dahdi-linux/drivers/dahdi/wctdm.c
Shaun Ruffell bf3fe05dfb wct4xxp: Moving the transmit short detection behind debug module param.
This needs some more testing before it's on by default.  If the card is
otherwise functioning, these messages may be confusing to the user.  If
the card is not functioning, the driver can be reloaded with debug to
check for this condition.

Signed-off-by: Shaun Ruffell <sruffell@digium.com>

git-svn-id: http://svn.asterisk.org/svn/dahdi/linux/trunk@9205 a0bf4364-ded3-4de4-8d8a-66a801d63aff
2010-08-27 21:59:27 +00:00

2859 lines
81 KiB
C

/*
* Wildcard TDM400P TDM FXS/FXO Interface Driver for DAHDI Telephony interface
*
* Written by Mark Spencer <markster@digium.com>
* Matthew Fredrickson <creslin@digium.com>
*
* Copyright (C) 2001-2008, Digium, Inc.
*
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <asm/io.h>
#include "proslic.h"
/*
* Define for audio vs. register based ring detection
*
*/
/* #define AUDIO_RINGCHECK */
/*
Experimental max loop current limit for the proslic
Loop current limit is from 20 mA to 41 mA in steps of 3
(according to datasheet)
So set the value below to:
0x00 : 20mA (default)
0x01 : 23mA
0x02 : 26mA
0x03 : 29mA
0x04 : 32mA
0x05 : 35mA
0x06 : 37mA
0x07 : 41mA
*/
static int loopcurrent = 20;
#define POLARITY_XOR (\
(reversepolarity != 0) ^ (fxs->reversepolarity != 0) ^\
(fxs->vmwi_lrev != 0) ^\
((fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVAC) != 0))
static int reversepolarity = 0;
static alpha indirect_regs[] =
{
{0,255,"DTMF_ROW_0_PEAK",0x55C2},
{1,255,"DTMF_ROW_1_PEAK",0x51E6},
{2,255,"DTMF_ROW2_PEAK",0x4B85},
{3,255,"DTMF_ROW3_PEAK",0x4937},
{4,255,"DTMF_COL1_PEAK",0x3333},
{5,255,"DTMF_FWD_TWIST",0x0202},
{6,255,"DTMF_RVS_TWIST",0x0202},
{7,255,"DTMF_ROW_RATIO_TRES",0x0198},
{8,255,"DTMF_COL_RATIO_TRES",0x0198},
{9,255,"DTMF_ROW_2ND_ARM",0x0611},
{10,255,"DTMF_COL_2ND_ARM",0x0202},
{11,255,"DTMF_PWR_MIN_TRES",0x00E5},
{12,255,"DTMF_OT_LIM_TRES",0x0A1C},
{13,0,"OSC1_COEF",0x7B30},
{14,1,"OSC1X",0x0063},
{15,2,"OSC1Y",0x0000},
{16,3,"OSC2_COEF",0x7870},
{17,4,"OSC2X",0x007D},
{18,5,"OSC2Y",0x0000},
{19,6,"RING_V_OFF",0x0000},
{20,7,"RING_OSC",0x7EF0},
{21,8,"RING_X",0x0160},
{22,9,"RING_Y",0x0000},
{23,255,"PULSE_ENVEL",0x2000},
{24,255,"PULSE_X",0x2000},
{25,255,"PULSE_Y",0x0000},
//{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower
{26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower
{27,14,"XMIT_DIGITAL_GAIN",0x4000},
//{27,14,"XMIT_DIGITAL_GAIN",0x2000},
{28,15,"LOOP_CLOSE_TRES",0x1000},
{29,16,"RING_TRIP_TRES",0x3600},
{30,17,"COMMON_MIN_TRES",0x1000},
{31,18,"COMMON_MAX_TRES",0x0200},
{32,19,"PWR_ALARM_Q1Q2",0x07C0},
{33,20,"PWR_ALARM_Q3Q4",0x2600},
{34,21,"PWR_ALARM_Q5Q6",0x1B80},
{35,22,"LOOP_CLOSURE_FILTER",0x8000},
{36,23,"RING_TRIP_FILTER",0x0320},
{37,24,"TERM_LP_POLE_Q1Q2",0x008C},
{38,25,"TERM_LP_POLE_Q3Q4",0x0100},
{39,26,"TERM_LP_POLE_Q5Q6",0x0010},
{40,27,"CM_BIAS_RINGING",0x0C00},
{41,64,"DCDC_MIN_V",0x0C00},
{42,255,"DCDC_XTRA",0x1000},
{43,66,"LOOP_CLOSE_TRES_LOW",0x1000},
};
#include <dahdi/kernel.h>
#include <dahdi/wctdm_user.h>
#include "fxo_modes.h"
#define NUM_FXO_REGS 60
#define WC_MAX_IFACES 128
#define WC_CNTL 0x00
#define WC_OPER 0x01
#define WC_AUXC 0x02
#define WC_AUXD 0x03
#define WC_MASK0 0x04
#define WC_MASK1 0x05
#define WC_INTSTAT 0x06
#define WC_AUXR 0x07
#define WC_DMAWS 0x08
#define WC_DMAWI 0x0c
#define WC_DMAWE 0x10
#define WC_DMARS 0x18
#define WC_DMARI 0x1c
#define WC_DMARE 0x20
#define WC_AUXFUNC 0x2b
#define WC_SERCTL 0x2d
#define WC_FSCDELAY 0x2f
#define WC_REGBASE 0xc0
#define WC_SYNC 0x0
#define WC_TEST 0x1
#define WC_CS 0x2
#define WC_VER 0x3
#define BIT_CS (1 << 2)
#define BIT_SCLK (1 << 3)
#define BIT_SDI (1 << 4)
#define BIT_SDO (1 << 5)
#define FLAG_EMPTY 0
#define FLAG_WRITE 1
#define FLAG_READ 2
#define DEFAULT_RING_DEBOUNCE 64 /* Ringer Debounce (64 ms) */
#define POLARITY_DEBOUNCE 64 /* Polarity debounce (64 ms) */
#define OHT_TIMER 6000 /* How long after RING to retain OHT */
/* NEON MWI pulse width - Make larger for longer period time
* For more information on NEON MWI generation using the proslic
* refer to Silicon Labs App Note "AN33-SI321X NEON FLASHING"
* RNGY = RNGY 1/2 * Period * 8000
*/
#define NEON_MWI_RNGY_PULSEWIDTH 0x3e8 /*=> period of 250 mS */
#define FLAG_3215 (1 << 0)
#define NUM_CARDS 4
#define MAX_ALARMS 10
#define MOD_TYPE_FXS 0
#define MOD_TYPE_FXO 1
#define MINPEGTIME 10 * 8 /* 30 ms peak to peak gets us no more than 100 Hz */
#define PEGTIME 50 * 8 /* 50ms peak to peak gets us rings of 10 Hz or more */
#define PEGCOUNT 5 /* 5 cycles of pegging means RING */
#define NUM_CAL_REGS 12
struct calregs {
unsigned char vals[NUM_CAL_REGS];
};
enum proslic_power_warn {
PROSLIC_POWER_UNKNOWN = 0,
PROSLIC_POWER_ON,
PROSLIC_POWER_WARNED,
};
enum battery_state {
BATTERY_UNKNOWN = 0,
BATTERY_PRESENT,
BATTERY_LOST,
};
struct wctdm {
struct pci_dev *dev;
char *variety;
struct dahdi_span span;
unsigned char ios;
int usecount;
unsigned int intcount;
int dead;
int pos;
int flags[NUM_CARDS];
int freeregion;
int alt;
int curcard;
int cardflag; /* Bit-map of present cards */
enum proslic_power_warn proslic_power;
spinlock_t lock;
union {
struct fxo {
#ifdef AUDIO_RINGCHECK
unsigned int pegtimer;
int pegcount;
int peg;
int ring;
#else
int wasringing;
int lastrdtx;
#endif
int ringdebounce;
int offhook;
unsigned int battdebounce;
unsigned int battalarm;
enum battery_state battery;
int lastpol;
int polarity;
int polaritydebounce;
} fxo;
struct fxs {
int oldrxhook;
int debouncehook;
int lastrxhook;
int debounce;
int ohttimer;
int idletxhookstate; /* IDLE changing hook state */
int lasttxhook;
int palarms;
int reversepolarity; /* Reverse Line */
int mwisendtype;
struct dahdi_vmwi_info vmwisetting;
int vmwi_active_messages;
u32 vmwi_lrev:1; /*MWI Line Reversal*/
u32 vmwi_hvdc:1; /*MWI High Voltage DC Idle line*/
u32 vmwi_hvac:1; /*MWI Neon High Voltage AC Idle line*/
u32 neonringing:1; /*Ring Generator is set for NEON*/
struct calregs calregs;
} fxs;
} mod[NUM_CARDS];
/* Receive hook state and debouncing */
int modtype[NUM_CARDS];
unsigned char reg0shadow[NUM_CARDS];
unsigned char reg1shadow[NUM_CARDS];
unsigned long ioaddr;
dma_addr_t readdma;
dma_addr_t writedma;
volatile unsigned int *writechunk; /* Double-word aligned write memory */
volatile unsigned int *readchunk; /* Double-word aligned read memory */
struct dahdi_chan _chans[NUM_CARDS];
struct dahdi_chan *chans[NUM_CARDS];
};
struct wctdm_desc {
char *name;
int flags;
};
static struct wctdm_desc wctdm = { "Wildcard S400P Prototype", 0 };
static struct wctdm_desc wctdme = { "Wildcard TDM400P REV E/F", 0 };
static struct wctdm_desc wctdmh = { "Wildcard TDM400P REV H", 0 };
static struct wctdm_desc wctdmi = { "Wildcard TDM400P REV I", 0 };
static int acim2tiss[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 };
static struct wctdm *ifaces[WC_MAX_IFACES];
static void wctdm_release(struct wctdm *wc);
static unsigned int fxovoltage;
static unsigned int battdebounce;
static unsigned int battalarm;
static unsigned int battthresh;
static int ringdebounce = DEFAULT_RING_DEBOUNCE;
/* times 4, because must be a multiple of 4ms: */
static int dialdebounce = 8 * 8;
static int fwringdetect = 0;
static int debug = 0;
static int robust = 0;
static int timingonly = 0;
static int lowpower = 0;
static int boostringer = 0;
static int fastringer = 0;
static int _opermode = 0;
static char *opermode = "FCC";
static int fxshonormode = 0;
static int alawoverride = 0;
static int fastpickup = 0;
static int fxotxgain = 0;
static int fxorxgain = 0;
static int fxstxgain = 0;
static int fxsrxgain = 0;
static int wctdm_init_proslic(struct wctdm *wc, int card, int fast , int manual, int sane);
static int wctdm_init_ring_generator_mode(struct wctdm *wc, int card);
static int wctdm_set_ring_generator_mode(struct wctdm *wc, int card, int mode);
static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char ints)
{
volatile unsigned int *writechunk;
int x;
if (ints & 0x01)
/* Write is at interrupt address. Start writing from normal offset */
writechunk = wc->writechunk;
else
writechunk = wc->writechunk + DAHDI_CHUNKSIZE;
/* Calculate Transmission */
dahdi_transmit(&wc->span);
for (x=0;x<DAHDI_CHUNKSIZE;x++) {
/* Send a sample, as a 32-bit word */
writechunk[x] = 0;
#ifdef __BIG_ENDIAN
if (wc->cardflag & (1 << 3))
writechunk[x] |= (wc->chans[3]->writechunk[x]);
if (wc->cardflag & (1 << 2))
writechunk[x] |= (wc->chans[2]->writechunk[x] << 8);
if (wc->cardflag & (1 << 1))
writechunk[x] |= (wc->chans[1]->writechunk[x] << 16);
if (wc->cardflag & (1 << 0))
writechunk[x] |= (wc->chans[0]->writechunk[x] << 24);
#else
if (wc->cardflag & (1 << 3))
writechunk[x] |= (wc->chans[3]->writechunk[x] << 24);
if (wc->cardflag & (1 << 2))
writechunk[x] |= (wc->chans[2]->writechunk[x] << 16);
if (wc->cardflag & (1 << 1))
writechunk[x] |= (wc->chans[1]->writechunk[x] << 8);
if (wc->cardflag & (1 << 0))
writechunk[x] |= (wc->chans[0]->writechunk[x]);
#endif
}
}
#ifdef AUDIO_RINGCHECK
static inline void ring_check(struct wctdm *wc, int card)
{
int x;
short sample;
if (wc->modtype[card] != MOD_TYPE_FXO)
return;
wc->mod[card].fxo.pegtimer += DAHDI_CHUNKSIZE;
for (x=0;x<DAHDI_CHUNKSIZE;x++) {
/* Look for pegging to indicate ringing */
sample = DAHDI_XLAW(wc->chans[card].readchunk[x], (&(wc->chans[card])));
if ((sample > 10000) && (wc->mod[card].fxo.peg != 1)) {
if (debug > 1) printk(KERN_DEBUG "High peg!\n");
if ((wc->mod[card].fxo.pegtimer < PEGTIME) && (wc->mod[card].fxo.pegtimer > MINPEGTIME))
wc->mod[card].fxo.pegcount++;
wc->mod[card].fxo.pegtimer = 0;
wc->mod[card].fxo.peg = 1;
} else if ((sample < -10000) && (wc->mod[card].fxo.peg != -1)) {
if (debug > 1) printk(KERN_DEBUG "Low peg!\n");
if ((wc->mod[card].fxo.pegtimer < (PEGTIME >> 2)) && (wc->mod[card].fxo.pegtimer > (MINPEGTIME >> 2)))
wc->mod[card].fxo.pegcount++;
wc->mod[card].fxo.pegtimer = 0;
wc->mod[card].fxo.peg = -1;
}
}
if (wc->mod[card].fxo.pegtimer > PEGTIME) {
/* Reset pegcount if our timer expires */
