02d30ab799
There are not any major distributions that are still supporting kernels older than 2.6.27 so we can remove many typedefs. The primary motivator for this change is that kernel 5.0 is dropping support for timeval and it would be ideal if the in-kernel time representation can standardize on ktime_t, but 2.6.18 did not support the ktime interface that was needed. Signed-off-by: Shaun Ruffell <sruffell@sruffell.net>
2772 lines
77 KiB
C
2772 lines
77 KiB
C
/*
|
|
* B400M Quad-BRI module Driver
|
|
* Written by Andrew Kohlsmith <akohlsmith@mixdown.ca>
|
|
*
|
|
* Copyright (C) 2010 Digium, Inc.
|
|
* All rights reserved.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* See http://www.asterisk.org for more information about
|
|
* the Asterisk project. Please do not directly contact
|
|
* any of the maintainers of this project for assistance;
|
|
* the project provides a web site, mailing lists and IRC
|
|
* channels for your use.
|
|
*
|
|
* This program is free software, distributed under the terms of
|
|
* the GNU General Public License Version 2 as published by the
|
|
* Free Software Foundation. See the LICENSE file included with
|
|
* this program for more details.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/ppp_defs.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define FAST_HDLC_NEED_TABLES
|
|
#include <dahdi/kernel.h>
|
|
#include <dahdi/fasthdlc.h>
|
|
|
|
#include "wctdm24xxp.h"
|
|
#include "xhfc.h"
|
|
|
|
#define HFC_NR_FIFOS 16
|
|
#define HFC_ZMIN 0x00 /* from datasheet */
|
|
#define HFC_ZMAX 0x7f
|
|
#define HFC_FMIN 0x00
|
|
#define HFC_FMAX 0x07
|
|
|
|
/*
|
|
* yuck. Any reg which is not mandated read/write or read-only is write-only.
|
|
* Also, there are dozens of registers with the same address. Additionally,
|
|
* there are array registers (A_) which have an index register These A_
|
|
* registers require an index register to be written to indicate WHICH in the
|
|
* array you want.
|
|
*/
|
|
|
|
#define R_CIRM 0x00 /* WO */
|
|
#define R_CTRL 0x01 /* WO */
|
|
#define R_CLK_CFG 0x02 /* WO */
|
|
#define A_Z1 0x04 /* RO */
|
|
#define A_Z2 0x06 /* RO */
|
|
#define R_RAM_ADDR 0x08 /* WO */
|
|
#define R_RAM_CTRL 0x09 /* WO */
|
|
#define R_FIRST_FIFO 0x0b /* WO */
|
|
#define R_FIFO_THRES 0x0c /* WO */
|
|
#define A_F1 0x0c /* RO */
|
|
#define R_FIFO_MD 0x0d /* WO */
|
|
#define A_F2 0x0d /* RO */
|
|
#define A_INC_RES_FIFO 0x0e /* WO */
|
|
#define A_FIFO_STA 0x0e /* RO */
|
|
#define R_FSM_IDX 0x0f /* WO */
|
|
#define R_FIFO 0x0f /* WO */
|
|
|
|
#define R_SLOT 0x10 /* WO */
|
|
#define R_IRQ_OVIEW 0x10 /* RO */
|
|
#define R_MISC_IRQMSK 0x11 /* WO */
|
|
#define R_MISC_IRQ 0x11 /* RO */
|
|
#define R_SU_IRQMSK 0x12 /* WO */
|
|
#define R_SU_IRQ 0x12 /* RO */
|
|
#define R_IRQ_CTRL 0x13 /* WO */
|
|
#define R_AF0_OVIEW 0x13 /* RO */
|
|
#define R_PCM_MD0 0x14 /* WO */
|
|
#define A_USAGE 0x14 /* RO */
|
|
#define R_MSS0 0x15 /* WO */
|
|
#define R_MSS1 0x15 /* WO */
|
|
#define R_PCM_MD1 0x15 /* WO */
|
|
#define R_PCM_MD2 0x15 /* WO */
|
|
#define R_SH0H 0x15 /* WO */
|
|
#define R_SH1H 0x15 /* WO */
|
|
#define R_SH0L 0x15 /* WO */
|
|
#define R_SH1L 0x15 /* WO */
|
|
#define R_SL_SEL0 0x15 /* WO */
|
|
#define R_SL_SEL1 0x15 /* WO */
|
|
#define R_SL_SEL7 0x15 /* WO */
|
|
#define R_RAM_USE 0x15 /* RO */
|
|
#define R_SU_SEL 0x16 /* WO */
|
|
#define R_CHIP_ID 0x16 /* RO */
|
|
#define R_SU_SYNC 0x17 /* WO */
|
|
#define R_BERT_STA 0x17 /* RO */
|
|
#define R_F0_CNTL 0x18 /* RO */
|
|
#define R_F0_CNTH 0x19 /* RO */
|
|
#define R_TI_WD 0x1a /* WO */
|
|
#define R_BERT_ECL 0x1a /* RO */
|
|
#define R_BERT_WD_MD 0x1b /* WO */
|
|
#define R_BERT_ECH 0x1b /* RO */
|
|
#define R_STATUS 0x1c /* RO */
|
|
#define R_SL_MAX 0x1d /* RO */
|
|
#define R_PWM_CFG 0x1e /* WO */
|
|
#define R_CHIP_RV 0x1f /* RO */
|
|
|
|
#define R_FIFO_BL0_IRQ 0x20 /* RO */
|
|
#define R_FIFO_BL1_IRQ 0x21 /* RO */
|
|
#define R_FIFO_BL2_IRQ 0x22 /* RO */
|
|
#define R_FIFO_BL3_IRQ 0x23 /* RO */
|
|
