0048, *sdi);
ret = __vb_getctl(vb, 0x0048);
*sdi |= CSR9_MDC;
__vb_setctl(vb, 0x0048, *sdi);
return (ret & CSR9_MDI) ? 1 : 0;
}
static void
__vb_sdi_sendbits(struct voicebus *vb, u32 bits, int count, u32 *sdi)
{
*sdi &= ~CSR9_MMC;
__vb_setctl(vb, 0x0048, *sdi);
while (count--) {
if (bits & (1 << count))
*sdi |= CSR9_MDO;
else
*sdi &= ~CSR9_MDO;
__vb_sdi_clk(vb, sdi);
}
}
static void
vb_setsdi(struct voicebus *vb, int addr, u16 val)
{
u32 bits;
u32 sdi = 0;
unsigned long flags;
/* Send preamble */
bits = 0xffffffff;
spin_lock_irqsave(&vb->lock, flags);
__vb_sdi_sendbits(vb, bits, 32, &sdi);
bits = (0x5 << 12) | (1 << 7) | (addr << 2) | 0x2;
__vb_sdi_sendbits(vb, bits, 16, &sdi);
__vb_sdi_sendbits(vb, val, 16, &sdi);
spin_unlock_irqrestore(&vb->lock, flags);
}
/*! \brief Resets the voicebus hardware interface. */
static int
vb_reset_interface(struct voicebus *vb)
{
unsigned long timeout;
u32 reg;
u32 pci_access;
enum {
/* Software Reset */
SWR = (1 << 0),
/* Bus Arbitration (1 for priority transmit) */
BAR = (1 << 1),
/* Memory Write Invalidate */
MWI = (1 << 24),
/* Memory Read Line */
MRL = (1 << 23),
/* Descriptor Skip Length */
DSLShift = 2,
/* Cache Alignment */
CALShift = 14,
/* Transmit Auto Pollling */
TAPShift = 17,
};
const u32 DEFAULT_PCI_ACCESS = MWI | MRL | (0x2 << TAPShift) | BAR;
u8 cacheline_size;
BUG_ON(in_interrupt());
if (pci_read_config_byte(vb->pdev, PCI_CACHE_LINE_SIZE,
&cacheline_size)) {
dev_err(&vb->pdev->dev, "Failed read of cache line "
"size from PCI configuration space.\n");
return -EIO;
}
switch (cacheline_size) {
case 0x08:
pci_access = DEFAULT_PCI_ACCESS | (0x1 << CALShift);
break;
case 0x10:
pci_access = DEFAULT_PCI_ACCESS | (0x2 << CALShift);
break;
case 0x20:
pci_access = DEFAULT_PCI_ACCESS | (0x3 << CALShift);
break;
default:
if (*vb->debug) {
dev_warn(&vb->pdev->dev, "Host system set a cache "
"size of %d which is not supported. "
"Disabling memory write line and memory "
"read line.\n", cacheline_size);
}
pci_access = 0xfe584202;
break;
}
/* The transmit and receive descriptors will have the same padding. */
pci_access |= ((vb->txd.padding / sizeof(u32)) << DSLShift) & 0x7c;
vb_setctl(vb, 0x0000, pci_access | SWR);
timeout = jiffies + HZ/10; /* 100ms interval */
do {
reg = vb_getctl(vb, 0x0000);
} while ((reg & SWR) && time_before(jiffies, timeout));
if (reg & SWR) {
if (-1 == reg) {
dev_err(&vb->pdev->dev,
"Unable to read I/O registers.\n");
} else {
dev_err(&vb->pdev->dev, "Did not come out of reset "
"within 100ms\n");
}
return -EIO;
}
vb_setctl(vb, 0x0000, pci_access);
return 0;
}
/*!
* \brief Give a frame to the hardware to use for receiving.
*
*/
static inline int
vb_submit_rxb(struct voicebus *vb, struct vbb *vbb)
{
struct voicebus_descriptor *d;
struct voicebus_descriptor_list *dl = &vb->rxd;
unsigned int tail = dl->tail;
d = vb_descriptor(dl, tail);
if (unlikely(d->buffer1)) {
/* Do not overwrite a buffer that is still in progress. */
WARN_ON(1);
list_add_tail(&vbb->entry, &vb->free_rx);
return -EBUSY;
}
dl->pending[tail] = vbb;
dl->tail = (++tail) & DRING_MASK;
d->buffer1 = cpu_to_le32(vbb->dma_addr);
SET_OWNED(d); /* That's it until the hardware is done with it. */
++dl->count;
return 0;
}
static int __voicebus_transmit(struct voicebus *vb, struct vbb *vbb)
{
struct voicebus_descriptor *d;
struct voicebus_descriptor_list *dl = &vb->txd;
d = vb_descriptor(dl, dl->tail);
if (unlikely((le32_to_cpu(d->buffer1) != vb->idle_vbb_dma_addr) &&
d->buffer1)) {
if (printk_ratelimit())
dev_warn(&vb->pdev->dev, "Dropping tx buffer buffer\n");
dma_pool_free(vb->pool, vbb, vbb->dma_addr);
/* Schedule the underrun handler to run here, since we'll need
* to cleanup as best we can. */
schedule_work(&vb->underrun_work);
return -EFAULT;
}
dl->pending[dl->tail] = vbb;
d->buffer1 = cpu_to_le32(vbb->dma_addr);
dl->tail = (dl->tail + 1) & DRING_MASK;
SET_OWNED(d); /* That's it until the hardware is done with it. */
++dl->count;
return 0;
}
/**
* voicebus_transmit - Queue a buffer on the hardware descriptor ring.
*
*/
int voicebus_transmit(struct voicebus *vb, struct vbb *vbb)
{
int res = __voicebus_transmit(vb, vbb);
__vb_setctl(vb, 0x0008, 0x00000000);
return res;
}
EXPORT_SYMBOL(voicebus_transmit);
/*!