wc->mod[card].fxo.pegcount = 0;
}
/* Decrement debouncer if appropriate */
if (wc->mod[card].fxo.ringdebounce)
wc->mod[card].fxo.ringdebounce--;
if (!wc->mod[card].fxo.offhook && !wc->mod[card].fxo.ringdebounce) {
if (!wc->mod[card].fxo.ring && (wc->mod[card].fxo.pegcount > PEGCOUNT)) {
/* It's ringing */
if (debug)
printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
if (!wc->mod[card].fxo.offhook)
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
wc->mod[card].fxo.ring = 1;
}
if (wc->mod[card].fxo.ring && !wc->mod[card].fxo.pegcount) {
/* No more ring */
if (debug)
printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
wc->mod[card].fxo.ring = 0;
}
}
}
#endif
static inline void wctdm_receiveprep(struct wctdm *wc, unsigned char ints)
{
volatile unsigned int *readchunk;
int x;
if (ints & 0x08)
readchunk = wc->readchunk + DAHDI_CHUNKSIZE;
else
/* Read is at interrupt address. Valid data is available at normal offset */
readchunk = wc->readchunk;
for (x=0;x<DAHDI_CHUNKSIZE;x++) {
#ifdef __BIG_ENDIAN
if (wc->cardflag & (1 << 3))
wc->chans[3]->readchunk[x] = (readchunk[x]) & 0xff;
if (wc->cardflag & (1 << 2))
wc->chans[2]->readchunk[x] = (readchunk[x] >> 8) & 0xff;
if (wc->cardflag & (1 << 1))
wc->chans[1]->readchunk[x] = (readchunk[x] >> 16) & 0xff;
if (wc->cardflag & (1 << 0))
wc->chans[0]->readchunk[x] = (readchunk[x] >> 24) & 0xff;
#else
if (wc->cardflag & (1 << 3))
wc->chans[3]->readchunk[x] = (readchunk[x] >> 24) & 0xff;
if (wc->cardflag & (1 << 2))
wc->chans[2]->readchunk[x] = (readchunk[x] >> 16) & 0xff;
if (wc->cardflag & (1 << 1))
wc->chans[1]->readchunk[x] = (readchunk[x] >> 8) & 0xff;
if (wc->cardflag & (1 << 0))
wc->chans[0]->readchunk[x] = (readchunk[x]) & 0xff;
#endif
}
#ifdef AUDIO_RINGCHECK
for (x=0;x<wc->cards;x++)
ring_check(wc, x);
#endif
/* XXX We're wasting 8 taps. We should get closer :( */
for (x = 0; x < NUM_CARDS; x++) {
if (wc->cardflag & (1 << x))
dahdi_ec_chunk(wc->chans[x], wc->chans[x]->readchunk, wc->chans[x]->writechunk);
}
dahdi_receive(&wc->span);
}
static void wctdm_stop_dma(struct wctdm *wc);
static void wctdm_reset_tdm(struct wctdm *wc);
static void wctdm_restart_dma(struct wctdm *wc);
static inline void __write_8bits(struct wctdm *wc, unsigned char bits)
{
/* Out BIT_CS --\________________________________/---- */
/* Out BIT_SCLK ---\_/-\_/-\_/-\_/-\_/-\_/-\_/-\_/------ */
/* Out BIT_SDI ---\___/---\___/---\___/---\___/-------- */
/* Data Bit 7 6 5 4 3 2 1 0 */
/* Data written 0 1 0 1 0 1 0 1 */
int x;
/* Drop chip select */
wc->ios &= ~BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
for (x=0;x<8;x++) {
/* Send out each bit, MSB first, drop SCLK as we do so */
if (bits & 0x80)
wc->ios |= BIT_SDI;
else
wc->ios &= ~BIT_SDI;
wc->ios &= ~BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Now raise SCLK high again and repeat */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
bits <<= 1;
}
/* Finally raise CS back high again */
wc->ios |= BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
}
static inline void __reset_spi(struct wctdm *wc)
{
/* Drop chip select and clock once and raise and clock once */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
wc->ios &= ~BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
wc->ios |= BIT_SDI;
wc->ios &= ~BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Now raise SCLK high again and repeat */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Finally raise CS back high again */
wc->ios |= BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Clock again */
wc->ios &= ~BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Now raise SCLK high again and repeat */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
}
static inline unsigned char __read_8bits(struct wctdm *wc)
{
/* Out BIT_CS --\________________________________________/----*/
/* Out BIT_SCLK ---\_/--\_/--\_/--\_/--\_/--\_/--\_/--\_/-------*/
/* In BIT_SDO ????/1111\0000/1111\0000/1111\0000/1111\0000/???*/
/* Data bit 7 6 5 4 3 2 1 0 */
/* Data Read 1 0 1 0 1 0 1 0 */
/* Note: Clock High time is 2x Low time, due to input read */
unsigned char res=0, c;
int x;
/* Drop chip select */
wc->ios &= ~BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
for (x=0;x<8;x++) {
res <<= 1;
/* Drop SCLK */
wc->ios &= ~BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Now raise SCLK high again */
wc->ios |= BIT_SCLK;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Read back the value */
c = inb(wc->ioaddr + WC_AUXR);
if (c & BIT_SDO)
res |= 1;
}
/* Finally raise CS back high again */
wc->ios |= BIT_CS;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* And return our result */
return res;
}
static void __wctdm_setcreg(struct wctdm *wc, unsigned char reg, unsigned char val)
{
outb(val, wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2));
}
static unsigned char __wctdm_getcreg(struct wctdm *wc, unsigned char reg)
{
return inb(wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2));
}
static inline void __wctdm_setcard(struct wctdm *wc, int card)
{
if (wc->curcard != card) {
__wctdm_setcreg(wc, WC_CS, (1 << card));
wc->curcard = card;
}
}
static void __wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value)
{
__wctdm_setcard(wc, card);
if (wc->modtype[card] == MOD_TYPE_FXO) {
__write_8bits(wc, 0x20);
__write_8bits(wc, reg & 0x7f);
} else {
__write_8bits(wc, reg & 0x7f);
}
__write_8bits(wc, value);
}
static void wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value)
{
unsigned long flags;
spin_lock_irqsave(&wc->lock, flags);
__wctdm_setreg(wc, card, reg, value);
spin_unlock_irqrestore(&wc->lock, flags);
}
static unsigned char __wctdm_getreg(struct wctdm *wc, int card, unsigned char reg)
{
__wctdm_setcard(wc, card);
if (wc->modtype[card] == MOD_TYPE_FXO) {
__write_8bits(wc, 0x60);
__write_8bits(wc, reg & 0x7f);
} else {
__write_8bits(wc, reg | 0x80);
}
return __read_8bits(wc);
}
static inline void reset_spi(struct wctdm *wc, int card)
{
unsigned long flags;
spin_lock_irqsave(&wc->lock, flags);
__wctdm_setcard(wc, card);
__reset_spi(wc);
__reset_spi(wc);
spin_unlock_irqrestore(&wc->lock, flags);
}
static unsigned char wctdm_getreg(struct wctdm *wc, int card, unsigned char reg)
{
unsigned long flags;
unsigned char res;
spin_lock_irqsave(&wc->lock, flags);
res = __wctdm_getreg(wc, card, reg);
spin_unlock_irqrestore(&wc->lock, flags);
return res;
}
static int __wait_access(struct wctdm *wc, int card)
{
unsigned char data = 0;
long origjiffies;
int count = 0;
#define MAX 6000 /* attempts */
origjiffies = jiffies;
/* Wait for indirect access */
while (count++ < MAX)
{
data = __wctdm_getreg(wc, card, I_STATUS);
if (!data)
return 0;
}
if(count > (MAX-1)) printk(KERN_NOTICE " ##### Loop error (%02x) #####\n", data);
return 0;
}
static unsigned char translate_3215(unsigned char address)
{
int x;
for (x=0;x<sizeof(indirect_regs)/sizeof(indirect_regs[0]);x++) {
if (indirect_regs[x].address == address) {
address = indirect_regs[x].altaddr;
break;
}
}
return address;
}
static int wctdm_proslic_setreg_indirect(struct wctdm *wc, int card, unsigned char address, unsigned short data)
{
unsigned long flags;
int res = -1;
/* Translate 3215 addresses */
if (wc->flags[card] & FLAG_3215) {
address = translate_3215(address);
if (address == 255)
return 0;
}
spin_lock_irqsave(&wc->lock, flags);
if(!__wait_access(wc, card)) {
__wctdm_setreg(wc, card, IDA_LO,(unsigned char)(data & 0xFF));
__wctdm_setreg(wc, card, IDA_HI,(unsigned char)((data & 0xFF00)>>8));
__wctdm_setreg(wc, card, IAA,address);
res = 0;
};
spin_unlock_irqrestore(&wc->lock, flags);
return res;
}
static int wctdm_proslic_getreg_indirect(struct wctdm *wc, int card, unsigned char address)
{
unsigned long flags;
int res = -1;
char *p=NULL;
/* Translate 3215 addresses */
if (wc->flags[card] & FLAG_3215) {
address = translate_3215(address);
if (address == 255)
return 0;
}
spin_lock_irqsave(&wc->lock, flags);
if (!__wait_access(wc, card)) {
__wctdm_setreg(wc, card, IAA, address);
if (!__wait_access(wc, card)) {
unsigned char data1, data2;
data1 = __wctdm_getreg(wc, card, IDA_LO);
data2 = __wctdm_getreg(wc, card, IDA_HI);
res = data1 | (data2 << 8);
} else
p = "Failed to wait inside\n";
} else
p = "failed to wait\n";
spin_unlock_irqrestore(&wc->lock, flags);
if (p)
printk(KERN_NOTICE "%s", p);
return res;
}
static int wctdm_proslic_init_indirect_regs(struct wctdm *wc, int card)
{
unsigned char i;
for (i=0; i<sizeof(indirect_regs) / sizeof(indirect_regs[0]); i++)
{
if(wctdm_proslic_setreg_indirect(wc, card, indirect_regs[i].address,indirect_regs[i].initial))
return -1;
}
return 0;
}
static int wctdm_proslic_verify_indirect_regs(struct wctdm *wc, int card)
{
int passed = 1;
unsigned short i, initial;
int j;
for (i=0; i<sizeof(indirect_regs) / sizeof(indirect_regs[0]); i++)
{
if((j = wctdm_proslic_getreg_indirect(wc, card, (unsigned char) indirect_regs[i].address)) < 0) {
printk(KERN_NOTICE "Failed to read indirect register %d\n", i);
return -1;
}
initial= indirect_regs[i].initial;
if ( j != initial && (!(wc->flags[card] & FLAG_3215) || (indirect_regs[i].altaddr != 255)))
{
printk(KERN_NOTICE "!!!!!!! %s iREG %X = %X should be %X\n",
indirect_regs[i].name,indirect_regs[i].address,j,initial );
passed = 0;
}
}
if (passed) {
if (debug)
printk(KERN_DEBUG "Init Indirect Registers completed successfully.\n");
} else {
printk(KERN_NOTICE " !!!!! Init Indirect Registers UNSUCCESSFULLY.\n");
return -1;
}
return 0;
}
static inline void wctdm_proslic_recheck_sanity(struct wctdm *wc, int card)
{
struct fxs *const fxs = &wc->mod[card].fxs;
int res;
/* Check loopback */
res = wc->reg1shadow[card];
if (!res && (res != fxs->lasttxhook)) {
res = wctdm_getreg(wc, card, 8);
if (res) {
printk(KERN_NOTICE "Ouch, part reset, quickly restoring reality (%d)\n", card);
wctdm_init_proslic(wc, card, 1, 0, 1);
} else {
if (fxs->palarms++ < MAX_ALARMS) {
printk(KERN_NOTICE "Power alarm on module %d, resetting!\n", card + 1);
if (fxs->lasttxhook == SLIC_LF_RINGING)
fxs->lasttxhook = SLIC_LF_ACTIVE_FWD;
wctdm_setreg(wc, card, 64, fxs->lasttxhook);