#define R_FILL_BL0 0x24 /* RO */
|
|
#define R_FILL_BL1 0x25 /* RO */
|
|
#define R_FILL_BL2 0x26 /* RO */
|
|
#define R_FILL_BL3 0x27 /* RO */
|
|
#define R_CI_TX 0x28 /* WO */
|
|
#define R_CI_RX 0x28 /* RO */
|
|
#define R_CGI_CFG0 0x29 /* WO */
|
|
#define R_CGI_STA 0x29 /* RO */
|
|
#define R_CGI_CFG1 0x2a /* WO */
|
|
#define R_MON_RX 0x2a /* RO */
|
|
#define R_MON_TX 0x2b /* WO */
|
|
|
|
#define A_SU_WR_STA 0x30 /* WO */
|
|
#define A_SU_RD_STA 0x30 /* RO */
|
|
#define A_SU_CTRL0 0x31 /* WO */
|
|
#define A_SU_DLYL 0x31 /* RO */
|
|
#define A_SU_CTRL1 0x32 /* WO */
|
|
#define A_SU_DLYH 0x32 /* RO */
|
|
#define A_SU_CTRL2 0x33 /* WO */
|
|
#define A_MS_TX 0x34 /* WO */
|
|
#define A_MS_RX 0x34 /* RO */
|
|
#define A_ST_CTRL3 0x35 /* WO */
|
|
#define A_UP_CTRL3 0x35 /* WO */
|
|
#define A_SU_STA 0x35 /* RO */
|
|
#define A_MS_DF 0x36 /* WO */
|
|
#define A_SU_CLK_DLY 0x37 /* WO */
|
|
#define R_PWM0 0x38 /* WO */
|
|
#define R_PWM1 0x39 /* WO */
|
|
#define A_B1_TX 0x3c /* WO */
|
|
#define A_B1_RX 0x3c /* RO */
|
|
#define A_B2_TX 0x3d /* WO */
|
|
#define A_B2_RX 0x3d /* RO */
|
|
#define A_D_TX 0x3e /* WO */
|
|
#define A_D_RX 0x3e /* RO */
|
|
#define A_BAC_S_TX 0x3f /* WO */
|
|
#define A_E_RX 0x3f /* RO */
|
|
|
|
#define R_GPIO_OUT1 0x40 /* WO */
|
|
#define R_GPIO_IN1 0x40 /* RO */
|
|
#define R_GPIO_OUT3 0x41 /* WO */
|
|
#define R_GPIO_IN3 0x41 /* RO */
|
|
#define R_GPIO_EN1 0x42 /* WO */
|
|
#define R_GPIO_EN3 0x43 /* WO */
|
|
#define R_GPIO_SEL_BL 0x44 /* WO */
|
|
#define R_GPIO_OUT2 0x45 /* WO */
|
|
#define R_GPIO_IN2 0x45 /* RO */
|
|
#define R_PWM_MD 0x46 /* WO */
|
|
#define R_GPIO_EN2 0x47 /* WO */
|
|
#define R_GPIO_OUT0 0x48 /* WO */
|
|
#define R_GPIO_IN0 0x48 /* RO */
|
|
#define R_GPIO_EN0 0x4a /* WO */
|
|
#define R_GPIO_SEL 0x4c /* WO */
|
|
|
|
#define R_PLL_CTRL 0x50 /* WO */
|
|
#define R_PLL_STA 0x50 /* RO */
|
|
#define R_PLL_P 0x51 /* RW */
|
|
#define R_PLL_N 0x52 /* RW */
|
|
#define R_PLL_S 0x53 /* RW */
|
|
|
|
#define A_FIFO_DATA 0x80 /* RW */
|
|
#define A_FIFO_DATA_NOINC 0x84 /* RW */
|
|
|
|
#define R_INT_DATA 0x88 /* RO */
|
|
|
|
#define R_RAM_DATA 0xc0 /* RW */
|
|
|
|
#define A_SL_CFG 0xd0 /* RW */
|
|
#define A_CH_MSK 0xf4 /* RW */
|
|
#define A_CON_HDLC 0xfa /* RW */
|
|
#define A_SUBCH_CFG 0xfb /* RW */
|
|
#define A_CHANNEL 0xfc /* RW */
|
|
#define A_FIFO_SEQ 0xfd /* RW */
|
|
#define A_FIFO_CTRL 0xff /* RW */
|
|
|
|
/* R_CIRM bits */
|
|
#define V_CLK_OFF (1 << 0) /* 1=internal clocks disabled */
|
|
#define V_WAIT_PROC (1 << 1) /* 1=additional /WAIT after write access */
|
|
#define V_WAIT_REG (1 << 2) /* 1=additional /WAIT for internal BUSY phase */
|
|
#define V_SRES (1 << 3) /* soft reset (group 0) */
|
|
#define V_HFC_RES (1 << 4) /* HFC reset (group 1) */
|
|
#define V_PCM_RES (1 << 5) /* PCM reset (group 2) */
|
|
#define V_SU_RES (1 << 6) /* S/T reset (group 3) */
|
|
#define XHFC_FULL_RESET (V_SRES | V_HFC_RES | V_PCM_RES | V_SU_RES)
|
|
|
|
/* R_STATUS bits */
|
|
#define V_BUSY (1 << 0) /* 1=HFC busy, limited register access */
|
|
#define V_PROC (1 << 1) /* 1=HFC in processing phase */
|
|
#define V_LOST_STA (1 << 3) /* 1=frames have been lost */
|
|
#define V_PCM_INIT (1 << 4) /* 1=PCM init in progress */
|
|
#define V_WAK_STA (1 << 5) /* state of WAKEUP pin wien V_WAK_EN=1 */
|
|
#define V_MISC_IRQSTA (1 << 6) /* 1=misc interrupt has occurred */
|
|
#define V_FR_IRQSTA (1 << 7) /* 1=fifo interrupt has occured */
|
|
#define XHFC_INTS (V_MISC_IRQSTA | V_FR_IRQSTA)
|
|
|
|
/* R_FIFO_BLx_IRQ bits */
|
|
#define V_FIFOx_TX_IRQ (1 << 0) /* FIFO TX interrupt occurred */
|
|
#define V_FIFOx_RX_IRQ (1 << 1) /* FIFO RX interrupt occurred */
|
|
#define FIFOx_TXRX_IRQ (V_FIFOx_TX_IRQ | V_FIFOx_RX_IRQ)
|
|
|
|
/* R_FILL_BLx bits */
|
|
#define V_FILL_FIFOx_TX (1 << 0) /* TX FIFO reached V_THRES_TX level */
|
|
#define V_FILL_FIFOx_RX (1 << 1) /* RX FIFO reached V_THRES_RX level */
|
|
#define FILL_FIFOx_TXRX (V_FILL_FIFOx_TX | V_FILL_FIFOx_RX)
|
|
|
|
/* R_MISC_IRQ / R_MISC_IRQMSK bits */