* \brief Instruct the hardware to check for a new tx descriptor.
*/
static inline void
__vb_tx_demand_poll(struct voicebus *vb)
{
u32 status = __vb_getctl(vb, 0x0028);
if ((status & 0x00700000) == 0x00600000)
__vb_setctl(vb, 0x0008, 0x00000000);
}
static void setup_descriptors(struct voicebus *vb)
{
int i;
struct vbb *vbb;
dma_addr_t dma_addr;
LIST_HEAD(buffers);
unsigned long flags;
might_sleep();
vb_cleanup_tx_descriptors(vb);
vb_cleanup_rx_descriptors(vb);
/* Tell the card where the descriptors are in host memory. */
vb_setctl(vb, 0x0020, (u32)vb->txd.desc_dma);
vb_setctl(vb, 0x0018, (u32)vb->rxd.desc_dma);
for (i = 0; i < DRING_SIZE; ++i) {
if (list_empty(&vb->free_rx)) {
vbb = dma_pool_alloc(vb->pool, GFP_KERNEL,
&dma_addr);
if (vbb)
vbb->dma_addr = dma_addr;
} else {
vbb = list_entry(vb->free_rx.next, struct vbb, entry);
list_del(&vbb->entry);
}
if (unlikely(NULL == vbb))
BUG_ON(1);
list_add_tail(&vbb->entry, &buffers);
}
vb_disable_deferred(vb);
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del(&vbb->entry);
vb_submit_rxb(vb, vbb);
}
vb_enable_deferred(vb);
if (BOOT != vb->mode) {
for (i = 0; i < vb->min_tx_buffer_count; ++i) {
vbb = dma_pool_alloc(vb->pool, GFP_KERNEL,
&dma_addr);
if (unlikely(NULL == vbb))
BUG_ON(1);
vbb->dma_addr = dma_addr;
list_add_tail(&vbb->entry, &buffers);
}
local_irq_save(flags);
handle_transmit(vb, &buffers);
local_irq_restore(flags);
vb_disable_deferred(vb);
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del_init(&vbb->entry);
__voicebus_transmit(vb, vbb);
}
__vb_setctl(vb, 0x0008, 0x00000000);
vb_enable_deferred(vb);
}
}
static void
__vb_set_control_defaults(struct voicebus *vb)
{
/* Pass bad packets, runt packets, disable SQE function,
* store-and-forward */
vb_setctl(vb, 0x0030, 0x00280048);
/* ...disable jabber and the receive watchdog. */
vb_setctl(vb, 0x0078, 0x00000013);
vb_getctl(vb, 0x0078);
}
static void __vb_set_mac_only_mode(struct voicebus *vb)
{
u32 reg;
reg = __vb_getctl(vb, 0x00fc);
__vb_setctl(vb, 0x00fc, (reg & ~0x7) | 0x4);
__vb_getctl(vb, 0x00fc);
}
static int
vb_initialize_interface(struct voicebus *vb)
{
u32 reg;
setup_descriptors(vb);
__vb_set_control_defaults(vb);
reg = vb_getctl(vb, 0x00fc);
vb_setctl(vb, 0x00fc, (reg & ~0x7) | 0x7);
vb_setsdi(vb, 0x00, 0x0100);
vb_setsdi(vb, 0x16, 0x2100);
__vb_set_mac_only_mode(vb);
vb_setsdi(vb, 0x00, 0x0100);
vb_setsdi(vb, 0x16, 0x2100);
reg = vb_getctl(vb, 0x00fc);
/*
* The calls to setsdi above toggle the reset line of the CPLD. Wait
* here to give the CPLD time to stabilize after reset.
*/
msleep(10);
return ((reg&0x7) == 0x4) ? 0 : -EIO;
}
#ifdef DBG
static void
dump_descriptor(struct voicebus *vb, struct voicebus_descriptor *d)
{
VB_PRINTK(vb, DEBUG, "Displaying descriptor at address %08x\n", (unsigned int)d);
VB_PRINTK(vb, DEBUG, " des0: %08x\n", le32_to_cpu(d->des0));
VB_PRINTK(vb, DEBUG, " des1: %08x\n", le32_to_cpu(d->des1));
VB_PRINTK(vb, DEBUG, " buffer1: %08x\n", le32_to_cpu(d->buffer1));
VB_PRINTK(vb, DEBUG, " container: %08x\n", le32_to_cpu(d->container));
}
static void
show_buffer(struct voicebus *vb, struct vbb *vbb)
{
int x;
unsigned char *c;
c = vbb;
printk(KERN_DEBUG "Packet %d\n", count);
printk(KERN_DEBUG "");
for (x = 1; x <= VOICEBUS_SFRAME_SIZE; ++x) {
printk("%02x ", c[x]);
if (x % 16 == 0)
printk("\n");
}
printk(KERN_DEBUG "\n\n");
}
#endif
/*!
* \brief Remove the next completed transmit buffer (txb) from the tx
* descriptor ring.
*
* NOTE: This function doesn't need any locking because only one instance is
* ever running on the deferred processing routine and it only looks at
* the head pointer. The deferred routine should only ever be running
* on one processor at a time (no multithreaded workqueues allowed!)
*
* Context: Must be called from the voicebus deferred workqueue.
*
* \return Pointer to buffer, or NULL if not available.