} else {
if (fxs->palarms == MAX_ALARMS)
printk(KERN_NOTICE "Too many power alarms on card %d, NOT resetting!\n", card + 1);
}
}
}
}
static inline void wctdm_voicedaa_check_hook(struct wctdm *wc, int card)
{
#define MS_PER_CHECK_HOOK 16
#ifndef AUDIO_RINGCHECK
unsigned char res;
#endif
signed char b;
int errors = 0;
struct fxo *fxo = &wc->mod[card].fxo;
/* Try to track issues that plague slot one FXO's */
b = wc->reg0shadow[card];
if ((b & 0x2) || !(b & 0x8)) {
/* Not good -- don't look at anything else */
if (debug)
printk(KERN_DEBUG "Error (%02x) on card %d!\n", b, card + 1);
errors++;
}
b &= 0x9b;
if (fxo->offhook) {
if (b != 0x9)
wctdm_setreg(wc, card, 5, 0x9);
} else {
if (b != 0x8)
wctdm_setreg(wc, card, 5, 0x8);
}
if (errors)
return;
if (!fxo->offhook) {
if (fwringdetect) {
res = wc->reg0shadow[card] & 0x60;
if (fxo->ringdebounce) {
--fxo->ringdebounce;
if (res && (res != fxo->lastrdtx) &&
(fxo->battery == BATTERY_PRESENT)) {
if (!fxo->wasringing) {
fxo->wasringing = 1;
if (debug)
printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
}
fxo->lastrdtx = res;
fxo->ringdebounce = 10;
} else if (!res) {
if ((fxo->ringdebounce == 0) && fxo->wasringing) {
fxo->wasringing = 0;
if (debug)
printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
}
}
} else if (res && (fxo->battery == BATTERY_PRESENT)) {
fxo->lastrdtx = res;
fxo->ringdebounce = 10;
}
} else {
res = wc->reg0shadow[card];
if ((res & 0x60) && (fxo->battery == BATTERY_PRESENT)) {
fxo->ringdebounce += (DAHDI_CHUNKSIZE * 16);
if (fxo->ringdebounce >= DAHDI_CHUNKSIZE * ringdebounce) {
if (!fxo->wasringing) {
fxo->wasringing = 1;
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
if (debug)
printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
}
fxo->ringdebounce = DAHDI_CHUNKSIZE * ringdebounce;
}
} else {
fxo->ringdebounce -= DAHDI_CHUNKSIZE * 4;
if (fxo->ringdebounce <= 0) {
if (fxo->wasringing) {
fxo->wasringing = 0;
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
if (debug)
printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
}
fxo->ringdebounce = 0;
}
}
}
}
b = wc->reg1shadow[card];
if (fxovoltage) {
static int count = 0;
if (!(count++ % 100)) {
printk(KERN_DEBUG "Card %d: Voltage: %d Debounce %d\n", card + 1, b, fxo->battdebounce);
}
}
if (unlikely(DAHDI_RXSIG_INITIAL == wc->chans[card]->rxhooksig)) {
/*
* dahdi-base will set DAHDI_RXSIG_INITIAL after a
* DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events
* will be queued on the channel with the current received
* hook state. Channels that use robbed-bit signalling always
* report the current received state via the dahdi_rbsbits
* call. Since we only call dahdi_hooksig when we've detected
* a change to report, let's forget our current state in order
* to force us to report it again via dahdi_hooksig.
*
*/
fxo->battery = BATTERY_UNKNOWN;
}
if (abs(b) < battthresh) {
/* possible existing states:
battery lost, no debounce timer
battery lost, debounce timer (going to battery present)
battery present or unknown, no debounce timer
battery present or unknown, debounce timer (going to battery lost)
*/
if (fxo->battery == BATTERY_LOST) {
if (fxo->battdebounce) {
/* we were going to BATTERY_PRESENT, but battery was lost again,
so clear the debounce timer */
fxo->battdebounce = 0;
}
} else {
if (fxo->battdebounce) {
/* going to BATTERY_LOST, see if we are there yet */
if (--fxo->battdebounce == 0) {
fxo->battery = BATTERY_LOST;
if (debug)
printk(KERN_DEBUG "NO BATTERY on %d/%d!\n", wc->span.spanno, card + 1);
#ifdef JAPAN
if (!wc->ohdebounce && wc->offhook) {
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
if (debug)
printk(KERN_DEBUG "Signalled On Hook\n");
#ifdef ZERO_BATT_RING
wc->onhook++;
#endif
}
#else
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
/* set the alarm timer, taking into account that part of its time
period has already passed while debouncing occurred */
fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK;
#endif
}
} else {
/* start the debounce timer to verify that battery has been lost */
fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK;
}
}
} else {
/* possible existing states:
battery lost or unknown, no debounce timer
battery lost or unknown, debounce timer (going to battery present)
battery present, no debounce timer
battery present, debounce timer (going to battery lost)
*/
if (fxo->battery == BATTERY_PRESENT) {
if (fxo->battdebounce) {
/* we were going to BATTERY_LOST, but battery appeared again,
so clear the debounce timer */
fxo->battdebounce = 0;
}
} else {
if (fxo->battdebounce) {
/* going to BATTERY_PRESENT, see if we are there yet */
if (--fxo->battdebounce == 0) {
fxo->battery = BATTERY_PRESENT;
if (debug)
printk(KERN_DEBUG "BATTERY on %d/%d (%s)!\n", wc->span.spanno, card + 1,
(b < 0) ? "-" : "+");
#ifdef ZERO_BATT_RING
if (wc->onhook) {
wc->onhook = 0;
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
if (debug)
printk(KERN_DEBUG "Signalled Off Hook\n");
}
#else
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
#endif
/* set the alarm timer, taking into account that part of its time
period has already passed while debouncing occurred */
fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK;
}
} else {
/* start the debounce timer to verify that battery has appeared */
fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK;
}
}
}
if (fxo->lastpol >= 0) {
if (b < 0) {
fxo->lastpol = -1;
fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK;
}
}
if (fxo->lastpol <= 0) {
if (b > 0) {
fxo->lastpol = 1;
fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK;
}
}
if (fxo->battalarm) {
if (--fxo->battalarm == 0) {
/* the alarm timer has expired, so update the battery alarm state
for this channel */
dahdi_alarm_channel(wc->chans[card], fxo->battery == BATTERY_LOST ? DAHDI_ALARM_RED : DAHDI_ALARM_NONE);
}
}
if (fxo->polaritydebounce) {
if (--fxo->polaritydebounce == 0) {
if (fxo->lastpol != fxo->polarity) {
if (debug)
printk(KERN_DEBUG "%lu Polarity reversed (%d -> %d)\n", jiffies,
fxo->polarity,
fxo->lastpol);
if (fxo->polarity)
dahdi_qevent_lock(wc->chans[card], DAHDI_EVENT_POLARITY);
fxo->polarity = fxo->lastpol;
}
}
}
#undef MS_PER_CHECK_HOOK
}
static void wctdm_fxs_hooksig(struct wctdm *wc, const int card, enum dahdi_txsig txsig)
{
struct fxs *const fxs = &wc->mod[card].fxs;
switch (txsig) {
case DAHDI_TXSIG_ONHOOK:
switch (wc->span.chans[card]->sig) {
case DAHDI_SIG_FXOKS:
case DAHDI_SIG_FXOLS:
/* Can't change Ring Generator during OHT */
if (!fxs->ohttimer) {
wctdm_set_ring_generator_mode(wc,
card, fxs->vmwi_hvac);
fxs->lasttxhook = fxs->vmwi_hvac ?
SLIC_LF_RINGING :
fxs->idletxhookstate;
} else {
fxs->lasttxhook = fxs->idletxhookstate;
}
break;
case DAHDI_SIG_EM:
fxs->lasttxhook = fxs->idletxhookstate;
break;
case DAHDI_SIG_FXOGS:
fxs->lasttxhook = SLIC_LF_TIP_OPEN;
break;
}
break;
case DAHDI_TXSIG_OFFHOOK:
switch (wc->span.chans[card]->sig) {
case DAHDI_SIG_EM:
fxs->lasttxhook = SLIC_LF_ACTIVE_REV;
break;
default:
fxs->lasttxhook = fxs->idletxhookstate;
break;
}
break;
case DAHDI_TXSIG_START:
/* Set ringer mode */
wctdm_set_ring_generator_mode(wc, card, 0);
fxs->lasttxhook = SLIC_LF_RINGING;
break;
case DAHDI_TXSIG_KEWL:
fxs->lasttxhook = SLIC_LF_OPEN;
break;
default:
printk(KERN_NOTICE "wctdm: Can't set tx state to %d\n", txsig);
return;
}
if (debug) {
printk(KERN_DEBUG
"Setting FXS hook state to %d (%02x)\n",
txsig, fxs->lasttxhook);
}
wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook);
}
static inline void wctdm_proslic_check_hook(struct wctdm *wc, int card)
{
struct fxs *const fxs = &wc->mod[card].fxs;
char res;
int hook;
/* For some reason we have to debounce the
hook detector. */
res = wc->reg0shadow[card];
hook = (res & 1);
if (hook != fxs->lastrxhook) {
/* Reset the debounce (must be multiple of 4ms) */
fxs->debounce = dialdebounce * 4;
#if 0
printk(KERN_DEBUG "Resetting debounce card %d hook %d, %d\n",
card, hook, fxs->debounce);
#endif
} else {
if (fxs->debounce > 0) {
fxs->debounce -= 16 * DAHDI_CHUNKSIZE;
#if 0
printk(KERN_DEBUG "Sustaining hook %d, %d\n",
hook, fxs->debounce);
#endif
if (!fxs->debounce) {
#if 0
printk(KERN_DEBUG "Counted down debounce, newhook: %d...\n", hook);
#endif
fxs->debouncehook = hook;
}
if (!fxs->oldrxhook && fxs->debouncehook) {
/* Off hook */
#if 1
if (debug)
#endif
printk(KERN_DEBUG "wctdm: Card %d Going off hook\n", card);
switch (fxs->lasttxhook) {
case SLIC_LF_RINGING:
case SLIC_LF_OHTRAN_FWD:
case SLIC_LF_OHTRAN_REV:
/* just detected OffHook, during
* Ringing or OnHookTransfer */
fxs->idletxhookstate =
POLARITY_XOR ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
break;
}
wctdm_fxs_hooksig(wc, card, DAHDI_TXSIG_OFFHOOK);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
if (robust)
wctdm_init_proslic(wc, card, 1, 0, 1);
fxs->oldrxhook = 1;
} else if (fxs->oldrxhook && !fxs->debouncehook) {
/* On hook */
#if 1
if (debug)
#endif
printk(KERN_DEBUG "wctdm: Card %d Going on hook\n", card);
wctdm_fxs_hooksig(wc, card, DAHDI_TXSIG_ONHOOK);
dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
fxs->oldrxhook = 0;
}
}
}
fxs->lastrxhook = hook;
}
DAHDI_IRQ_HANDLER(wctdm_interrupt)
{
struct wctdm *wc = dev_id;
unsigned char ints;
int x;
int mode;
ints = inb(wc->ioaddr + WC_INTSTAT);
if (!ints)
return IRQ_NONE;
outb(ints, wc->ioaddr + WC_INTSTAT);
if (ints & 0x10) {
/* Stop DMA, wait for watchdog */
printk(KERN_INFO "TDM PCI Master abort\n");
wctdm_stop_dma(wc);
return IRQ_RETVAL(1);
}
if (ints & 0x20) {
printk(KERN_INFO "PCI Target abort\n");
return IRQ_RETVAL(1);
}
for (x=0;x<4;x++) {
if (wc->cardflag & (1 << x) &&
(wc->modtype[x] == MOD_TYPE_FXS)) {
struct fxs *const fxs = &wc->mod[x].fxs;
if (fxs->lasttxhook == SLIC_LF_RINGING &&
!fxs->neonringing) {
/* RINGing, prepare for OHT */
fxs->ohttimer = OHT_TIMER << 3;
/* logical XOR 3 variables
module parameter 'reversepolarity', global reverse all FXS lines.
ioctl channel variable fxs 'reversepolarity', Line Reversal Alert Signal if required.
ioctl channel variable fxs 'vmwi_lrev', VMWI pending.