|
|
#define V_SLP_IRQ (1 << 0) /* frame sync pulse flips */
|
|
#define V_TI_IRQ (1 << 1) /* timer elapsed */
|
|
#define V_PROC_IRQ (1 << 2) /* processing/non-processing transition */
|
|
#define V_CI_IRQ (1 << 4) /* indication bits changed */
|
|
#define V_WAK_IRQ (1 << 5) /* WAKEUP pin */
|
|
#define V_MON_TX_IRQ (1 << 6) /* monitor byte can be written */
|
|
#define V_MON_RX_IRQ (1 << 7) /* monitor byte received */
|
|
|
|
/* R_SU_IRQ/R_SU_IRQMSK bits */
|
|
#define V_SU0_IRQ (1 << 0) /* interrupt/mask port 1 */
|
|
#define V_SU1_IRQ (1 << 1) /* interrupt/mask port 2 */
|
|
#define V_SU2_IRQ (1 << 2) /* interrupt/mask port 3 */
|
|
#define V_SU3_IRQ (1 << 3) /* interrupt/mask port 4 */
|
|
|
|
/* R_IRQ_CTRL bits */
|
|
#define V_FIFO_IRQ_EN (1 << 0) /* enable any unmasked FIFO IRQs */
|
|
#define V_GLOB_IRQ_EN (1 << 3) /* enable any unmasked IRQs */
|
|
#define V_IRQ_POL (1 << 4) /* 1=IRQ active high */
|
|
|
|
/* R_BERT_WD_MD bits */
|
|
#define V_BERT_ERR (1 << 3) /* 1=generate an error bit in BERT stream */
|
|
#define V_AUTO_WD_RES (1 << 5) /* 1=automatically kick the watchdog */
|
|
#define V_WD_RES (1 << 7) /* 1=kick the watchdog (bit auto clears) */
|
|
|
|
/* R_TI_WD bits */
|
|
#define V_EV_TS_SHIFT (0)
|
|
#define V_EV_TS_MASK (0x0f)
|
|
#define V_WD_TS_SHIFT (4)
|
|
#define V_WD_TS_MASK (0xf0)
|
|
|
|
/* A_FIFO_CTRL bits */
|
|
#define V_FIFO_IRQMSK (1 << 0) /* 1=FIFO can generate interrupts */
|
|
#define V_BERT_EN (1 << 1) /* 1=BERT data replaces FIFO data */
|
|
#define V_MIX_IRQ (1 << 2) /* IRQ when 0=end of frame only, 1=also when Z1==Z2 */
|
|
#define V_FR_ABO (1 << 3) /* 1=generate frame abort/frame abort detected */
|
|
#define V_NO_CRC (1 << 4) /* 1=do not send CRC at end of frame */
|
|
#define V_NO_REP (1 << 5) /* 1=frame deleted after d-chan contention */
|
|
|
|
/* R_CLK_CFG bits */
|
|
#define V_CLK_PLL (1 << 0) /* Sysclk select 0=OSC_IN, 1=PLL output */
|
|
#define V_CLKO_HI (1 << 1) /* CLKOUT selection 0=PLL/8, 1=PLL */
|
|
#define V_CLKO_PLL (1 << 2) /* CLKOUT source 0=divider or PLL input, 1=PLL output */
|
|
#define V_PCM_CLK (1 << 5) /* 1=PCM clk = OSC, 0 = PCM clk is 2x OSC */
|
|
#define V_CLKO_OFF (1 << 6) /* CLKOUT enable 0=enabled */
|
|
#define V_CLK_F1 (1 << 7) /* PLL input pin 0=OSC_IN, 1=F1_1 */
|
|
|
|
/* R_PCM_MD0 bits */
|
|
#define V_PCM_MD (1 << 0) /* 1=PCM master */
|
|
#define V_C4_POL (1 << 1) /* 1=F0IO sampled on rising edge of C4IO */
|
|
#define V_F0_NEG (1 << 2) /* 1=negative polarity of F0IO */
|
|
#define V_F0_LEN (1 << 3) /* 1=F0IO active for 2 C4IO clocks */
|
|
#define V_PCM_IDX_SEL0 (0x0 << 4) /* reg15 = R_SL_SEL0 */
|
|
#define V_PCM_IDX_SEL1 (0x1 << 4) /* reg15 = R_SL_SEL1 */
|
|
#define V_PCM_IDX_SEL7 (0x7 << 4) /* reg15 = R_SL_SEL7 */
|
|
#define V_PCM_IDX_MSS0 (0x8 << 4) /* reg15 = R_MSS0 */
|
|
#define V_PCM_IDX_MD1 (0x9 << 4) /* reg15 = R_PCM_MD1 */
|
|
#define V_PCM_IDX_MD2 (0xa << 4) /* reg15 = R_PCM_MD2 */
|
|
#define V_PCM_IDX_MSS1 (0xb << 4) /* reg15 = R_MSS1 */
|
|
#define V_PCM_IDX_SH0L (0xc << 4) /* reg15 = R_SH0L */
|
|
#define V_PCM_IDX_SH0H (0xd << 4) /* reg15 = R_SH0H */
|
|
#define V_PCM_IDX_SH1L (0xe << 4) /* reg15 = R_SH1L */
|
|
#define V_PCM_IDX_SH1H (0xf << 4) /* reg15 = R_SH1H */
|
|
#define V_PCM_IDX_MASK (0xf0)
|
|
|
|
/* R_PCM_MD1 bits */
|
|
#define V_PLL_ADJ_00 (0x0 << 2) /* adj 4 times by 0.5 system clk cycles */
|
|
#define V_PLL_ADJ_01 (0x1 << 2) /* adj 3 times by 0.5 system clk cycles */
|
|
#define V_PLL_ADJ_10 (0x2 << 2) /* adj 2 times by 0.5 system clk cycles */
|
|
#define V_PLL_ADJ_11 (0x3 << 2) /* adj 1 time by 0.5 system clk cycles */
|
|
#define V_PCM_DR_2048 (0x0 << 4) /* 2.048Mbps, 32 timeslots */
|
|
#define V_PCM_DR_4096 (0x1 << 4) /* 4.096Mbps, 64 timeslots */
|
|
#define V_PCM_DR_8192 (0x2 << 4) /* 8.192Mbps, 128 timeslots */
|
|
#define V_PCM_DR_075 (0x3 << 4) /* 0.75Mbps, 12 timeslots */
|
|
#define V_PCM_LOOP (1 << 6) /* 1=internal loopback */
|
|
#define V_PCM_SMPL (1 << 7) /* 0=sample at middle of bit cell, 1=sample at 3/4 point */