*/
static void *
vb_get_completed_txb(struct voicebus *vb)
{
struct voicebus_descriptor_list *dl = &vb->txd;
struct voicebus_descriptor *d;
struct vbb *vbb;
unsigned int head = dl->head;
d = vb_descriptor(dl, head);
if (OWNED(d) || !d->buffer1 ||
(le32_to_cpu(d->buffer1) == vb->idle_vbb_dma_addr))
return NULL;
vbb = dl->pending[head];
if (NORMAL == vb->mode) {
d->buffer1 = cpu_to_le32(vb->idle_vbb_dma_addr);
dl->pending[head] = vb->idle_vbb;
SET_OWNED(d);
} else {
d->buffer1 = 0;
dl->pending[head] = NULL;
}
dl->head = (++head) & DRING_MASK;
--dl->count;
vb_net_capture_vbb(vb, vbb, 1, d->des0, d->container);
return vbb;
}
static void *
vb_get_completed_rxb(struct voicebus *vb, u32 *des0)
{
struct voicebus_descriptor *d;
struct voicebus_descriptor_list *dl = &vb->rxd;
unsigned int head = dl->head;
struct vbb *vbb;
d = vb_descriptor(dl, head);
if ((0 == d->buffer1) || OWNED(d))
return NULL;
vbb = dl->pending[head];
dl->head = (++head) & DRING_MASK;
d->buffer1 = 0;
--dl->count;
# ifdef VOICEBUS_NET_DEBUG
vb_net_capture_vbb(vb, vbb, 0, d->des0, d->container);
# endif
*des0 = le32_to_cpu(d->des0);
return vbb;
}
/*!
* \brief Command the hardware to check if it owns the next receive
* descriptor.
*/
static inline void
__vb_rx_demand_poll(struct voicebus *vb)
{
if (((__vb_getctl(vb, 0x0028) >> 17) & 0x7) == 0x4)
__vb_setctl(vb, 0x0010, 0x00000000);
}
static void
__vb_enable_interrupts(struct voicebus *vb)
{
if (BOOT == vb->mode)
__vb_setctl(vb, IER_CSR7, DEFAULT_NO_IDLE_INTERRUPTS);
else
__vb_setctl(vb, IER_CSR7, DEFAULT_NORMAL_INTERRUPTS);
}
static void
__vb_disable_interrupts(struct voicebus *vb)
{
__vb_setctl(vb, IER_CSR7, 0);
}
static void
vb_disable_interrupts(struct voicebus *vb)
{
unsigned long flags;
spin_lock_irqsave(&vb->lock, flags);
__vb_disable_interrupts(vb);
spin_unlock_irqrestore(&vb->lock, flags);
}
static void start_packet_processing(struct voicebus *vb)
{
u32 reg;
unsigned long flags;
spin_lock_irqsave(&vb->lock, flags);
clear_bit(VOICEBUS_STOP, &vb->flags);
clear_bit(VOICEBUS_STOPPED, &vb->flags);
#if defined(CONFIG_VOICEBUS_TIMER)
vb->timer.expires = jiffies + HZ/1000;
add_timer(&vb->timer);
#else
/* Clear the interrupt status register. */
__vb_setctl(vb, SR_CSR5, 0xffffffff);
__vb_enable_interrupts(vb);
#endif
/* Start the transmit and receive processors. */
reg = __vb_getctl(vb, 0x0030);
__vb_setctl(vb, 0x0030, reg|0x00002002);
__vb_getctl(vb, 0x0030);
__vb_rx_demand_poll(vb);
__vb_tx_demand_poll(vb);
__vb_getctl(vb, 0x0030);
spin_unlock_irqrestore(&vb->lock, flags);
}
static void vb_tasklet_boot(unsigned long data);
static void vb_tasklet_hx8(unsigned long data);
static void vb_tasklet_normal(unsigned long data);
/*!
* \brief Starts the VoiceBus interface.
*
* When the VoiceBus interface is started, it is actively transferring
* frames to and from the backend of the card. This means the card will
* generate interrupts.
*
* This function should only be called from process context, with interrupts
* enabled, since it can sleep while running the self checks.
*
* \return zero on success. -EBUSY if device is already running.
*/
int
voicebus_start(struct voicebus *vb)
{
int ret;
if (!vb_is_stopped(vb))
return -EBUSY;
if (NORMAL == vb->mode) {
tasklet_init(&vb->tasklet, vb_tasklet_normal,
(unsigned long)vb);
} else if (BOOT == vb->mode) {
tasklet_init(&vb->tasklet, vb_tasklet_boot,
(unsigned long)vb);
} else if (HX8 == vb->mode) {
tasklet_init(&vb->tasklet, vb_tasklet_hx8,
(unsigned long)vb);
} else {
return -EINVAL;
}
ret = vb_reset_interface(vb);
if (ret)
return ret;
ret = vb_initialize_interface(vb);
if (ret)
return ret;
start_packet_processing(vb);
BUG_ON(vb_is_stopped(vb));
return 0;
}
EXPORT_SYMBOL(voicebus_start);
static void vb_stop_txrx_processors(struct voicebus *vb)
{
unsigned long flags;
u32 reg;
int i;
spin_lock_irqsave(&vb->lock, flags);
reg = __vb_getctl(vb, NAR_CSR6);
reg &= ~(0x2002);
__vb_setctl(vb, NAR_CSR6, reg);
spin_unlock_irqrestore(&vb->lock, flags);
barrier();
i = 150;
while (--i && (__vb_getctl(vb, SR_CSR5) & (0x007e0000)))
udelay(100);
}
/*!
* \brief Stops the VoiceBus interface.
*
* Stops the VoiceBus interface and waits for any outstanding DMA transactions
* to complete. When this functions returns the VoiceBus interface tx and rx
* states will both be suspended.
*
* Only call this function from process context, with interrupt enabled,
* without any locks held since it sleeps.
*
* \return zero on success, -1 on error.