*/
/* OHT mode when idle */
fxs->idletxhookstate = POLARITY_XOR ?
SLIC_LF_OHTRAN_REV :
SLIC_LF_OHTRAN_FWD;
} else if (fxs->ohttimer) {
/* check if still OnHook */
if (!fxs->oldrxhook) {
fxs->ohttimer -= DAHDI_CHUNKSIZE;
if (!fxs->ohttimer) {
fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; /* Switch to Active, Rev or Fwd */
/* if currently OHT */
if ((fxs->lasttxhook == SLIC_LF_OHTRAN_FWD) || (fxs->lasttxhook == SLIC_LF_OHTRAN_REV)) {
if (fxs->vmwi_hvac) {
/* force idle polarity Forward if ringing */
fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD;
/* Set ring generator for neon */
wctdm_set_ring_generator_mode(wc, x, 1);
fxs->lasttxhook = SLIC_LF_RINGING;
} else {
fxs->lasttxhook = fxs->idletxhookstate;
}
/* Apply the change as appropriate */
wctdm_setreg(wc, x, LINE_STATE, fxs->lasttxhook);
}
}
} else {
fxs->ohttimer = 0;
/* Switch to Active, Rev or Fwd */
fxs->idletxhookstate = POLARITY_XOR ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;
}
}
}
}
if (ints & 0x0f) {
wc->intcount++;
x = wc->intcount & 0x3;
mode = wc->intcount & 0xc;
if (wc->cardflag & (1 << x)) {
switch(mode) {
case 0:
/* Rest */
break;
case 4:
/* Read first shadow reg */
if (wc->modtype[x] == MOD_TYPE_FXS)
wc->reg0shadow[x] = wctdm_getreg(wc, x, 68);
else if (wc->modtype[x] == MOD_TYPE_FXO)
wc->reg0shadow[x] = wctdm_getreg(wc, x, 5);
break;
case 8:
/* Read second shadow reg */
if (wc->modtype[x] == MOD_TYPE_FXS)
wc->reg1shadow[x] = wctdm_getreg(wc, x, LINE_STATE);
else if (wc->modtype[x] == MOD_TYPE_FXO)
wc->reg1shadow[x] = wctdm_getreg(wc, x, 29);
break;
case 12:
/* Perform processing */
if (wc->modtype[x] == MOD_TYPE_FXS) {
wctdm_proslic_check_hook(wc, x);
if (!(wc->intcount & 0xf0)) {
wctdm_proslic_recheck_sanity(wc, x);
}
} else if (wc->modtype[x] == MOD_TYPE_FXO) {
wctdm_voicedaa_check_hook(wc, x);
}
break;
}
}
if (!(wc->intcount % 10000)) {
/* Accept an alarm once per 10 seconds */
for (x=0;x<4;x++)
if (wc->modtype[x] == MOD_TYPE_FXS) {
if (wc->mod[x].fxs.palarms)
wc->mod[x].fxs.palarms--;
}
}
wctdm_receiveprep(wc, ints);
wctdm_transmitprep(wc, ints);
}
return IRQ_RETVAL(1);
}
static int wctdm_voicedaa_insane(struct wctdm *wc, int card)
{
int blah;
blah = wctdm_getreg(wc, card, 2);
if (blah != 0x3)
return -2;
blah = wctdm_getreg(wc, card, 11);
if (debug)
printk(KERN_DEBUG "VoiceDAA System: %02x\n", blah & 0xf);
return 0;
}
static int wctdm_proslic_insane(struct wctdm *wc, int card)
{
int blah,insane_report;
insane_report=0;
blah = wctdm_getreg(wc, card, 0);
if (debug)
printk(KERN_DEBUG "ProSLIC on module %d, product %d, version %d\n", card, (blah & 0x30) >> 4, (blah & 0xf));
#if 0
if ((blah & 0x30) >> 4) {
printk(KERN_DEBUG "ProSLIC on module %d is not a 3210.\n", card);
return -1;
}
#endif
if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) {
/* SLIC not loaded */
return -1;
}
if ((blah & 0xf) < 2) {
printk(KERN_NOTICE "ProSLIC 3210 version %d is too old\n", blah & 0xf);
return -1;
}
if (wctdm_getreg(wc, card, 1) & 0x80)
/* ProSLIC 3215, not a 3210 */
wc->flags[card] |= FLAG_3215;
blah = wctdm_getreg(wc, card, 8);
if (blah != 0x2) {
printk(KERN_NOTICE "ProSLIC on module %d insane (1) %d should be 2\n", card, blah);
return -1;
} else if ( insane_report)
printk(KERN_NOTICE "ProSLIC on module %d Reg 8 Reads %d Expected is 0x2\n",card,blah);
blah = wctdm_getreg(wc, card, 64);
if (blah != 0x0) {
printk(KERN_NOTICE "ProSLIC on module %d insane (2)\n", card);
return -1;
} else if ( insane_report)
printk(KERN_NOTICE "ProSLIC on module %d Reg 64 Reads %d Expected is 0x0\n",card,blah);
blah = wctdm_getreg(wc, card, 11);
if (blah != 0x33) {
printk(KERN_NOTICE "ProSLIC on module %d insane (3)\n", card);
return -1;
} else if ( insane_report)
printk(KERN_NOTICE "ProSLIC on module %d Reg 11 Reads %d Expected is 0x33\n",card,blah);
/* Just be sure it's setup right. */
wctdm_setreg(wc, card, 30, 0);
if (debug)
printk(KERN_DEBUG "ProSLIC on module %d seems sane.\n", card);
return 0;
}
static int wctdm_proslic_powerleak_test(struct wctdm *wc, int card)
{
unsigned long origjiffies;
unsigned char vbat;
/* Turn off linefeed */
wctdm_setreg(wc, card, 64, 0);
/* Power down */
wctdm_setreg(wc, card, 14, 0x10);
/* Wait for one second */
origjiffies = jiffies;
while((vbat = wctdm_getreg(wc, card, 82)) > 0x6) {
if ((jiffies - origjiffies) >= (HZ/2))
break;;
}
if (vbat < 0x06) {
printk(KERN_NOTICE "Excessive leakage detected on module %d: %d volts (%02x) after %d ms\n", card,
376 * vbat / 1000, vbat, (int)((jiffies - origjiffies) * 1000 / HZ));
return -1;
} else if (debug) {
printk(KERN_NOTICE "Post-leakage voltage: %d volts\n", 376 * vbat / 1000);
}
return 0;
}
static int wctdm_powerup_proslic(struct wctdm *wc, int card, int fast)
{
unsigned char vbat;
unsigned long origjiffies;
int lim;
/* Set period of DC-DC converter to 1/64 khz */
wctdm_setreg(wc, card, 92, 0xff /* was 0xff */);
/* Wait for VBat to powerup */
origjiffies = jiffies;
/* Disable powerdown */
wctdm_setreg(wc, card, 14, 0);
/* If fast, don't bother checking anymore */
if (fast)
return 0;
while((vbat = wctdm_getreg(wc, card, 82)) < 0xc0) {
/* Wait no more than 500ms */
if ((jiffies - origjiffies) > HZ/2) {
break;
}
}
if (vbat < 0xc0) {
if (wc->proslic_power == PROSLIC_POWER_UNKNOWN)
printk(KERN_NOTICE "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM400P??\n",
card, (int)(((jiffies - origjiffies) * 1000 / HZ)),
vbat * 375);
wc->proslic_power = PROSLIC_POWER_WARNED;
return -1;
} else if (debug) {
printk(KERN_DEBUG "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n",
card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ)));
}
wc->proslic_power = PROSLIC_POWER_ON;
/* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */
/* If out of range, just set it to the default value */
lim = (loopcurrent - 20) / 3;
if ( loopcurrent > 41 ) {
lim = 0;
if (debug)
printk(KERN_DEBUG "Loop current out of range! Setting to default 20mA!\n");
}
else if (debug)
printk(KERN_DEBUG "Loop current set to %dmA!\n",(lim*3)+20);
wctdm_setreg(wc,card,LOOP_I_LIMIT,lim);
/* Engage DC-DC converter */
wctdm_setreg(wc, card, 93, 0x19 /* was 0x19 */);
#if 0
origjiffies = jiffies;
while(0x80 & wctdm_getreg(wc, card, 93)) {
if ((jiffies - origjiffies) > 2 * HZ) {
printk(KERN_DEBUG "Timeout waiting for DC-DC calibration on module %d\n", card);
return -1;
}
}
#if 0
/* Wait a full two seconds */
while((jiffies - origjiffies) < 2 * HZ);
/* Just check to be sure */
vbat = wctdm_getreg(wc, card, 82);
printk(KERN_DEBUG "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n",
card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ)));
#endif
#endif
return 0;
}
static int wctdm_proslic_manual_calibrate(struct wctdm *wc, int card){
unsigned long origjiffies;
unsigned char i;
wctdm_setreg(wc, card, 21, 0);//(0) Disable all interupts in DR21
wctdm_setreg(wc, card, 22, 0);//(0)Disable all interupts in DR21
wctdm_setreg(wc, card, 23, 0);//(0)Disable all interupts in DR21
wctdm_setreg(wc, card, 64, 0);//(0)
wctdm_setreg(wc, card, 97, 0x18); //(0x18)Calibrations without the ADC and DAC offset and without common mode calibration.
wctdm_setreg(wc, card, 96, 0x47); //(0x47) Calibrate common mode and differential DAC mode DAC + ILIM
origjiffies=jiffies;
while( wctdm_getreg(wc,card,96)!=0 ){
if((jiffies-origjiffies)>80)
return -1;
}
//Initialized DR 98 and 99 to get consistant results.
// 98 and 99 are the results registers and the search should have same intial conditions.