|
|
#define V_PLL_ADJ_MASK (0x3 << 2)
|
|
#define V_PCM_DR_MASK (0x3 << 4)
|
|
|
|
/* R_PCM_MD2 bits */
|
|
#define V_SYNC_OUT1 (1 << 1) /* SYNC_O source 0=SYNC_I or FSX_RX, 1=512kHz from PLL or multiframe */
|
|
#define V_SYNC_SRC (1 << 2) /* 0=line interface, 1=SYNC_I */
|
|
#define V_SYNC_OUT2 (1 << 3) /* SYNC_O source 0=rx sync or FSC_RX 1=SYNC_I or received superframe */
|
|
#define V_C2O_EN (1 << 4) /* C2IO output enable (when V_C2I_EN=0) */
|
|
#define V_C2I_EN (1 << 5) /* PCM controller clock source 0=C4IO, 1=C2IO */
|
|
#define V_PLL_ICR (1 << 6) /* 0=reduce PCM frame time, 1=increase */
|
|
#define V_PLL_MAN (1 << 7) /* 0=auto, 1=manual */
|
|
|
|
/* A_SL_CFG bits */
|
|
#define V_CH_SDIR (1 << 0) /* 1=HFC channel receives data from PCM TS */
|
|
#define V_ROUT_TX_DIS (0x0 << 6) /* disabled, output disabled */
|
|
#define V_ROUT_TX_LOOP (0x1 << 6) /* internally looped, output disabled */
|
|
#define V_ROUT_TX_STIO1 (0x2 << 6) /* output data to STIO1 */
|
|
#define V_ROUT_TX_STIO2 (0x3 << 6) /* output data to STIO2 */
|
|
#define V_ROUT_RX_DIS (0x0 << 6) /* disabled, input data ignored */
|
|
#define V_ROUT_RX_LOOP (0x1 << 6) /* internally looped, input data ignored */
|
|
#define V_ROUT_RX_STIO2 (0x2 << 6) /* channel data comes from STIO1 */
|
|
#define V_ROUT_RX_STIO1 (0x3 << 6) /* channel data comes from STIO2 */
|
|
#define V_CH_SNUM_SHIFT (1)
|
|
#define V_CH_SNUM_MASK (31 << 1)
|
|
|
|
/* A_CON_HDLC bits */
|
|
#define V_IFF (1 << 0) /* Inter-Frame Fill: 0=0x7e, 1=0xff */
|
|
#define V_HDLC_TRP (1 << 1) /* 0=HDLC mode, 1=transparent */
|
|
#define V_TRP_DISABLED (0x0 << 2) /* FIFO disabled, no interrupt */
|
|
#define V_TRP_IRQ_64 (0x1 << 2) /* FIFO enabled, int @ 8 bytes */
|
|
#define V_TRP_IRQ_128 (0x2 << 2) /* FIFO enabled, int @ 16 bytes */
|
|
#define V_TRP_IRQ_256 (0x3 << 2) /* FIFO enabled, int @ 32 bytes */
|
|
#define V_TRP_IRQ_512 (0x4 << 2) /* FIFO enabled, int @ 64 bytes */
|
|
#define V_TRP_IRQ_1024 (0x5 << 2) /* FIFO enabled, int @ 128 bytes */
|
|
#define V_TRP_NO_IRQ (0x7 << 2) /* FIFO enabled, no interrupt */
|
|
#define V_HDLC_IRQ (0x3 << 2) /* HDLC: FIFO enabled, interrupt at end of frame or when FIFO > 16 byte boundary (Mixed IRQ) */
|
|
#define V_DATA_FLOW_000 (0x0 << 5) /* see A_CON_HDLC reg description in datasheet */
|
|
#define V_DATA_FLOW_001 (0x1 << 5) /* see A_CON_HDLC reg description in datasheet */
|
|
#define V_DATA_FLOW_010 (0x2 << 5) /* see A_CON_HDLC reg description in datasheet */
|
|
#define V_DATA_FLOW_011 (0x3 << 5) /* see A_CON_HDLC reg description in datasheet */
|
|
#define V_DATA_FLOW_100 (0x4 << 5) /* see A_CON_HDLC reg description in datasheet */
|
|
#define V_DATA_FLOW_101 (0x5 << 5) /* see A_CON_HDLC reg description in datasheet */
|
|
#define V_DATA_FLOW_110 (0x6 << 5) /* see A_CON_HDLC reg description in datasheet */
|
|
#define V_DATA_FLOW_111 (0x7 << 5) /* see A_CON_HDLC reg description in datasheet */
|
|
|
|
/* R_FIFO bits */
|
|
#define V_FIFO_DIR (1 << 0) /* 1=RX FIFO data */
|
|
#define V_REV (1 << 7) /* 1=MSB first */
|
|
#define V_FIFO_NUM_SHIFT (1)
|
|
#define V_FIFO_NUM_MASK (0x3e)
|
|
|
|
/* A_CHANNEL bits */
|
|
#define V_CH_FDIR (1 << 0) /* 1=HFC chan for RX data */
|
|
#define V_CH_FNUM_SHIFT (1)
|
|
#define V_CH_FNUM_MASK (0x3e)
|
|
|
|
/* R_SLOT bits */
|
|
#define V_SL_DIR (1 << 0) /* 1=timeslot will RX PCM data from bus */
|
|
#define V_SL_NUM_SHIFT (1)
|
|
#define V_SL_NUM_MASK (0xfe)
|
|
|
|
/* A_INC_RES_FIFO bits */
|
|
#define V_INC_F (1 << 0) /* 1=increment FIFO F-counter (bit auto-clears) */
|
|
#define V_RES_FIFO (1 << 1) /* 1=reset FIFO (bit auto-clears) */
|
|
#define V_RES_LOST (1 << 2) /* 1=reset LOST error (bit auto-clears) */
|
|
#define V_RES_FIFO_ERR (1 << 3) /* 1=reset FIFO error (bit auto-clears), check V_ABO_DONE before setting */
|
|
|
|
/* R_FIFO_MD bits */
|
|
#define V_FIFO_MD_00 (0x0 << 0) /* 16 FIFOs, 64 bytes TX/RX, 128 TX or RX if V_UNIDIR_RX */
|
|
#define V_FIFO_MD_01 (0x1 << 0) /* 8 FIFOs, 128 bytes TX/RX, 256 TX or RX if V_UNIDIR_RX */