*/
void voicebus_stop(struct voicebus *vb)
{
static DEFINE_SEMAPHORE(stop);
down(&stop);
if (test_bit(VOICEBUS_STOP, &vb->flags) || vb_is_stopped(vb)) {
up(&stop);
return;
}
set_bit(VOICEBUS_STOP, &vb->flags);
vb_stop_txrx_processors(vb);
WARN_ON(!vb_is_stopped(vb));
set_bit(VOICEBUS_STOPPED, &vb->flags);
#if defined(CONFIG_VOICEBUS_TIMER)
del_timer_sync(&vb->timer);
#endif
vb_disable_interrupts(vb);
up(&stop);
}
EXPORT_SYMBOL(voicebus_stop);
/**
* voicebus_quiesce - Halt the voicebus interface.
* @vb: The voicebus structure to quiet
*
* This ensures that the device is not engaged in any DMA transactions or
* interrupting. It does not grab any locks since it may be called by a dying
* kernel.
*/
void voicebus_quiesce(struct voicebus *vb)
{
if (!vb)
return;
/* Reset the device */
__vb_disable_interrupts(vb);
__vb_setctl(vb, 0x0000, 0x1);
__vb_getctl(vb, 0x0000);
}
EXPORT_SYMBOL(voicebus_quiesce);
/*!
* \brief Prepare the interface for module unload.
*
* Stop the interface and free all the resources allocated by the driver. The
* caller should have returned all VoiceBus buffers to the VoiceBus layer
* before calling this function.
*
* context: !in_interrupt()
*/
void
voicebus_release(struct voicebus *vb)
{
set_bit(VOICEBUS_SHUTDOWN, &vb->flags);
#ifdef VOICEBUS_NET_DEBUG
vb_net_unregister(vb);
#endif
/* Make sure the underrun_work isn't running or going to run. */
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 22)
flush_scheduled_work();
#else
cancel_work_sync(&vb->underrun_work);
#endif
/* quiesce the hardware */
voicebus_stop(vb);
vb_reset_interface(vb);
tasklet_kill(&vb->tasklet);
#if !defined(CONFIG_VOICEBUS_TIMER)
free_irq(vb->pdev->irq, vb);
#endif
/* Cleanup memory and software resources. */
vb_free_descriptors(vb, &vb->txd);
vb_free_descriptors(vb, &vb->rxd);
if (vb->idle_vbb_dma_addr) {
dma_free_coherent(&vb->pdev->dev, VOICEBUS_SFRAME_SIZE,
vb->idle_vbb, vb->idle_vbb_dma_addr);
}
release_mem_region(pci_resource_start(vb->pdev, 1),
pci_resource_len(vb->pdev, 1));
pci_iounmap(vb->pdev, vb->iobase);
pci_clear_mwi(vb->pdev);
pci_disable_device(vb->pdev);
dma_pool_destroy(vb->pool);
}
EXPORT_SYMBOL(voicebus_release);
static void
vb_increase_latency(struct voicebus *vb, unsigned int increase,
struct list_head *buffers)
{
struct vbb *vbb;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 27)
struct vbb *n;
#endif
int i;
LIST_HEAD(local);
if (0 == increase)
return;
if (test_bit(VOICEBUS_LATENCY_LOCKED, &vb->flags))
return;
if (unlikely(increase > VOICEBUS_MAXLATENCY_BUMP))
increase = VOICEBUS_MAXLATENCY_BUMP;
if ((increase + vb->min_tx_buffer_count) > vb->max_latency)
increase = vb->max_latency - vb->min_tx_buffer_count;
/* Because there are 2 buffers in the transmit FIFO on the hardware,
* setting 3 ms of latency means that the host needs to be able to
* service the cards within 1ms. This is because the interface will
* load up 2 buffers into the TX FIFO then attempt to read the 3rd
* descriptor. If the OWN bit isn't set, then the hardware will set the
* TX descriptor not available interrupt. */
/* Set the minimum latency in case we're restarted...we don't want to
* wait for the buffer to grow to this depth again in that case. */
for (i = 0; i < increase; ++i) {
dma_addr_t dma_addr;
vbb = dma_pool_alloc(vb->pool, GFP_ATOMIC, &dma_addr);
WARN_ON(NULL == vbb);
if (likely(NULL != vbb)) {
vbb->dma_addr = dma_addr;
list_add_tail(&vbb->entry, &local);
}
}
handle_transmit(vb, &local);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 27)
list_for_each_entry_safe(vbb, n, &local, entry)
list_move_tail(&vbb->entry, buffers);
#else
list_splice_tail(&local, buffers);
#endif
/* Set the new latency (but we want to ensure that there aren't any
* printks to the console, so we don't call the function) */
vb->min_tx_buffer_count += increase;
}
static void vb_schedule_deferred(struct voicebus *vb)
{
#if !defined(CONFIG_VOICEBUS_INTERRUPT)
tasklet_hi_schedule(&vb->tasklet);
#else
vb->tasklet.func(vb->tasklet.data);
#endif
}
/**
* vb_tasklet_boot() - When vb->mode == BOOT
*
* This deferred processing routine is for hx8 boards during initialization. It
* simply services any completed tx / rx packets without any concerns about what
* the current latency is.
*/
static void vb_tasklet_boot(unsigned long data)
{
struct voicebus *vb = (struct voicebus *)data;
LIST_HEAD(buffers);
struct vbb *vbb;
const int DEFAULT_COUNT = 5;
int count = DEFAULT_COUNT;
u32 des0 = 0;
/* First, temporarily store any non-idle buffers that the hardware has
* indicated it's finished transmitting. Non idle buffers are those
* buffers that contain actual data and was filled out by the client
* driver (as of this writing, the wcte12xp or wctdm24xxp drivers) when
* passed up through the handle_transmit callback.