/*******************************The following is the manual gain mismatch calibration****************************/
/*******************************This is also available as a function *******************************************/
// Delay 10ms
origjiffies=jiffies;
while((jiffies-origjiffies)<1);
wctdm_proslic_setreg_indirect(wc, card, 88, 0);
wctdm_proslic_setreg_indirect(wc, card, 89, 0);
wctdm_proslic_setreg_indirect(wc, card, 90, 0);
wctdm_proslic_setreg_indirect(wc, card, 91, 0);
wctdm_proslic_setreg_indirect(wc, card, 92, 0);
wctdm_proslic_setreg_indirect(wc, card, 93, 0);
wctdm_setreg(wc, card, 98, 0x10); // This is necessary if the calibration occurs other than at reset time
wctdm_setreg(wc, card, 99, 0x10);
for ( i=0x1f; i>0; i--)
{
wctdm_setreg(wc, card, 98, i);
origjiffies=jiffies;
while((jiffies-origjiffies)<4);
if((wctdm_getreg(wc, card, 88)) == 0)
break;
} // for
for ( i=0x1f; i>0; i--)
{
wctdm_setreg(wc, card, 99, i);
origjiffies=jiffies;
while((jiffies-origjiffies)<4);
if((wctdm_getreg(wc, card, 89)) == 0)
break;
}//for
/*******************************The preceding is the manual gain mismatch calibration****************************/
/**********************************The following is the longitudinal Balance Cal***********************************/
wctdm_setreg(wc,card,64,1);
while((jiffies-origjiffies)<10); // Sleep 100?
wctdm_setreg(wc, card, 64, 0);
wctdm_setreg(wc, card, 23, 0x4); // enable interrupt for the balance Cal
wctdm_setreg(wc, card, 97, 0x1); // this is a singular calibration bit for longitudinal calibration
wctdm_setreg(wc, card, 96, 0x40);
wctdm_getreg(wc, card, 96); /* Read Reg 96 just cause */
wctdm_setreg(wc, card, 21, 0xFF);
wctdm_setreg(wc, card, 22, 0xFF);
wctdm_setreg(wc, card, 23, 0xFF);
/**The preceding is the longitudinal Balance Cal***/
return(0);
}
#if 1
static int wctdm_proslic_calibrate(struct wctdm *wc, int card)
{
unsigned long origjiffies;
int x;
/* Perform all calibrations */
wctdm_setreg(wc, card, 97, 0x1f);
/* Begin, no speedup */
wctdm_setreg(wc, card, 96, 0x5f);
/* Wait for it to finish */
origjiffies = jiffies;
while(wctdm_getreg(wc, card, 96)) {
if ((jiffies - origjiffies) > 2 * HZ) {
printk(KERN_NOTICE "Timeout waiting for calibration of module %d\n", card);
return -1;
}
}
if (debug) {
/* Print calibration parameters */
printk(KERN_DEBUG "Calibration Vector Regs 98 - 107: \n");
for (x=98;x<108;x++) {
printk(KERN_DEBUG "%d: %02x\n", x, wctdm_getreg(wc, card, x));
}
}
return 0;
}
#endif
static void wait_just_a_bit(int foo)
{
long newjiffies;
newjiffies = jiffies + foo;
while(jiffies < newjiffies);
}
/*********************************************************************
* Set the hwgain on the analog modules
*
* card = the card position for this module (0-23)
* gain = gain in dB x10 (e.g. -3.5dB would be gain=-35)
* tx = (0 for rx; 1 for tx)
*
*******************************************************************/
static int wctdm_set_hwgain(struct wctdm *wc, int card, __s32 gain, __u32 tx)
{
if (!(wc->modtype[card] == MOD_TYPE_FXO)) {
printk(KERN_NOTICE "Cannot adjust gain. Unsupported module type!\n");
return -1;
}
if (tx) {
if (debug)
printk(KERN_DEBUG "setting FXO tx gain for card=%d to %d\n", card, gain);
if (gain >= -150 && gain <= 0) {
wctdm_setreg(wc, card, 38, 16 + (gain/-10));
wctdm_setreg(wc, card, 40, 16 + (-gain%10));
} else if (gain <= 120 && gain > 0) {
wctdm_setreg(wc, card, 38, gain/10);
wctdm_setreg(wc, card, 40, (gain%10));
} else {
printk(KERN_INFO "FXO tx gain is out of range (%d)\n", gain);
return -1;
}
} else { /* rx */
if (debug)
printk(KERN_DEBUG "setting FXO rx gain for card=%d to %d\n", card, gain);
if (gain >= -150 && gain <= 0) {
wctdm_setreg(wc, card, 39, 16+ (gain/-10));
wctdm_setreg(wc, card, 41, 16 + (-gain%10));
} else if (gain <= 120 && gain > 0) {
wctdm_setreg(wc, card, 39, gain/10);
wctdm_setreg(wc, card, 41, (gain%10));
} else {
printk(KERN_INFO "FXO rx gain is out of range (%d)\n", gain);
return -1;
}
}
return 0;
}
static int set_vmwi(struct wctdm * wc, int chan_idx)
{
struct fxs *const fxs = &wc->mod[chan_idx].fxs;
if (fxs->vmwi_active_messages) {
fxs->vmwi_lrev =
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV) ? 1 : 0;
fxs->vmwi_hvdc =
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVDC) ? 1 : 0;
fxs->vmwi_hvac =
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_HVAC) ? 1 : 0;
} else {
fxs->vmwi_lrev = 0;
fxs->vmwi_hvdc = 0;
fxs->vmwi_hvac = 0;
}
if (debug) {
printk(KERN_DEBUG "Setting VMWI on channel %d, messages=%d, "
"lrev=%d, hvdc=%d, hvac=%d\n",
chan_idx,
fxs->vmwi_active_messages,
fxs->vmwi_lrev,
fxs->vmwi_hvdc,
fxs->vmwi_hvac
);
}
if (fxs->vmwi_hvac) {
/* Can't change ring generator while in On Hook Transfer mode*/
if (!fxs->ohttimer) {
if (POLARITY_XOR)
fxs->idletxhookstate |= SLIC_LF_REVMASK;
else
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
/* Set ring generator for neon */
wctdm_set_ring_generator_mode(wc, chan_idx, 1);
/* Activate ring to send neon pulses */
fxs->lasttxhook = SLIC_LF_RINGING;
wctdm_setreg(wc, chan_idx, LINE_STATE, fxs->lasttxhook);
}
} else {
if (fxs->neonringing) {
/* Set ring generator for normal ringer */
wctdm_set_ring_generator_mode(wc, chan_idx, 0);
/* ACTIVE, polarity determined later */
fxs->lasttxhook = SLIC_LF_ACTIVE_FWD;
} else if ((fxs->lasttxhook == SLIC_LF_RINGING) ||
(fxs->lasttxhook == SLIC_LF_OPEN)) {
/* Can't change polarity while ringing or when open,
set idlehookstate instead */
if (POLARITY_XOR)
fxs->idletxhookstate |= SLIC_LF_REVMASK;
else
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
printk(KERN_DEBUG "Unable to change polarity on channel"
"%d, lasttxhook=0x%X\n",
chan_idx,
fxs->lasttxhook
);
return 0;
}
if (POLARITY_XOR) {
fxs->idletxhookstate |= SLIC_LF_REVMASK;
fxs->lasttxhook |= SLIC_LF_REVMASK;
} else {
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
fxs->lasttxhook &= ~SLIC_LF_REVMASK;
}
wctdm_setreg(wc, chan_idx, LINE_STATE, fxs->lasttxhook);
}
return 0;
}
static int wctdm_init_voicedaa(struct wctdm *wc, int card, int fast, int manual, int sane)
{
unsigned char reg16=0, reg26=0, reg30=0, reg31=0;
long newjiffies;
wc->modtype[card] = MOD_TYPE_FXO;
/* Sanity check the ProSLIC */
reset_spi(wc, card);
if (!sane && wctdm_voicedaa_insane(wc, card))
return -2;
/* Software reset */
wctdm_setreg(wc, card, 1, 0x80);
/* Wait just a bit */
wait_just_a_bit(HZ/10);
/* Enable PCM, ulaw */
if (alawoverride){
wctdm_setreg(wc, card, 33, 0x20);
} else {
wctdm_setreg(wc, card, 33, 0x28);
}
/* Set On-hook speed, Ringer impedence, and ringer threshold */
reg16 |= (fxo_modes[_opermode].ohs << 6);
reg16 |= (fxo_modes[_opermode].rz << 1);
reg16 |= (fxo_modes[_opermode].rt);
wctdm_setreg(wc, card, 16, reg16);
if(fwringdetect) {
/* Enable ring detector full-wave rectifier mode */
wctdm_setreg(wc, card, 18, 2);
wctdm_setreg(wc, card, 24, 0);
} else {
/* Set to the device defaults */
wctdm_setreg(wc, card, 18, 0);
wctdm_setreg(wc, card, 24, 0x19);
}
/* Set DC Termination:
Tip/Ring voltage adjust, minimum operational current, current limitation */
reg26 |= (fxo_modes[_opermode].dcv << 6);
reg26 |= (fxo_modes[_opermode].mini << 4);
reg26 |= (fxo_modes[_opermode].ilim << 1);
wctdm_setreg(wc, card, 26, reg26);
/* Set AC Impedence */
reg30 = (fxo_modes[_opermode].acim);
wctdm_setreg(wc, card, 30, reg30);
/* Misc. DAA parameters */
if (fastpickup)
reg31 = 0xb3;
else
reg31 = 0xa3;
reg31 |= (fxo_modes[_opermode].ohs2 << 3);
wctdm_setreg(wc, card, 31, reg31);
/* Set Transmit/Receive timeslot */
wctdm_setreg(wc, card, 34, (3-card) * 8);
wctdm_setreg(wc, card, 35, 0x00);
wctdm_setreg(wc, card, 36, (3-card) * 8);
wctdm_setreg(wc, card, 37, 0x00);
/* Enable ISO-Cap */
wctdm_setreg(wc, card, 6, 0x00);
if (fastpickup)
wctdm_setreg(wc, card, 17, wctdm_getreg(wc, card, 17) | 0x20);
/* Wait 1000ms for ISO-cap to come up */
newjiffies = jiffies;
newjiffies += 2 * HZ;
while((jiffies < newjiffies) && !(wctdm_getreg(wc, card, 11) & 0xf0))
wait_just_a_bit(HZ/10);
if (!(wctdm_getreg(wc, card, 11) & 0xf0)) {
printk(KERN_NOTICE "VoiceDAA did not bring up ISO link properly!\n");
return -1;
}
if (debug)
printk(KERN_DEBUG "ISO-Cap is now up, line side: %02x rev %02x\n",
wctdm_getreg(wc, card, 11) >> 4,
(wctdm_getreg(wc, card, 13) >> 2) & 0xf);
/* Enable on-hook line monitor */
wctdm_setreg(wc, card, 5, 0x08);
/* Take values for fxotxgain and fxorxgain and apply them to module */
wctdm_set_hwgain(wc, card, fxotxgain, 1);
wctdm_set_hwgain(wc, card, fxorxgain, 0);
/* NZ -- crank the tx gain up by 7 dB */
if (!strcmp(fxo_modes[_opermode].name, "NEWZEALAND")) {
printk(KERN_INFO "Adjusting gain\n");
wctdm_set_hwgain(wc, card, 7, 1);
}
if(debug)
printk(KERN_DEBUG "DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wctdm_getreg(wc, card, 38)/16)?-(wctdm_getreg(wc, card, 38) - 16) : wctdm_getreg(wc, card, 38), (wctdm_getreg(wc, card, 40)/16)? -(wctdm_getreg(wc, card, 40) - 16):wctdm_getreg(wc, card, 40), (wctdm_getreg(wc, card, 39)/16)? -(wctdm_getreg(wc, card, 39) - 16) : wctdm_getreg(wc, card, 39),(wctdm_getreg(wc, card, 41)/16)?-(wctdm_getreg(wc, card, 41) - 16):wctdm_getreg(wc, card, 41));
return 0;
}
static int wctdm_init_proslic(struct wctdm *wc, int card, int fast, int manual, int sane)
{
unsigned short tmp[5];
unsigned char r19,r9;
int x;
int fxsmode=0;
struct fxs *const fxs = &wc->mod[card].fxs;
/* Sanity check the ProSLIC */
if (!sane && wctdm_proslic_insane(wc, card))
return -2;
/* default messages to none and method to FSK */
memset(&fxs->vmwisetting, 0, sizeof(fxs->vmwisetting));
fxs->vmwi_lrev = 0;
fxs->vmwi_hvdc = 0;
fxs->vmwi_hvac = 0;
/* By default, don't send on hook */