|
|
#define V_FIFO_MD_10 (0x2 << 0) /* 4 FIFOs, 256 bytes TX/RX, invalid mode with V_UNIDIR_RX */
|
|
#define V_DF_MD_SM (0x0 << 2) /* simple data flow mode */
|
|
#define V_DF_MD_CSM (0x1 << 2) /* channel select mode */
|
|
#define V_DF_MD_FSM (0x3 << 2) /* FIFO sequence mode */
|
|
#define V_UNIDIR_MD (1 << 4) /* 1=unidirectional FIFO mode */
|
|
#define V_UNIDIR_RX (1 << 5) /* 1=unidirection FIFO is RX */
|
|
|
|
/* A_SUBCH_CFG bits */
|
|
#define V_BIT_CNT_8BIT (0) /* process 8 bits */
|
|
#define V_BIT_CNT_1BIT (1) /* process 1 bit */
|
|
#define V_BIT_CNT_2BIT (2) /* process 2 bits */
|
|
#define V_BIT_CNT_3BIT (3) /* process 3 bits */
|
|
#define V_BIT_CNT_4BIT (4) /* process 4 bits */
|
|
#define V_BIT_CNT_5BIT (5) /* process 5 bits */
|
|
#define V_BIT_CNT_6BIT (6) /* process 6 bits */
|
|
#define V_BIT_CNT_7BIT (7) /* process 7 bits */
|
|
#define V_LOOP_FIFO (1 << 6) /* loop FIFO data */
|
|
#define V_INV_DATA (1 << 7) /* invert FIFO data */
|
|
#define V_START_BIT_SHIFT (3)
|
|
#define V_START_BIT_MASK (0x38)
|
|
|
|
/* R_SU_SYNC bits */
|
|
#define V_SYNC_SEL_PORT0 (0x0 << 0) /* sync to TE port 0 */
|
|
#define V_SYNC_SEL_PORT1 (0x1 << 0) /* sync to TE port 1 */
|
|
#define V_SYNC_SEL_PORT2 (0x2 << 0) /* sync to TE port 2 */
|
|
#define V_SYNC_SEL_PORT3 (0x3 << 0) /* sync to TE port 3 */
|
|
#define V_SYNC_SEL_SYNCI (0x4 << 0) /* sync to SYNC_I */
|
|
#define V_MAN_SYNC (1 << 3) /* 1=manual sync mode */
|
|
#define V_AUTO_SYNCI (1 << 4) /* 1=SYNC_I used if FSC_RX not found */
|
|
#define V_D_MERGE_TX (1 << 5) /* 1=all 4 dchan taken from one byte in TX */
|
|
#define V_E_MERGE_RX (1 << 6) /* 1=all 4 echan combined in RX direction */
|
|
#define V_D_MERGE_RX (1 << 7) /* 1=all 4 dchan combined in RX direction */
|
|
#define V_SYNC_SEL_MASK (0x03)
|
|
|
|
/* A_SU_WR_STA bits */
|
|
#define V_SU_SET_STA_MASK (0x0f)
|
|
#define V_SU_LD_STA (1 << 4) /* 1=force SU_SET_STA mode, must be manually cleared 6us later */
|
|
#define V_SU_ACT_NOP (0x0 << 5) /* NOP */
|
|
#define V_SU_ACT_DEACTIVATE (0x2 << 5) /* start deactivation. auto-clears */
|
|
#define V_SU_ACT_ACTIVATE (0x3 << 5) /* start activation. auto-clears. */
|
|
#define V_SET_G2_G3 (1 << 7) /* 1=auto G2->G3 in NT mode. auto-clears after transition. */
|
|
|
|
/* A_SU_RD_STA */
|
|
#define V_SU_STA_MASK (0x0f)
|
|
#define V_SU_FR_SYNC (1 << 4) /* 1=synchronized */
|
|
#define V_SU_T2_EXP (1 << 5) /* 1=T2 expired (NT only) */
|
|
#define V_SU_INFO0 (1 << 6) /* 1=INFO0 */
|
|
#define V_G2_G3 (1 << 7) /* 1=allows G2->G3 (NT only, auto-clears) */
|
|
|
|
/* A_SU_CLK_DLY bits */
|
|
#define V_SU_DLY_MASK (0x0f)
|
|
#define V_SU_SMPL_MASK (0xf0)
|
|
#define V_SU_SMPL_SHIFT (4)
|
|
|
|
/* A_SU_CTRL0 bits */
|
|
#define V_B1_TX_EN (1 << 0) /* 1=B1-channel transmit */
|
|
#define V_B2_TX_EN (1 << 1) /* 1=B2-channel transmit */
|
|
#define V_SU_MD (1 << 2) /* 0=TE, 1=NT */
|
|
#define V_ST_D_LPRIO (1 << 3) /* D-Chan priority 0=high, 1=low */
|
|
#define V_ST_SQ_EN (1 << 4) /* S/Q bits transmit (1=enabled) */
|
|
#define V_SU_TST_SIG (1 << 5) /* 1=transmit test signal */
|
|
#define V_ST_PU_CTRL (1 << 6) /* 1=enable end of pulse control */
|
|
#define V_SU_STOP (1 << 7) /* 1=power down */
|
|
|
|
/* A_SU_CTRL1 bits */
|
|
#define V_G2_G3_EN (1 << 0) /* 1=G2->G3 allowed without V_SET_G2_G3 */
|
|
#define V_D_RES (1 << 2) /* 1=D-chan reset */
|
|
#define V_ST_E_IGNO (1 << 3) /* TE:1=ignore Echan, NT:should always be 1. */
|
|
#define V_ST_E_LO (1 << 4) /* NT only: 1=force Echan low */
|
|
#define V_BAC_D (1 << 6) /* 1=BAC bit controls Dchan TX */
|
|
#define V_B12_SWAP (1 << 7) /* 1=swap B1/B2 */
|
|
|
|
/* A_SU_CTRL2 bits */
|
|
#define V_B1_RX_EN (1 << 0) /* 1=enable B1 RX */
|
|
#define V_B2_RX_EN (1 << 1) /* 1=enable B2 RX */
|
|
#define V_MS_SSYNC2 (1 << 2) /* 0 normally, see datasheet */
|
|
#define V_BAC_S_SEL (1 << 3) /* see datasheet */
|
|
#define V_SU_SYNC_NT (1 << 4) /* 0=sync pulses generated only in TE, 1=in TE and NT */
|
|