*
* On the other hand, idle buffers are "dummy" buffers that solely exist
* to in order to prevent the transmit descriptor ring from ever
* completely draining. */
while ((vbb = vb_get_completed_txb(vb)))
list_add_tail(&vbb->entry, &vb->tx_complete);
while (--count && !list_empty(&vb->tx_complete))
list_move_tail(vb->tx_complete.next, &buffers);
/* Prep all the new buffers for transmit before actually sending any
* of them. */
handle_transmit(vb, &buffers);
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del(&vbb->entry);
__voicebus_transmit(vb, vbb);
}
__vb_setctl(vb, 0x0008, 0x00000000);
/* If there may still be buffers in the descriptor rings, reschedule
* ourself to run again. We essentially yield here to allow any other
* cards a chance to run. */
#if !defined(CONFIG_VOICEBUS_INTERRUPT)
if (unlikely(!count && !test_bit(VOICEBUS_STOP, &vb->flags)))
vb_schedule_deferred(vb);
#endif
/* And finally, pass up any receive buffers. */
count = DEFAULT_COUNT;
while (--count && (vbb = vb_get_completed_rxb(vb, &des0))) {
if (likely((des0 & (0x7fff << 16)) ==
(VOICEBUS_SFRAME_SIZE << 16)))
list_add_tail(&vbb->entry, &buffers);
else
vb_submit_rxb(vb, vbb);
}
handle_receive(vb, &buffers);
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del(&vbb->entry);
vb_submit_rxb(vb, vbb);
}
return;
}
/**
* vb_tasklet_hx8() - When vb->mode == HX8
*
* The normal deferred processing routine for the Hx8 boards. This deferred
* processing routine doesn't configure any idle buffers and increases the
* latency when there is a hard underrun. There are not any softunderruns here,
* unlike in vb_tasklet_normal.
*/
static void vb_tasklet_hx8(unsigned long data)
{
struct voicebus *vb = (struct voicebus *)data;
int hardunderrun;
LIST_HEAD(buffers);
struct vbb *vbb;
const int DEFAULT_COUNT = 5;
int count = DEFAULT_COUNT;
u32 des0 = 0;
hardunderrun = test_and_clear_bit(VOICEBUS_HARD_UNDERRUN, &vb->flags);
/* First, temporarily store any non-idle buffers that the hardware has
* indicated it's finished transmitting. Non idle buffers are those
* buffers that contain actual data and was filled out by the client
* driver (as of this writing, the wcte12xp or wctdm24xxp drivers) when
* passed up through the handle_transmit callback.
*
* On the other hand, idle buffers are "dummy" buffers that solely exist
* to in order to prevent the transmit descriptor ring from ever
* completely draining. */
while ((vbb = vb_get_completed_txb(vb)))
list_add_tail(&vbb->entry, &vb->tx_complete);
while (--count && !list_empty(&vb->tx_complete))
list_move_tail(vb->tx_complete.next, &buffers);
/* Prep all the new buffers for transmit before actually sending any
* of them. */
handle_transmit(vb, &buffers);
if (unlikely(hardunderrun))
vb_increase_latency(vb, 1, &buffers);
/* Now we can send all our buffers together in a group. */
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del(&vbb->entry);
__voicebus_transmit(vb, vbb);
}
__vb_setctl(vb, 0x0008, 0x00000000);
/* Print any messages about soft latency bumps after we fix the transmit
* descriptor ring. Otherwise it's possible to take so much time
* printing the dmesg output that we lose the lead that we got on the
* hardware, resulting in a hard underrun condition. */
if (unlikely(hardunderrun)) {
#if !defined(CONFIG_VOICEBUS_SYSFS)
if (!test_bit(VOICEBUS_LATENCY_LOCKED, &vb->flags) &&
printk_ratelimit()) {
if (vb->max_latency != vb->min_tx_buffer_count) {
dev_info(&vb->pdev->dev, "Missed interrupt. "
"Increasing latency to %d ms in "
"order to compensate.\n",
vb->min_tx_buffer_count);
} else {
dev_info(&vb->pdev->dev, "ERROR: Unable to "
"service card within %d ms and "
"unable to further increase "
"latency.\n", vb->max_latency);
}
}
#endif
}
#if !defined(CONFIG_VOICEBUS_INTERRUPT)
/* If there may still be buffers in the descriptor rings, reschedule
* ourself to run again. We essentially yield here to allow any other
* cards a chance to run. */
if (unlikely(!count && !test_bit(VOICEBUS_STOP, &vb->flags)))
vb_schedule_deferred(vb);
#endif
/* And finally, pass up any receive buffers. */
count = DEFAULT_COUNT;
while (--count && (vbb = vb_get_completed_rxb(vb, &des0))) {
if (((des0 >> 16) & 0x7fff) == VOICEBUS_SFRAME_SIZE)
list_add_tail(&vbb->entry, &buffers);
else
vb_submit_rxb(vb, vbb);
}
handle_receive(vb, &buffers);
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del(&vbb->entry);
vb_submit_rxb(vb, vbb);
}
return;
}
/**
* vb_tasklet_relaxed() - When vb->mode == NORMAL
*
* This is the standard deferred processing routine for CPLD based cards
* (essentially the non-hx8 cards).
*/
static void vb_tasklet_normal(unsigned long data)
{
struct voicebus *vb = (struct voicebus *)data;
int softunderrun;
LIST_HEAD(buffers);
struct vbb *vbb;
struct voicebus_descriptor_list *const dl = &vb->txd;
struct voicebus_descriptor *d;
int behind = 0;
const int DEFAULT_COUNT = 5;
int count = DEFAULT_COUNT;
u32 des0 = 0;
BUG_ON(NORMAL != vb->mode);
/* First, temporarily store any non-idle buffers that the hardware has
* indicated it's finished transmitting. Non idle buffers are those
* buffers that contain actual data and was filled out by the client
* driver (as of this writing, the wcte12xp or wctdm24xxp drivers) when
* passed up through the handle_transmit callback.