if (!reversepolarity != !fxs->reversepolarity)
fxs->idletxhookstate = SLIC_LF_ACTIVE_REV;
else
fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD;
if (sane) {
/* Make sure we turn off the DC->DC converter to prevent anything from blowing up */
wctdm_setreg(wc, card, 14, 0x10);
}
if (wctdm_proslic_init_indirect_regs(wc, card)) {
printk(KERN_INFO "Indirect Registers failed to initialize on module %d.\n", card);
return -1;
}
/* Clear scratch pad area */
wctdm_proslic_setreg_indirect(wc, card, 97,0);
/* Clear digital loopback */
wctdm_setreg(wc, card, 8, 0);
/* Revision C optimization */
wctdm_setreg(wc, card, 108, 0xeb);
/* Disable automatic VBat switching for safety to prevent
Q7 from accidently turning on and burning out. */
wctdm_setreg(wc, card, 67, 0x07); /* Note, if pulse dialing has problems at high REN loads
change this to 0x17 */
/* Turn off Q7 */
wctdm_setreg(wc, card, 66, 1);
/* Flush ProSLIC digital filters by setting to clear, while
saving old values */
for (x=0;x<5;x++) {
tmp[x] = wctdm_proslic_getreg_indirect(wc, card, x + 35);
wctdm_proslic_setreg_indirect(wc, card, x + 35, 0x8000);
}
/* Power up the DC-DC converter */
if (wctdm_powerup_proslic(wc, card, fast)) {
printk(KERN_NOTICE "Unable to do INITIAL ProSLIC powerup on module %d\n", card);
return -1;
}
if (!fast) {
/* Check for power leaks */
if (wctdm_proslic_powerleak_test(wc, card)) {
printk(KERN_NOTICE "ProSLIC module %d failed leakage test. Check for short circuit\n", card);
}
/* Power up again */
if (wctdm_powerup_proslic(wc, card, fast)) {
printk(KERN_NOTICE "Unable to do FINAL ProSLIC powerup on module %d\n", card);
return -1;
}
#ifndef NO_CALIBRATION
/* Perform calibration */
if(manual) {
if (wctdm_proslic_manual_calibrate(wc, card)) {
//printk(KERN_NOTICE "Proslic failed on Manual Calibration\n");
if (wctdm_proslic_manual_calibrate(wc, card)) {
printk(KERN_NOTICE "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n");
return -1;
}
printk(KERN_NOTICE "Proslic Passed Manual Calibration on Second Attempt\n");
}
}
else {
if(wctdm_proslic_calibrate(wc, card)) {
//printk(KERN_NOTICE "ProSlic died on Auto Calibration.\n");
if (wctdm_proslic_calibrate(wc, card)) {
printk(KERN_NOTICE "Proslic Failed on Second Attempt to Auto Calibrate\n");
return -1;
}
printk(KERN_NOTICE "Proslic Passed Auto Calibration on Second Attempt\n");
}
}
/* Perform DC-DC calibration */
wctdm_setreg(wc, card, 93, 0x99);
r19 = wctdm_getreg(wc, card, 107);
if ((r19 < 0x2) || (r19 > 0xd)) {
printk(KERN_NOTICE "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19);
wctdm_setreg(wc, card, 107, 0x8);
}
/* Save calibration vectors */
for (x=0;x<NUM_CAL_REGS;x++)
fxs->calregs.vals[x] = wctdm_getreg(wc, card, 96 + x);
#endif
} else {
/* Restore calibration registers */
for (x=0;x<NUM_CAL_REGS;x++)
wctdm_setreg(wc, card, 96 + x, fxs->calregs.vals[x]);
}
/* Calibration complete, restore original values */
for (x=0;x<5;x++) {
wctdm_proslic_setreg_indirect(wc, card, x + 35, tmp[x]);
}
if (wctdm_proslic_verify_indirect_regs(wc, card)) {
printk(KERN_INFO "Indirect Registers failed verification.\n");
return -1;
}
#if 0
/* Disable Auto Power Alarm Detect and other "features" */
wctdm_setreg(wc, card, 67, 0x0e);
blah = wctdm_getreg(wc, card, 67);
#endif
#if 0
if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix
printk(KERN_INFO "ProSlic IndirectReg Died.\n");
return -1;
}
#endif
if (alawoverride)
wctdm_setreg(wc, card, 1, 0x20);
else
wctdm_setreg(wc, card, 1, 0x28);
// U-Law 8-bit interface
wctdm_setreg(wc, card, 2, (3-card) * 8); // Tx Start count low byte 0
wctdm_setreg(wc, card, 3, 0); // Tx Start count high byte 0
wctdm_setreg(wc, card, 4, (3-card) * 8); // Rx Start count low byte 0
wctdm_setreg(wc, card, 5, 0); // Rx Start count high byte 0
wctdm_setreg(wc, card, 18, 0xff); // clear all interrupt
wctdm_setreg(wc, card, 19, 0xff);
wctdm_setreg(wc, card, 20, 0xff);
wctdm_setreg(wc, card, 73, 0x04);
if (fxshonormode) {
fxsmode = acim2tiss[fxo_modes[_opermode].acim];
wctdm_setreg(wc, card, 10, 0x08 | fxsmode);
}
if (lowpower)
wctdm_setreg(wc, card, 72, 0x10);
#if 0
wctdm_setreg(wc, card, 21, 0x00); // enable interrupt
wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt
wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt
#endif
#if 0
/* Enable loopback */
wctdm_setreg(wc, card, 8, 0x2);
wctdm_setreg(wc, card, 14, 0x0);
wctdm_setreg(wc, card, 64, 0x0);
wctdm_setreg(wc, card, 1, 0x08);
#endif
if (wctdm_init_ring_generator_mode(wc, card)) {
return -1;
}
if(fxstxgain || fxsrxgain) {
r9 = wctdm_getreg(wc, card, 9);
switch (fxstxgain) {
case 35:
r9+=8;
break;
case -35:
r9+=4;
break;
case 0:
break;
}
switch (fxsrxgain) {
case 35:
r9+=2;
break;
case -35:
r9+=1;
break;
case 0:
break;
}
wctdm_setreg(wc,card,9,r9);
}
if(debug)
printk(KERN_DEBUG "DEBUG: fxstxgain:%s fxsrxgain:%s\n",((wctdm_getreg(wc, card, 9)/8) == 1)?"3.5":(((wctdm_getreg(wc,card,9)/4) == 1)?"-3.5":"0.0"),((wctdm_getreg(wc, card, 9)/2) == 1)?"3.5":((wctdm_getreg(wc,card,9)%2)?"-3.5":"0.0"));
fxs->lasttxhook = fxs->idletxhookstate;
wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook);
return 0;
}
static int wctdm_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
struct wctdm_stats stats;
struct wctdm_regs regs;
struct wctdm_regop regop;
struct wctdm_echo_coefs echoregs;
struct dahdi_hwgain hwgain;
struct wctdm *wc = chan->pvt;
struct fxs *const fxs = &wc->mod[chan->chanpos - 1].fxs;
int x;
switch (cmd) {
case DAHDI_ONHOOKTRANSFER:
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
fxs->ohttimer = x << 3;
/* Active mode when idle */
fxs->idletxhookstate = POLARITY_XOR ?
SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;
if (fxs->neonringing) {
/* keep same Forward polarity */
fxs->lasttxhook = SLIC_LF_OHTRAN_FWD;
printk(KERN_INFO "ioctl: Start OnHookTrans, card %d\n",
chan->chanpos - 1);
wctdm_setreg(wc, chan->chanpos - 1,
LINE_STATE, fxs->lasttxhook);
} else if (fxs->lasttxhook == SLIC_LF_ACTIVE_FWD ||
fxs->lasttxhook == SLIC_LF_ACTIVE_REV) {
/* Apply the change if appropriate */
fxs->lasttxhook = POLARITY_XOR ?
SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD;
printk(KERN_INFO "ioctl: Start OnHookTrans, card %d\n",
chan->chanpos - 1);
wctdm_setreg(wc, chan->chanpos - 1,
LINE_STATE, fxs->lasttxhook);
}
break;
case DAHDI_SETPOLARITY:
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
/* Can't change polarity while ringing or when open */
if ((fxs->lasttxhook == SLIC_LF_RINGING) ||
(fxs->lasttxhook == SLIC_LF_OPEN))
return -EINVAL;
fxs->reversepolarity = x;
if (POLARITY_XOR) {
fxs->lasttxhook |= SLIC_LF_REVMASK;
printk(KERN_INFO "ioctl: Reverse Polarity, card %d\n",
chan->chanpos - 1);
} else {
fxs->lasttxhook &= ~SLIC_LF_REVMASK;
printk(KERN_INFO "ioctl: Normal Polarity, card %d\n",
chan->chanpos - 1);
}
wctdm_setreg(wc, chan->chanpos - 1,
LINE_STATE, fxs->lasttxhook);
break;
case DAHDI_VMWI_CONFIG:
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
if (copy_from_user(&(fxs->vmwisetting), (__user void *) data,
sizeof(fxs->vmwisetting)))
return -EFAULT;
set_vmwi(wc, chan->chanpos - 1);
break;
case DAHDI_VMWI:
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
if (0 > x)
return -EFAULT;
fxs->vmwi_active_messages = x;
set_vmwi(wc, chan->chanpos - 1);
break;
case WCTDM_GET_STATS:
if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
stats.tipvolt = wctdm_getreg(wc, chan->chanpos - 1, 80) * -376;
stats.ringvolt = wctdm_getreg(wc, chan->chanpos - 1, 81) * -376;
stats.batvolt = wctdm_getreg(wc, chan->chanpos - 1, 82) * -376;
} else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) {
stats.tipvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
stats.ringvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
stats.batvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
} else
return -EINVAL;
if (copy_to_user((__user void *)data, &stats, sizeof(stats)))
return -EFAULT;
break;
case WCTDM_GET_REGS:
if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
for (x=0;x<NUM_INDIRECT_REGS;x++)
regs.indirect[x] = wctdm_proslic_getreg_indirect(wc, chan->chanpos -1, x);
for (x=0;x<NUM_REGS;x++)
regs.direct[x] = wctdm_getreg(wc, chan->chanpos - 1, x);
} else {
memset(&regs, 0, sizeof(regs));
for (x=0;x<NUM_FXO_REGS;x++)
regs.direct[x] = wctdm_getreg(wc, chan->chanpos - 1, x);
}
if (copy_to_user((__user void *)data, &regs, sizeof(regs)))
return -EFAULT;
break;
case WCTDM_SET_REG:
if (copy_from_user(&regop, (__user void *) data, sizeof(regop)))
return -EFAULT;
if (regop.indirect) {
if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
return -EINVAL;
printk(KERN_INFO "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos);
wctdm_proslic_setreg_indirect(wc, chan->chanpos - 1, regop.reg, regop.val);
} else {
regop.val &= 0xff;
printk(KERN_INFO "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos);
wctdm_setreg(wc, chan->chanpos - 1, regop.reg, regop.val);
}
break;
case WCTDM_SET_ECHOTUNE:
printk(KERN_INFO "-- Setting echo registers: \n");
if (copy_from_user(&echoregs, (__user void *)data, sizeof(echoregs)))
return -EFAULT;
if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) {
/* Set the ACIM register */
wctdm_setreg(wc, chan->chanpos - 1, 30, echoregs.acim);
/* Set the digital echo canceller registers */
wctdm_setreg(wc, chan->chanpos - 1, 45, echoregs.coef1);
wctdm_setreg(wc, chan->chanpos - 1, 46, echoregs.coef2);
wctdm_setreg(wc, chan->chanpos - 1, 47, echoregs.coef3);
wctdm_setreg(wc, chan->chanpos - 1, 48, echoregs.coef4);
wctdm_setreg(wc, chan->chanpos - 1, 49, echoregs.coef5);
wctdm_setreg(wc, chan->chanpos - 1, 50, echoregs.coef6);
wctdm_setreg(wc, chan->chanpos - 1, 51, echoregs.coef7);