#define V_SU_2KHZ (1 << 5) /* 0=96kHz test tone, 1=2kHz */
|
|
#define V_SU_TRI (1 << 6) /* 1=tristate output buffer */
|
|
#define V_SU_EXCHG (1 << 7) /* 1=invert output drivers */
|
|
|
|
/* R_IRQ_OVIEW bits */
|
|
#define V_FIFO_BL0_IRQ (1 << 0) /* FIFO 0-3 IRQ */
|
|
#define V_FIFO_BL1_IRQ (1 << 1) /* FIFO 4-7 IRQ */
|
|
#define V_FIFO_BL2_IRQ (1 << 2) /* FIFO 8-11 IRQ */
|
|
#define V_FIFO_BL3_IRQ (1 << 3) /* FIFO 12-15 IRQ */
|
|
#define V_MISC_IRQ (1 << 4) /* R_MISC_IRQ changed */
|
|
#define V_STUP_IRQ (1 << 5) /* R_SU_IRQ changed */
|
|
#define V_FIFO_BLx_IRQ (V_FIFO_BL0_IRQ | V_FIFO_BL1_IRQ | V_FIFO_BL2_IRQ | V_FIFO_BL3_IRQ)
|
|
|
|
/* R_FIRST_FIFO bits */
|
|
#define V_FIRST_FIFO_NUM_SHIFT (1)
|
|
|
|
/* A_FIFO_SEQ bits */
|
|
#define V_NEXT_FIFO_NUM_SHIFT (1)
|
|
#define V_SEQ_END (1 << 6)
|
|
|
|
#if (DAHDI_CHUNKSIZE != 8)
|
|
#error Sorry, the b400m does not support chunksize != 8
|
|
#endif
|
|
|
|
/* general debug messages */
|
|
#define DEBUG_GENERAL (1 << 0)
|
|
/* emit DTMF detector messages */
|
|
#define DEBUG_DTMF (1 << 1)
|
|
/* emit register read/write, but only if the kernel's DEBUG is defined */
|
|
#define DEBUG_REGS (1 << 2)
|
|
/* emit file operation messages */
|
|
#define DEBUG_FOPS (1 << 3)
|
|
#define DEBUG_ECHOCAN (1 << 4)
|
|
/* S/T state machine */
|
|
#define DEBUG_ST_STATE (1 << 5)
|
|
/* HDLC controller */
|
|
#define DEBUG_HDLC (1 << 6)
|
|
/* alarm changes */
|
|
#define DEBUG_ALARM (1 << 7)
|
|
/* Timing related changes */
|
|
#define DEBUG_TIMING (1 << 8)
|
|
|
|
#define DBG (bri_debug & DEBUG_GENERAL)
|
|
#define DBG_DTMF (bri_debug & DEBUG_DTMF)
|
|
#define DBG_REGS (bri_debug & DEBUG_REGS)
|
|
#define DBG_FOPS (bri_debug & DEBUG_FOPS)
|
|
#define DBG_EC (bri_debug & DEBUG_ECHOCAN)
|
|
#define DBG_ST (bri_debug & DEBUG_ST_STATE)
|
|
#define DBG_HDLC (bri_debug & DEBUG_HDLC)
|
|
#define DBG_ALARM (bri_debug & DEBUG_ALARM)
|
|
#define DBG_TIMING (bri_debug & DEBUG_TIMING)
|
|
|
|
#define DBG_SPANFILTER ((1 << bspan->port) & bri_spanfilter)
|
|
|
|
/* #define HARDHDLC_RX */
|
|
|
|
/* Any static variables not initialized by default should be set
|
|
* to 0 automatically */
|
|
int bri_debug;
|
|
int bri_spanfilter = 9;
|
|
int bri_teignorered = 1;
|
|
int bri_alarmdebounce;
|
|
int bri_persistentlayer1;
|
|
int timingcable;
|
|
|
|
static int synccard = -1;
|
|
static int syncspan = -1;
|
|
|
|
static const int TIMER_3_MS = 30000;
|
|
|
|
#define b4_info(b4, format, arg...) \
|
|
dev_info(&(b4)->wc->vb.pdev->dev , format , ## arg)
|
|
|
|
/* if defined, swaps ports 2 and 3 on the B400M module */
|
|
#define SWAP_PORTS
|
|
|
|
#define XHFC_T1 0
|
|
#define XHFC_T2 1
|
|
#define XHFC_T3 2
|
|
/* T4 - Special timer, used for debug purposes for monitoring of L1 state during activation attempt. */
|
|
#define XHFC_T4 3
|
|
|
|
#define B400M_CHANNELS_PER_SPAN 3 /* 2 B-channels and 1 D-Channel for each BRI span */
|
|
#define B400M_HDLC_BUF_LEN 128 /* arbitrary, just the max # of byts we will send to DAHDI per call */
|
|
|
|
#define get_F(f1, f2, flen) { \
|
|
f1 = hfc_readcounter8(b4, A_F1); \
|
|
f2 = hfc_readcounter8(b4, A_F2); \
|
|
flen = f1 - f2; \
|
|
\
|
|
if (flen < 0) \
|
|
flen += (HFC_FMAX - HFC_FMIN) + 1; \
|
|
}
|
|
|
|
#define get_Z(z1, z2, zlen) { \
|
|
z1 = hfc_readcounter8(b4, A_Z1); \
|
|
z2 = hfc_readcounter8(b4, A_Z2); \
|
|
zlen = z1 - z2; \
|
|
\
|
|
if (zlen < 0) \
|
|
zlen += (HFC_ZMAX - HFC_ZMIN) + 1; \
|
|
}
|
|
|
|
struct b400m_span {
|
|
struct b400m *parent;
|
|
unsigned int port; /* which S/T port this span belongs to */
|
|
|
|
int oldstate; /* old state machine state */
|
|
int newalarm; /* alarm to send to DAHDI once alarm timer expires */
|
|
unsigned long alarmtimer;
|
|
|
|
unsigned int te_mode:1; /* 1=TE, 0=NT */
|
|
unsigned int term_on:1; /* 1= 390 ohm termination enable, 0 = disabled */
|
|
unsigned long hfc_timers[B400M_CHANNELS_PER_SPAN+1]; /* T1, T2, T3 */
|
|
int hfc_timer_on[B400M_CHANNELS_PER_SPAN+1]; /* 1=timer active */
|
|