*
* On the other hand, idle buffers are "dummy" buffers that solely exist
* to in order to prevent the transmit descriptor ring from ever
* completely draining. */
while ((vbb = vb_get_completed_txb(vb)))
list_add_tail(&vbb->entry, &vb->tx_complete);
if (unlikely(dl->count < 2)) {
softunderrun = 1;
d = vb_descriptor(dl, dl->head);
if (1 == dl->count)
return;
behind = 2;
while (!OWNED(d)) {
if (le32_to_cpu(d->buffer1) != vb->idle_vbb_dma_addr)
goto tx_error_exit;
SET_OWNED(d);
dl->head = (dl->head + 1) & DRING_MASK;
d = vb_descriptor(dl, dl->head);
++behind;
}
} else {
softunderrun = 0;
}
while (--count && !list_empty(&vb->tx_complete))
list_move_tail(vb->tx_complete.next, &buffers);
/* Prep all the new buffers for transmit before actually sending any
* of them. */
handle_transmit(vb, &buffers);
if (unlikely(softunderrun)) {
int i;
unsigned long flags;
/* Disable interrupts on the local processor. We don't want
* the following process interrupted. We're 'racing' against
* the hardware here.... */
local_irq_save(flags);
vb_increase_latency(vb, behind, &buffers);
d = vb_descriptor(dl, dl->head);
while (!OWNED(d)) {
if (le32_to_cpu(d->buffer1) != vb->idle_vbb_dma_addr) {
local_irq_restore(flags);
goto tx_error_exit;
}
SET_OWNED(d);
dl->head = (dl->head + 1) & DRING_MASK;
d = vb_descriptor(dl, dl->head);
++behind;
}
/* Now we'll get a little further ahead of the hardware. */
for (i = 0; i < 5; ++i) {
d = vb_descriptor(dl, dl->head);
d->buffer1 = cpu_to_le32(vb->idle_vbb_dma_addr);
dl->pending[dl->head] = vb->idle_vbb;
d->des0 |= OWN_BIT;
dl->head = (dl->head + 1) & DRING_MASK;
}
dl->tail = dl->head;
local_irq_restore(flags);
}
d = vb_descriptor(dl, dl->tail);
if (le32_to_cpu(d->buffer1) != vb->idle_vbb_dma_addr)
goto tx_error_exit;
/* Now we can send all our buffers together in a group. */
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del(&vbb->entry);
__voicebus_transmit(vb, vbb);
}
writel(0, vb->iobase + 0x8);
/* Print any messages about soft latency bumps after we fix the transmit
* descriptor ring. Otherwise it's possible to take so much time
* printing the dmesg output that we lose the lead that we got on the
* hardware, resulting in a hard underrun condition. */
if (unlikely(softunderrun)) {
#if !defined(CONFIG_VOICEBUS_SYSFS)
if (!test_bit(VOICEBUS_LATENCY_LOCKED, &vb->flags) &&
printk_ratelimit()) {
if (vb->max_latency != vb->min_tx_buffer_count) {
dev_info(&vb->pdev->dev, "Missed interrupt. "
"Increasing latency to %d ms in "
"order to compensate.\n",
vb->min_tx_buffer_count);
} else {
dev_info(&vb->pdev->dev, "ERROR: Unable to "
"service card within %d ms and "
"unable to further increase "
"latency.\n", vb->max_latency);
}
}
#endif
}
#if !defined(CONFIG_VOICEBUS_INTERRUPT)
/* If there may still be buffers in the descriptor rings, reschedule
* ourself to run again. We essentially yield here to allow any other
* cards a chance to run. */
if (unlikely(!count && !test_bit(VOICEBUS_STOP, &vb->flags)))
vb_schedule_deferred(vb);
#endif
/* And finally, pass up any receive buffers. */
count = DEFAULT_COUNT;
while (--count && (vbb = vb_get_completed_rxb(vb, &des0))) {
if (((des0 >> 16) & 0x7fff) == VOICEBUS_SFRAME_SIZE)
list_add_tail(&vbb->entry, &buffers);
else
vb_submit_rxb(vb, vbb);
}
handle_receive(vb, &buffers);
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del(&vbb->entry);
vb_submit_rxb(vb, vbb);
}
return;
tx_error_exit:
vb_disable_interrupts(vb);
schedule_work(&vb->underrun_work);
while (!list_empty(&buffers)) {
vbb = list_entry(buffers.next, struct vbb, entry);
list_del(&vbb->entry);
dma_pool_free(vb->pool, vbb, vbb->dma_addr);
}
return;
}
/**
* handle_hardunderrun() - reset the AN983 after experiencing a hardunderrun.
* @work: The work_struct used to queue this function.
*
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void handle_hardunderrun(void *data)
{
struct voicebus *vb = data;
#else
static void handle_hardunderrun(struct work_struct *work)
{
struct voicebus *vb = container_of(work, struct voicebus,
underrun_work);
#endif
if (test_bit(VOICEBUS_STOP, &vb->flags) ||
test_bit(VOICEBUS_STOPPED, &vb->flags))
return;
voicebus_stop(vb);
if (!test_bit(VOICEBUS_SHUTDOWN, &vb->flags)) {
if (printk_ratelimit()) {
dev_info(&vb->pdev->dev, "Host failed to service "
"card interrupt within %d ms which is a "
"hardunderun.\n", DRING_SIZE);
}
if (vb->ops->handle_error)
vb->ops->handle_error(vb);
vb_disable_deferred(vb);
setup_descriptors(vb);
start_packet_processing(vb);
vb_enable_deferred(vb);
}
}
/*!
* \brief Interrupt handler for VoiceBus interface.
*
* NOTE: This handler is optimized for the case where only a single interrupt
* condition will be generated at a time.
*
* ALSO NOTE: Only access the interrupt status register from this function
* since it doesn't employ any locking on the voicebus interface.