wctdm_setreg(wc, chan->chanpos - 1, 52, echoregs.coef8);
printk(KERN_INFO "-- Set echo registers successfully\n");
break;
} else {
return -EINVAL;
}
break;
case DAHDI_SET_HWGAIN:
if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain)))
return -EFAULT;
wctdm_set_hwgain(wc, chan->chanpos-1, hwgain.newgain, hwgain.tx);
if (debug)
printk(KERN_DEBUG "Setting hwgain on channel %d to %d for %s direction\n",
chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx");
break;
default:
return -ENOTTY;
}
return 0;
}
static int wctdm_open(struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
if (!(wc->cardflag & (1 << (chan->chanpos - 1))))
return -ENODEV;
if (wc->dead)
return -ENODEV;
wc->usecount++;
return 0;
}
static inline struct wctdm *wctdm_from_span(struct dahdi_span *span)
{
return container_of(span, struct wctdm, span);
}
static int wctdm_watchdog(struct dahdi_span *span, int event)
{
printk(KERN_INFO "TDM: Restarting DMA\n");
wctdm_restart_dma(wctdm_from_span(span));
return 0;
}
static int wctdm_close(struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
struct fxs *const fxs = &wc->mod[chan->chanpos - 1].fxs;
wc->usecount--;
if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
int idlehookstate;
idlehookstate = POLARITY_XOR ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
fxs->idletxhookstate = idlehookstate;
}
/* If we're dead, release us now */
if (!wc->usecount && wc->dead)
wctdm_release(wc);
return 0;
}
static int wctdm_init_ring_generator_mode(struct wctdm *wc, int card)
{
wctdm_setreg(wc, card, 34, 0x00); /* Ringing Osc. Control */
/* neon trapezoid timers */
wctdm_setreg(wc, card, 48, 0xe0); /* Active Timer low byte */
wctdm_setreg(wc, card, 49, 0x01); /* Active Timer high byte */
wctdm_setreg(wc, card, 50, 0xF0); /* Inactive Timer low byte */
wctdm_setreg(wc, card, 51, 0x05); /* Inactive Timer high byte */
wctdm_set_ring_generator_mode(wc, card, 0);
return 0;
}
static int wctdm_set_ring_generator_mode(struct wctdm *wc, int card, int mode)
{
int reg20, reg21, reg74; /* RCO, RNGX, VBATH */
struct fxs *const fxs = &wc->mod[card].fxs;
fxs->neonringing = mode; /* track ring generator mode */
if (mode) { /* Neon */
if (debug)
printk(KERN_DEBUG "NEON ring on chan %d, "
"lasttxhook was 0x%x\n", card, fxs->lasttxhook);
/* Must be in FORWARD ACTIVE before setting ringer */
fxs->lasttxhook = SLIC_LF_ACTIVE_FWD;
wctdm_setreg(wc, card, LINE_STATE, fxs->lasttxhook);
wctdm_proslic_setreg_indirect(wc, card, 22,
NEON_MWI_RNGY_PULSEWIDTH);
wctdm_proslic_setreg_indirect(wc, card, 21,
0x7bef); /* RNGX (91.5Vpk) */
wctdm_proslic_setreg_indirect(wc, card, 20,
0x009f); /* RCO (RNGX, t rise)*/
wctdm_setreg(wc, card, 34, 0x19); /* Ringing Osc. Control */
wctdm_setreg(wc, card, 74, 0x3f); /* VBATH 94.5V */
wctdm_proslic_setreg_indirect(wc, card, 29, 0x4600); /* RPTP */
/* A write of 0x04 to register 64 will turn on the VM led */
} else {
wctdm_setreg(wc, card, 34, 0x00); /* Ringing Osc. Control */
/* RNGY Initial Phase */
wctdm_proslic_setreg_indirect(wc, card, 22, 0x0000);
wctdm_proslic_setreg_indirect(wc, card, 29, 0x3600); /* RPTP */
/* A write of 0x04 to register 64 will turn on the ringer */
if (fastringer) {
/* Speed up Ringer */
reg20 = 0x7e6d;
reg74 = 0x32; /* Default */
/* Beef up Ringing voltage to 89V */
if (boostringer) {
reg74 = 0x3f;
reg21 = 0x0247; /* RNGX */
if (debug)
printk(KERN_DEBUG "Boosting fast ringer"
" on chan %d (89V peak)\n",
card);
} else if (lowpower) {
reg21 = 0x014b; /* RNGX */
if (debug)
printk(KERN_DEBUG "Reducing fast ring "
"power on chan %d (50V peak)\n",
card);
} else if (fxshonormode &&
fxo_modes[_opermode].ring_x) {
reg21 = fxo_modes[_opermode].ring_x;
if (debug)
printk(KERN_DEBUG "fxshonormode: fast "
"ring_x power on chan %d\n",
card);
} else {
reg21 = 0x01b9;
if (debug)
printk(KERN_DEBUG "Speeding up ringer "
"on chan %d (25Hz)\n",
card);
}
/* VBATH */
wctdm_setreg(wc, card, 74, reg74);
/*RCO*/
wctdm_proslic_setreg_indirect(wc, card, 20, reg20);
/*RNGX*/
wctdm_proslic_setreg_indirect(wc, card, 21, reg21);
} else {
/* Ringer Speed */
if (fxshonormode && fxo_modes[_opermode].ring_osc) {
reg20 = fxo_modes[_opermode].ring_osc;
if (debug)
printk(KERN_DEBUG "fxshonormode: "
"ring_osc speed on chan %d\n",
card);
} else {
reg20 = 0x7ef0; /* Default */
}
reg74 = 0x32; /* Default */
/* Beef up Ringing voltage to 89V */
if (boostringer) {
reg74 = 0x3f;
reg21 = 0x1d1;
if (debug)
printk(KERN_DEBUG "Boosting ringer on "
"chan %d (89V peak)\n",
card);
} else if (lowpower) {
reg21 = 0x108;
if (debug)
printk(KERN_DEBUG "Reducing ring power "
"on chan %d (50V peak)\n",
card);
} else if (fxshonormode &&
fxo_modes[_opermode].ring_x) {
reg21 = fxo_modes[_opermode].ring_x;
if (debug)
printk(KERN_DEBUG "fxshonormode: ring_x"
" power on chan %d\n",
card);
} else {
reg21 = 0x160;
if (debug)
printk(KERN_DEBUG "Normal ring power on"
" chan %d\n",
card);
}
/* VBATH */
wctdm_setreg(wc, card, 74, reg74);
/* RCO */
wctdm_proslic_setreg_indirect(wc, card, 20, reg20);
/* RNGX */
wctdm_proslic_setreg_indirect(wc, card, 21, reg21);
}
}
return 0;
}
static int wctdm_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig)
{
struct wctdm *wc = chan->pvt;
int chan_entry = chan->chanpos - 1;
if (wc->modtype[chan_entry] == MOD_TYPE_FXO) {
/* XXX Enable hooksig for FXO XXX */
switch(txsig) {
case DAHDI_TXSIG_START:
case DAHDI_TXSIG_OFFHOOK:
wc->mod[chan_entry].fxo.offhook = 1;
wctdm_setreg(wc, chan_entry, 5, 0x9);
break;
case DAHDI_TXSIG_ONHOOK:
wc->mod[chan_entry].fxo.offhook = 0;
wctdm_setreg(wc, chan_entry, 5, 0x8);
break;
default:
printk(KERN_NOTICE "wcfxo: Can't set tx state to %d\n", txsig);
}
} else {
wctdm_fxs_hooksig(wc, chan_entry, txsig);
}
return 0;
}
static const struct dahdi_span_ops wctdm_span_ops = {
.owner = THIS_MODULE,
.hooksig = wctdm_hooksig,
.open = wctdm_open,
.close = wctdm_close,
.ioctl = wctdm_ioctl,
.watchdog = wctdm_watchdog,
};
static int wctdm_initialize(struct wctdm *wc)
{
int x;
/* DAHDI stuff */
sprintf(wc->span.name, "WCTDM/%d", wc->pos);
snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Board %d", wc->variety, wc->pos + 1);
snprintf(wc->span.location, sizeof(wc->span.location) - 1,
"PCI Bus %02d Slot %02d", wc->dev->bus->number, PCI_SLOT(wc->dev->devfn) + 1);
wc->span.manufacturer = "Digium";
dahdi_copy_string(wc->span.devicetype, wc->variety, sizeof(wc->span.devicetype));
if (alawoverride) {
printk(KERN_INFO "ALAW override parameter detected. Device will be operating in ALAW\n");
wc->span.deflaw = DAHDI_LAW_ALAW;
} else {
wc->span.deflaw = DAHDI_LAW_MULAW;
}
for (x = 0; x < NUM_CARDS; x++) {
sprintf(wc->chans[x]->name, "WCTDM/%d/%d", wc->pos, x);
wc->chans[x]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
wc->chans[x]->sigcap |= DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR;
wc->chans[x]->chanpos = x+1;
wc->chans[x]->pvt = wc;
}
wc->span.chans = wc->chans;
wc->span.channels = NUM_CARDS;
wc->span.irq = wc->dev->irq;
wc->span.flags = DAHDI_FLAG_RBS;
init_waitqueue_head(&wc->span.maintq);
wc->span.ops = &wctdm_span_ops;
if (dahdi_register(&wc->span, 0)) {
printk(KERN_NOTICE "Unable to register span with DAHDI\n");
return -1;
}
return 0;
}
static void wctdm_post_initialize(struct wctdm *wc)
{
int x;
/* Finalize signalling */
for (x = 0; x < NUM_CARDS; x++) {
if (wc->cardflag & (1 << x)) {
if (wc->modtype[x] == MOD_TYPE_FXO)
wc->chans[x]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR;
else
wc->chans[x]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
} else if (!(wc->chans[x]->sigcap & DAHDI_SIG_BROKEN)) {
wc->chans[x]->sigcap = 0;
}
}
}
static int wctdm_hardware_init(struct wctdm *wc)
{
/* Hardware stuff */
unsigned char ver;
unsigned char x,y;
int failed;
/* Signal Reset */
outb(0x01, wc->ioaddr + WC_CNTL);
/* Check Freshmaker chip */
x=inb(wc->ioaddr + WC_CNTL);
ver = __wctdm_getcreg(wc, WC_VER);
failed = 0;
if (ver != 0x59) {
printk(KERN_INFO "Freshmaker version: %02x\n", ver);
for (x=0;x<255;x++) {
/* Test registers */
if (ver >= 0x70) {
__wctdm_setcreg(wc, WC_CS, x);
y = __wctdm_getcreg(wc, WC_CS);
} else {
__wctdm_setcreg(wc, WC_TEST, x);
y = __wctdm_getcreg(wc, WC_TEST);
}
if (x != y) {
printk(KERN_INFO "%02x != %02x\n", x, y);
failed++;
}
}
if (!failed) {
printk(KERN_INFO "Freshmaker passed register test\n");
} else {
printk(KERN_NOTICE "Freshmaker failed register test\n");
return -1;
}
/* Go to half-duty FSYNC */
__wctdm_setcreg(wc, WC_SYNC, 0x01);
y = __wctdm_getcreg(wc, WC_SYNC);
} else {
printk(KERN_INFO "No freshmaker chip\n");
}
/* Reset PCI Interface chip and registers (and serial) */
outb(0x06, wc->ioaddr + WC_CNTL);
/* Setup our proper outputs for when we switch for our "serial" port */
wc->ios = BIT_CS | BIT_SCLK | BIT_SDI;
outb(wc->ios, wc->ioaddr + WC_AUXD);
/* Set all to outputs except AUX 5, which is an input */
outb(0xdf, wc->ioaddr + WC_AUXC);
/* Select alternate function for AUX0 */
outb(0x4, wc->ioaddr + WC_AUXFUNC);
/* Wait 1/4 of a sec */
wait_just_a_bit(HZ/4);
/* Back to normal, with automatic DMA wrap around */
outb(0x30 | 0x01, wc->ioaddr + WC_CNTL);
/* Make sure serial port and DMA are out of reset */
outb(inb(wc->ioaddr + WC_CNTL) & 0xf9, wc->ioaddr + WC_CNTL);
/* Configure serial port for MSB->LSB operation */
outb(0xc1, wc->ioaddr + WC_SERCTL);
/* Delay FSC by 0 so it's properly aligned */
outb(0x0, wc->ioaddr + WC_FSCDELAY);
/* Setup DMA Addresses */
outl(wc->writedma, wc->ioaddr + WC_DMAWS); /* Write start */
outl(wc->writedma + DAHDI_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMAWI); /* Middle (interrupt) */
outl(wc->writedma + DAHDI_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMAWE); /* End */