int fifos[B400M_CHANNELS_PER_SPAN]; /* B1, B2, D <--> host fifo numbers */
|
|
|
|
/* HDLC controller fields */
|
|
struct wctdm_span *wspan; /* pointer to the actual dahdi_span */
|
|
struct dahdi_chan *sigchan; /* pointer to the signalling channel for this span */
|
|
int sigactive; /* nonzero means we're in the middle of sending an HDLC frame */
|
|
atomic_t hdlc_pending; /* hdlc_hard_xmit() increments, hdlc_tx_frame() decrements */
|
|
unsigned int frames_out;
|
|
unsigned int frames_in;
|
|
|
|
struct fasthdlc_state rxhdlc;
|
|
int infcs;
|
|
int f_sz;
|
|
};
|
|
|
|
/* This structure exists one per module */
|
|
struct b400m {
|
|
char name[10];
|
|
int position; /* module position in carrier board */
|
|
int b400m_no; /* 0-based B400M number in system */
|
|
|
|
struct wctdm *wc; /* parent structure */
|
|
|
|
spinlock_t reglock; /* lock for all register accesses */
|
|
|
|
unsigned long ticks;
|
|
|
|
unsigned long fifo_en_rxint; /* each bit is the RX int enable for that FIFO */
|
|
unsigned long fifo_en_txint; /* each bit is the TX int enable for that FIFO */
|
|
unsigned char fifo_irqstatus; /* top-half ORs in new interrupts, bottom-half ANDs them out */
|
|
|
|
int setsyncspan; /* Span reported from HFC for sync on this card */
|
|
int reportedsyncspan; /* Span reported from HFC for sync on this card */
|
|
|
|
unsigned int running:1; /* interrupts are enabled */
|
|
unsigned int shutdown:1; /* 1=bottom half doesn't process anything, just returns */
|
|
unsigned int inited:1; /* FIXME: temporary */
|
|
unsigned int misc_irq_mask:1; /* 1= interrupt is valid */
|
|
|
|
struct b400m_span spans[4]; /* Individual spans */
|
|
|
|
struct workqueue_struct *xhfc_ws;
|
|
struct work_struct xhfc_wq;
|
|
|
|
unsigned char irq_oview; /* copy of r_irq_oview */
|
|
unsigned char fifo_fill; /* copy of R_FILL_BL0 */
|
|
|
|
struct semaphore regsem; /* lock for low-level register accesses */
|
|
struct semaphore fifosem; /* lock for fifo accesses */
|
|
|
|
unsigned char lastreg; /* last XHFC register accessed (used to speed up multiple address "hits" */
|
|
};
|
|
|
|
static void hfc_start_st(struct b400m_span *s);
|
|
static void hfc_stop_st(struct b400m_span *s);
|
|
|
|
void b400m_set_dahdi_span(struct b400m *b4, int spanno,
|
|
struct wctdm_span *wspan)
|
|
{
|
|
b4->spans[spanno].wspan = wspan;
|
|
wspan->bspan = &b4->spans[spanno];
|
|
}
|
|
|
|
static inline void flush_hw(void)
|
|
{
|
|
}
|
|
|
|
static int xhfc_getreg(struct wctdm *wc, struct wctdm_module *const mod,
|
|
int addr, u8 *lastreg)
|
|
{
|
|
int x;
|
|
|
|
if (*lastreg != (unsigned char)addr) {
|
|
wctdm_setreg(wc, mod, 0x60, addr);
|
|
*lastreg = (unsigned char)addr;
|
|
}
|
|
x = wctdm_getreg(wc, mod, 0x80);
|
|
return x;
|
|
}
|
|
|
|
static int xhfc_setreg(struct wctdm *wc, struct wctdm_module *const mod,
|
|
int addr, int val, u8 *lastreg)
|
|
{
|
|
if (*lastreg != (unsigned char)addr) {
|
|
wctdm_setreg(wc, mod, 0x60, addr);
|
|
*lastreg = (unsigned char)addr;
|
|
}
|
|
return wctdm_setreg(wc, mod, 0x00, val);
|
|
}
|
|
|
|
static inline struct wctdm_module *get_mod(struct b400m *b4)
|
|
{
|
|
return &b4->wc->mods[b4->position];
|
|
}
|
|
|
|
static int b400m_getreg(struct b400m *b4, int addr)
|
|
{
|
|
int x;
|
|
|
|
if (down_trylock(&b4->regsem)) {
|
|
if (down_interruptible(&b4->regsem)) {
|
|
b4_info(b4, "b400m_getreg(0x%02x) interrupted\n",
|
|
addr);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
x = xhfc_getreg(b4->wc, get_mod(b4), addr, &b4->lastreg);
|
|
up(&b4->regsem);
|
|
|
|
return x;
|
|
}
|
|
|
|
static int b400m_setreg(struct b400m *b4, const int addr, const int val)
|
|
{
|
|
int x;
|
|
|
|
if (down_trylock(&b4->regsem)) {
|
|
if (down_interruptible(&b4->regsem)) {
|
|
b4_info(b4, "b400m_setreg(0x%02x -> 0x%02x) "
|
|
"interrupted\n", val, addr);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
x = xhfc_setreg(b4->wc, get_mod(b4), addr, val, &b4->lastreg);
|
|
up(&b4->regsem);
|
|
|
|
return x;
|
|
}
|
|
|
|
|
|
/*
|
|
* A lot of the registers in the XHFC are indexed.