*/
static irqreturn_t
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
vb_isr(int irq, void *dev_id, struct pt_regs *regs)
#else
vb_isr(int irq, void *dev_id)
#endif
{
struct voicebus *vb = dev_id;
u32 int_status;
int_status = __vb_getctl(vb, SR_CSR5);
/* Mask out the reserved bits. */
int_status &= ~(0xfc004010);
int_status &= 0x7fff;
if (!int_status)
return IRQ_NONE;
if (unlikely((int_status &
(TX_UNAVAILABLE_INTERRUPT|RX_UNAVAILABLE_INTERRUPT)) &&
!test_bit(VOICEBUS_STOP, &vb->flags) &&
(BOOT != vb->mode))) {
if (NORMAL == vb->mode) {
__vb_disable_interrupts(vb);
__vb_setctl(vb, SR_CSR5, int_status);
schedule_work(&vb->underrun_work);
} else if (HX8 == vb->mode) {
set_bit(VOICEBUS_HARD_UNDERRUN, &vb->flags);
vb_schedule_deferred(vb);
__vb_setctl(vb, SR_CSR5, int_status);
}
} else if (likely(int_status &
(TX_COMPLETE_INTERRUPT|RX_COMPLETE_INTERRUPT))) {
/* ******************************************************** */
/* NORMAL INTERRUPT CASE */
/* ******************************************************** */
vb_schedule_deferred(vb);
__vb_setctl(vb, SR_CSR5, TX_COMPLETE_INTERRUPT|RX_COMPLETE_INTERRUPT);
} else {
if (int_status & FATAL_BUS_ERROR_INTERRUPT)
dev_err(&vb->pdev->dev, "Fatal Bus Error detected!\n");
if (int_status & TX_STOPPED_INTERRUPT) {
BUG_ON(!test_bit(VOICEBUS_STOP, &vb->flags));
if (__vb_is_stopped(vb)) {
__vb_disable_interrupts(vb);
}
}
if (int_status & RX_STOPPED_INTERRUPT) {
BUG_ON(!test_bit(VOICEBUS_STOP, &vb->flags));
if (__vb_is_stopped(vb)) {
__vb_disable_interrupts(vb);
}
}
/* Clear the interrupt(s) */
__vb_setctl(vb, SR_CSR5, int_status);
}
return IRQ_HANDLED;
}
#if defined(CONFIG_VOICEBUS_TIMER)
/*! \brief Called if the deferred processing is to happen in the context of
* the timer.
*/
static void
vb_timer(unsigned long data)
{
unsigned long start = jiffies;
struct voicebus *vb = (struct voicebus *)data;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
vb_isr(0, vb, 0);
#else
vb_isr(0, vb);
#endif
if (!test_bit(VOICEBUS_STOPPED, &vb->flags)) {
vb->timer.expires = start + HZ/1000;
add_timer(&vb->timer);
}
}
#endif
/*!
* \brief Initalize the voicebus interface.
*
* This function must be called in process context since it may sleep.
* \todo Complete this description.
*/
int
__voicebus_init(struct voicebus *vb, const char *board_name,
enum voicebus_mode mode)
{
int retval = 0;
int reserved_iomem = 0;
BUG_ON(NULL == vb);
BUG_ON(NULL == board_name);
BUG_ON(NULL == vb->ops);
BUG_ON(NULL == vb->pdev);
BUG_ON(NULL == vb->debug);
/* ----------------------------------------------------------------
Initialize the pure software constructs.
---------------------------------------------------------------- */
vb->max_latency = VOICEBUS_DEFAULT_MAXLATENCY;
spin_lock_init(&vb->lock);
set_bit(VOICEBUS_STOP, &vb->flags);
if ((NORMAL != mode) && (BOOT != mode) && (HX8 != mode))
return -EINVAL;
vb->mode = mode;
vb->min_tx_buffer_count = VOICEBUS_DEFAULT_LATENCY;
INIT_LIST_HEAD(&vb->tx_complete);
INIT_LIST_HEAD(&vb->free_rx);
#if defined(CONFIG_VOICEBUS_TIMER)
init_timer(&vb->timer);
vb->timer.function = vb_timer;
vb->timer.data = (unsigned long)vb;
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&vb->underrun_work, handle_hardunderrun, vb);
#else
INIT_WORK(&vb->underrun_work, handle_hardunderrun);
#endif
/* ----------------------------------------------------------------
Configure the hardware / kernel module interfaces.
---------------------------------------------------------------- */
if (pci_set_dma_mask(vb->pdev, DMA_BIT_MASK(32))) {
dev_err(&vb->pdev->dev, "No suitable DMA available.\n");
goto cleanup;
}
if (pci_enable_device(vb->pdev)) {
dev_err(&vb->pdev->dev, "Failed call to pci_enable_device.\n");
retval = -EIO;
goto cleanup;
}
if (0 == (pci_resource_flags(vb->pdev, 0)&IORESOURCE_IO)) {
dev_err(&vb->pdev->dev, "BAR0 is not IO Memory.\n");
retval = -EIO;
goto cleanup;
}
vb->iobase = pci_iomap(vb->pdev, 1, 0);
if (request_mem_region(pci_resource_start(vb->pdev, 1),
pci_resource_len(vb->pdev, 1),
board_name)) {
reserved_iomem = 1;
} else {
dev_err(&vb->pdev->dev, "IO Registers are in use by another "
"module.\n");
if (!(*vb->debug)) {
retval = -EIO;
goto cleanup;
}
}
vb->pool = dma_pool_create(board_name, &vb->pdev->dev,
sizeof(struct vbb), 64, 0);
if (!vb->pool) {
retval = -ENOMEM;
goto cleanup;
}
vb->idle_vbb = dma_alloc_coherent(&vb->pdev->dev, VOICEBUS_SFRAME_SIZE,
&vb->idle_vbb_dma_addr, GFP_KERNEL);
/* ----------------------------------------------------------------
Configure the hardware interface.