outl(wc->readdma, wc->ioaddr + WC_DMARS); /* Read start */
outl(wc->readdma + DAHDI_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMARI); /* Middle (interrupt) */
outl(wc->readdma + DAHDI_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMARE); /* End */
/* Clear interrupts */
outb(0xff, wc->ioaddr + WC_INTSTAT);
/* Wait 1/4 of a second more */
wait_just_a_bit(HZ/4);
for (x = 0; x < NUM_CARDS; x++) {
int sane=0,ret=0,readi=0;
#if 1
/* Init with Auto Calibration */
if (!(ret=wctdm_init_proslic(wc, x, 0, 0, sane))) {
wc->cardflag |= (1 << x);
if (debug) {
readi = wctdm_getreg(wc,x,LOOP_I_LIMIT);
printk(KERN_DEBUG "Proslic module %d loop current is %dmA\n",x,
((readi*3)+20));
}
printk(KERN_INFO "Module %d: Installed -- AUTO FXS/DPO\n",x);
} else {
if(ret!=-2) {
sane=1;
/* Init with Manual Calibration */
if (!wctdm_init_proslic(wc, x, 0, 1, sane)) {
wc->cardflag |= (1 << x);
if (debug) {
readi = wctdm_getreg(wc,x,LOOP_I_LIMIT);
printk(KERN_DEBUG "Proslic module %d loop current is %dmA\n",x,
((readi*3)+20));
}
printk(KERN_INFO "Module %d: Installed -- MANUAL FXS\n",x);
} else {
printk(KERN_NOTICE "Module %d: FAILED FXS (%s)\n", x, fxshonormode ? fxo_modes[_opermode].name : "FCC");
wc->chans[x]->sigcap = __DAHDI_SIG_FXO | DAHDI_SIG_BROKEN;
}
} else if (!(ret = wctdm_init_voicedaa(wc, x, 0, 0, sane))) {
wc->cardflag |= (1 << x);
printk(KERN_INFO "Module %d: Installed -- AUTO FXO (%s mode)\n",x, fxo_modes[_opermode].name);
} else
printk(KERN_NOTICE "Module %d: Not installed\n", x);
}
#endif
}
/* Return error if nothing initialized okay. */
if (!wc->cardflag && !timingonly)
return -1;
__wctdm_setcreg(wc, WC_SYNC, (wc->cardflag << 1) | 0x1);
return 0;
}
static void wctdm_enable_interrupts(struct wctdm *wc)
{
/* Enable interrupts (we care about all of them) */
outb(0x3f, wc->ioaddr + WC_MASK0);
/* No external interrupts */
outb(0x00, wc->ioaddr + WC_MASK1);
}
static void wctdm_restart_dma(struct wctdm *wc)
{
/* Reset Master and TDM */
outb(0x01, wc->ioaddr + WC_CNTL);
outb(0x01, wc->ioaddr + WC_OPER);
}
static void wctdm_start_dma(struct wctdm *wc)
{
/* Reset Master and TDM */
outb(0x0f, wc->ioaddr + WC_CNTL);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
outb(0x01, wc->ioaddr + WC_CNTL);
outb(0x01, wc->ioaddr + WC_OPER);
}
static void wctdm_stop_dma(struct wctdm *wc)
{
outb(0x00, wc->ioaddr + WC_OPER);
}
static void wctdm_reset_tdm(struct wctdm *wc)
{
/* Reset TDM */
outb(0x0f, wc->ioaddr + WC_CNTL);
}
static void wctdm_disable_interrupts(struct wctdm *wc)
{
outb(0x00, wc->ioaddr + WC_MASK0);
outb(0x00, wc->ioaddr + WC_MASK1);
}
static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int res;
struct wctdm *wc;
struct wctdm_desc *d = (struct wctdm_desc *)ent->driver_data;
int x;
int y;
for (x=0;x<WC_MAX_IFACES;x++)
if (!ifaces[x]) break;
if (x >= WC_MAX_IFACES) {
printk(KERN_NOTICE "Too many interfaces\n");
return -EIO;
}
if (pci_enable_device(pdev)) {
res = -EIO;
} else {
wc = kmalloc(sizeof(struct wctdm), GFP_KERNEL);
if (wc) {
int cardcount = 0;
ifaces[x] = wc;
memset(wc, 0, sizeof(struct wctdm));
for (x=0; x < sizeof(wc->chans)/sizeof(wc->chans[0]); ++x) {
wc->chans[x] = &wc->_chans[x];
}
spin_lock_init(&wc->lock);
wc->curcard = -1;
wc->ioaddr = pci_resource_start(pdev, 0);
wc->dev = pdev;
wc->pos = x;
wc->variety = d->name;
for (y=0;y<NUM_CARDS;y++)
wc->flags[y] = d->flags;
/* Keep track of whether we need to free the region */
if (request_region(wc->ioaddr, 0xff, "wctdm"))
wc->freeregion = 1;
/* Allocate enough memory for two zt chunks, receive and transmit. Each sample uses
32 bits. Allocate an extra set just for control too */
wc->writechunk = pci_alloc_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, &wc->writedma);
if (!wc->writechunk) {
printk(KERN_NOTICE "wctdm: Unable to allocate DMA-able memory\n");
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
return -ENOMEM;
}
wc->readchunk = wc->writechunk + DAHDI_MAX_CHUNKSIZE * 2; /* in doublewords */
wc->readdma = wc->writedma + DAHDI_MAX_CHUNKSIZE * 8; /* in bytes */
if (wctdm_initialize(wc)) {
printk(KERN_NOTICE "wctdm: Unable to intialize FXS\n");
/* Set Reset Low */
x=inb(wc->ioaddr + WC_CNTL);
outb((~0x1)&x, wc->ioaddr + WC_CNTL);
/* Free Resources */
free_irq(pdev->irq, wc);
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
kfree(wc);
return -EIO;
}
/* Enable bus mastering */
pci_set_master(pdev);
/* Keep track of which device we are */
pci_set_drvdata(pdev, wc);
if (request_irq(pdev->irq, wctdm_interrupt, DAHDI_IRQ_SHARED, "wctdm", wc)) {
printk(KERN_NOTICE "wctdm: Unable to request IRQ %d\n", pdev->irq);
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
pci_set_drvdata(pdev, NULL);
kfree(wc);
return -EIO;
}
if (wctdm_hardware_init(wc)) {
/* Set Reset Low */
x=inb(wc->ioaddr + WC_CNTL);
outb((~0x1)&x, wc->ioaddr + WC_CNTL);
/* Free Resources */
free_irq(pdev->irq, wc);
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
pci_set_drvdata(pdev, NULL);
dahdi_unregister(&wc->span);
kfree(wc);
return -EIO;
}
wctdm_post_initialize(wc);
/* Enable interrupts */
wctdm_enable_interrupts(wc);
/* Initialize Write/Buffers to all blank data */
memset((void *)wc->writechunk,0,DAHDI_MAX_CHUNKSIZE * 2 * 2 * 4);
/* Start DMA */
wctdm_start_dma(wc);
for (x = 0; x < NUM_CARDS; x++) {
if (wc->cardflag & (1 << x))
cardcount++;
}
printk(KERN_INFO "Found a Wildcard TDM: %s (%d modules)\n", wc->variety, cardcount);
res = 0;
} else
res = -ENOMEM;
}
return res;
}
static void wctdm_release(struct wctdm *wc)
{
dahdi_unregister(&wc->span);
if (wc->freeregion)
release_region(wc->ioaddr, 0xff);
kfree(wc);
printk(KERN_INFO "Freed a Wildcard\n");
}
static void __devexit wctdm_remove_one(struct pci_dev *pdev)
{
struct wctdm *wc = pci_get_drvdata(pdev);
if (wc) {
/* Stop any DMA */
wctdm_stop_dma(wc);
wctdm_reset_tdm(wc);
/* In case hardware is still there */
wctdm_disable_interrupts(wc);
/* Immediately free resources */
pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
free_irq(pdev->irq, wc);
/* Reset PCI chip and registers */
outb(0x0e, wc->ioaddr + WC_CNTL);
/* Release span, possibly delayed */
if (!wc->usecount)
wctdm_release(wc);
else
wc->dead = 1;
}
}
static struct pci_device_id wctdm_pci_tbl[] = {
{ 0xe159, 0x0001, 0xa159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm },
{ 0xe159, 0x0001, 0xe159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm },
{ 0xe159, 0x0001, 0xb100, PCI_ANY_ID, 0, 0, (unsigned long) &wctdme },
{ 0xe159, 0x0001, 0xb1d9, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
{ 0xe159, 0x0001, 0xb118, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
{ 0xe159, 0x0001, 0xb119, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
{ 0xe159, 0x0001, 0xa9fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa8fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa800, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa801, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa908, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
{ 0xe159, 0x0001, 0xa901, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
#ifdef TDM_REVH_MATCHALL
{ 0xe159, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
#endif
{ 0 }
};
MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl);
static struct pci_driver wctdm_driver = {
.name = "wctdm",
.probe = wctdm_init_one,
.remove =__devexit_p(wctdm_remove_one),
.suspend = NULL,
.resume = NULL,
.id_table = wctdm_pci_tbl,
};
static int __init wctdm_init(void)
{
int res;
int x;
for (x = 0; x < (sizeof(fxo_modes) / sizeof(fxo_modes[0])); x++) {
if (!strcmp(fxo_modes[x].name, opermode))
break;
}
if (x < sizeof(fxo_modes) / sizeof(fxo_modes[0])) {
_opermode = x;
} else {
printk(KERN_NOTICE "Invalid/unknown operating mode '%s' specified. Please choose one of:\n", opermode);
for (x = 0; x < sizeof(fxo_modes) / sizeof(fxo_modes[0]); x++)
printk(KERN_INFO " %s\n", fxo_modes[x].name);
printk(KERN_INFO "Note this option is CASE SENSITIVE!\n");
return -ENODEV;
}
if (!strcmp(opermode, "AUSTRALIA")) {
boostringer = 1;
fxshonormode = 1;
}
/* for the voicedaa_check_hook defaults, if the user has not overridden
them by specifying them as module parameters, then get the values
from the selected operating mode
*/
if (battdebounce == 0) {
battdebounce = fxo_modes[_opermode].battdebounce;
}
if (battalarm == 0) {
battalarm = fxo_modes[_opermode].battalarm;
}
if (battthresh == 0) {
battthresh = fxo_modes[_opermode].battthresh;
}
res = dahdi_pci_module(&wctdm_driver);
if (res)
return -ENODEV;
return 0;
}
static void __exit wctdm_cleanup(void)
{
pci_unregister_driver(&wctdm_driver);
}
module_param(debug, int, 0600);
module_param(fxovoltage, int, 0600);
module_param(loopcurrent, int, 0600);
module_param(reversepolarity, int, 0600);
module_param(robust, int, 0600);
module_param(opermode, charp, 0600);
module_param(timingonly, int, 0600);
module_param(lowpower, int, 0600);
module_param(boostringer, int, 0600);
module_param(fastringer, int, 0600);
module_param(fxshonormode, int, 0600);
module_param(battdebounce, uint, 0600);
module_param(battalarm, uint, 0600);
module_param(battthresh, uint, 0600);
module_param(ringdebounce, int, 0600);
module_param(dialdebounce, int, 0600);
module_param(fwringdetect, int, 0600);
module_param(alawoverride, int, 0600);
module_param(fastpickup, int, 0600);
module_param(fxotxgain, int, 0600);
module_param(fxorxgain, int, 0600);
module_param(fxstxgain, int, 0600);
module_param(fxsrxgain, int, 0600);
MODULE_DESCRIPTION("Wildcard TDM400P Driver");
MODULE_AUTHOR("Mark Spencer <markster@digium.com>");
MODULE_ALIAS("wcfxs");
MODULE_LICENSE("GPL v2");
module_init(wctdm_init);
module_exit(wctdm_cleanup);