---------------------------------------------------------------- */
if (pci_set_dma_mask(vb->pdev, DMA_BIT_MASK(32))) {
dev_warn(&vb->pdev->dev, "No suitable DMA available.\n");
goto cleanup;
}
retval = pci_set_mwi(vb->pdev);
if (retval) {
dev_warn(&vb->pdev->dev, "Failed to set Memory-Write " \
"Invalidate Command Bit..\n");
}
pci_set_master(vb->pdev);
if (vb_reset_interface(vb)) {
retval = -EIO;
dev_warn(&vb->pdev->dev, "Failed reset.\n");
goto cleanup;
}
retval = vb_initialize_tx_descriptors(vb);
if (retval)
goto cleanup;
retval = vb_initialize_rx_descriptors(vb);
if (retval)
goto cleanup;
#if !defined(CONFIG_VOICEBUS_TIMER)
retval = request_irq(vb->pdev->irq, vb_isr, DAHDI_IRQ_SHARED,
board_name, vb);
if (retval) {
dev_warn(&vb->pdev->dev, "Failed to request interrupt line.\n");
goto cleanup;
}
#endif
#ifdef VOICEBUS_NET_DEBUG
vb_net_register(vb, board_name);
#endif
return retval;
cleanup:
tasklet_kill(&vb->tasklet);
if (vb->pool)
dma_pool_destroy(vb->pool);
/* Cleanup memory and software resources. */
if (vb->txd.desc)
vb_free_descriptors(vb, &vb->txd);
if (vb->rxd.desc)
vb_free_descriptors(vb, &vb->rxd);
dma_free_coherent(&vb->pdev->dev, VOICEBUS_SFRAME_SIZE,
vb->idle_vbb, vb->idle_vbb_dma_addr);
if (vb->iobase)
pci_iounmap(vb->pdev, vb->iobase);
if (vb->pdev)
pci_disable_device(vb->pdev);
if (reserved_iomem) {
release_mem_region(pci_resource_start(vb->pdev, 1),
pci_resource_len(vb->pdev, 1));
}
if (0 == retval)
retval = -EIO;
return retval;
}
EXPORT_SYMBOL(__voicebus_init);
static spinlock_t loader_list_lock;
static LIST_HEAD(binary_loader_list);
/**
* vpmadtreg_loadfirmware - Load the vpmadt032 firmware.
* @vb: The voicebus device to load.
*/
int vpmadtreg_loadfirmware(struct voicebus *vb)
{
struct vpmadt_loader *loader;
int ret = 0;
int loader_present = 0;
unsigned long stop;
might_sleep();
/* First check to see if a loader is already loaded into memory. */
spin_lock(&loader_list_lock);
loader_present = !(list_empty(&binary_loader_list));
spin_unlock(&loader_list_lock);
if (!loader_present) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 30)
ret = request_module("dahdi_vpmadt032_loader");
#else
/* If we use the blocking 'request_module' here and we are
* loading the client boards with async_schedule we will hang
* here. The module loader will wait for our asynchronous tasks
* to finish, but we can't because we're waiting for the load
* the finish. */
ret = request_module_nowait("dahdi_vpmadt032_loader");
#endif
if (ret)
return ret;
stop = jiffies + HZ;
while (time_after(stop, jiffies)) {
spin_lock(&loader_list_lock);
loader_present = !(list_empty(&binary_loader_list));
spin_unlock(&loader_list_lock);
if (loader_present)
break;
msleep(10);
}
}
spin_lock(&loader_list_lock);
if (!list_empty(&binary_loader_list)) {
loader = list_entry(binary_loader_list.next,
struct vpmadt_loader, node);
if (try_module_get(loader->owner)) {
spin_unlock(&loader_list_lock);
ret = loader->load(vb);
module_put(loader->owner);
} else {
spin_unlock(&loader_list_lock);
dev_info(&vb->pdev->dev, "Failed to find a "
"registered loader after loading module.\n");
ret = -ENODEV;
}
} else {
spin_unlock(&loader_list_lock);
dev_info(&vb->pdev->dev, "Failed to find a registered "
"loader after loading module.\n");
ret = -ENODEV;
}
return ret;
}
/* Called by the binary loader module when it is ready to start loading
* firmware. */
int vpmadtreg_register(struct vpmadt_loader *loader)
{
spin_lock(&loader_list_lock);
list_add_tail(&loader->node, &binary_loader_list);
spin_unlock(&loader_list_lock);
return 0;
}
EXPORT_SYMBOL(vpmadtreg_register);
int vpmadtreg_unregister(struct vpmadt_loader *loader)
{
int removed = 0;
struct vpmadt_loader *cur, *temp;
list_for_each_entry_safe(cur, temp, &binary_loader_list, node) {
if (loader == cur) {
list_del_init(&cur->node);
removed = 1;
break;
}
}
WARN_ON(!removed);
return 0;
}
EXPORT_SYMBOL(vpmadtreg_unregister);
static int __init voicebus_module_init(void)
{
/* This registration with dahdi.ko will fail since the span is not
* defined, but it will make sure that this module is a dependency of
* dahdi.ko, so that when it is being unloded, this module will be
* unloaded as well. */
dahdi_register(NULL, 0);
spin_lock_init(&loader_list_lock);
return 0;
}
static void __exit voicebus_module_cleanup(void)
{
WARN_ON(!list_empty(&binary_loader_list));
}
MODULE_DESCRIPTION("Voicebus Interface w/VPMADT032 support");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_LICENSE("GPL");
module_init(voicebus_module_init);
module_exit(voicebus_module_cleanup);