|
|
* this function sets the index, and then writes to the indexed register.
|
|
*/
|
|
static void b400m_setreg_ra(struct b400m *b4, u8 r, u8 rd, u8 a, u8 ad)
|
|
{
|
|
if (down_trylock(&b4->regsem)) {
|
|
if (down_interruptible(&b4->regsem)) {
|
|
b4_info(b4, "b400m_setreg_ra(0x%02x -> 0x%02x) "
|
|
"interrupted\n", a, ad);
|
|
return;
|
|
}
|
|
}
|
|
|
|
xhfc_setreg(b4->wc, get_mod(b4), r, rd, &b4->lastreg);
|
|
xhfc_setreg(b4->wc, get_mod(b4), a, ad, &b4->lastreg);
|
|
up(&b4->regsem);
|
|
}
|
|
|
|
static u8 b400m_getreg_ra(struct b400m *b4, u8 r, u8 rd, u8 a)
|
|
{
|
|
unsigned char res;
|
|
if (down_trylock(&b4->regsem)) {
|
|
if (down_interruptible(&b4->regsem)) {
|
|
b4_info(b4, "b400m_getreg_ra(0x%02x) interrupted\n",
|
|
a);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
xhfc_setreg(b4->wc, get_mod(b4), r, rd, &b4->lastreg);
|
|
res = xhfc_getreg(b4->wc, get_mod(b4), a, &b4->lastreg);
|
|
up(&b4->regsem);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* XHFC-4S GPIO routines
|
|
*
|
|
* the xhfc doesn't use its gpio for anything. :-)
|
|
*/
|
|
|
|
/*
|
|
* initialize XHFC GPIO.
|
|
* GPIO 0-7 are output, low (unconnected, or used for their primary function).
|
|
*/
|
|
static void hfc_gpio_init(struct b400m *b4)
|
|
{
|
|
/* GPIO0..3,7 are GPIO, 4,5,6 primary function */
|
|
b400m_setreg(b4, R_GPIO_SEL, 0x8f);
|
|
/* GPIO0..7 drivers set low */
|
|
b400m_setreg(b4, R_GPIO_OUT0, 0x00);
|
|
/* GPIO0..7 drivers enabled */
|
|
b400m_setreg(b4, R_GPIO_EN0, 0xff);
|
|
/* all other GPIO set to primary function */
|
|
b400m_setreg(b4, R_GPIO_SEL_BL, 0x00);
|
|
|
|
}
|
|
|
|
|
|
/* performs a register write and then waits for the HFC "busy" bit to clear
|
|
* NOTE: doesn't actually read status, since busy bit is 1us typically, and
|
|
* we're much, much slower than that. */
|
|
static void hfc_setreg_waitbusy(struct b400m *b4, const unsigned int reg,
|
|
const unsigned int val)
|
|
{
|
|
b400m_setreg(b4, reg, val);
|
|
}
|
|
|
|
/*
|
|
* reads an 8-bit register over over and over until the same value is read
|
|
* twice, then returns that value.
|
|
*/
|
|
static unsigned char hfc_readcounter8(struct b400m *b4, const unsigned int reg)
|
|
{
|
|
unsigned char r1, r2;
|
|
unsigned long maxwait = 1048576;
|
|
|
|
do {
|
|
r1 = b400m_getreg(b4, reg);
|
|
r2 = b400m_getreg(b4, reg);
|
|
} while ((r1 != r2) && maxwait--);
|
|
|
|
if (!maxwait) {
|
|
if (printk_ratelimit()) {
|
|
dev_warn(&b4->wc->vb.pdev->dev,
|
|
"hfc_readcounter8(reg 0x%02x) timed out " \
|
|
"waiting for data to settle!\n", reg);
|
|
}
|
|
}
|
|
|
|
return r1;
|
|
}
|
|
|
|
/* performs a soft-reset of the HFC-4S. */
|
|
static void hfc_reset(struct b400m *b4)
|
|
{
|
|
unsigned long start;
|
|
int TIMEOUT = HZ; /* 1s */
|
|
|
|
/* Set the FIFOs to 8 128 bytes FIFOs, bidirectional, and set up the
|
|
* flow controller for channel select mode. */
|
|
/* Note, this reg has to be set *before* the SW reset */
|
|
b400m_setreg(b4, R_FIFO_MD, V_FIFO_MD_01 | V_DF_MD_FSM);
|
|
|
|
msleep(1); /* wait a bit for clock to settle */
|
|
/* reset everything, wait 100ms, then allow the XHFC to come out of reset */
|
|
b400m_setreg(b4, R_CIRM, V_SRES);
|
|
flush_hw();
|
|
|
|
msleep(100);
|
|
|
|
b400m_setreg(b4, R_CIRM, 0x00);
|
|
flush_hw();
|
|
|
|
/* wait for XHFC to come out of reset. */
|
|
start = jiffies;
|
|
while (b400m_getreg(b4, R_STATUS) & (V_BUSY | V_PCM_INIT)) {
|
|
if (time_after(jiffies, start + TIMEOUT)) {
|
|
b4_info(b4, "hfc_reset() Module won't come out of "
|
|
"reset... continuing.\n");
|
|
break;
|
|
}
|
|
};
|
|
|
|
/* Disable the output clock pin, and also the PLL (it's not needed) */
|
|
b400m_setreg(b4, R_CTRL, 0x00);
|
|
}
|
|
|
|
static void hfc_enable_fifo_irqs(struct b400m *b4)
|
|
{
|
|
b400m_setreg(b4, R_IRQ_CTRL, V_FIFO_IRQ_EN | V_GLOB_IRQ_EN);
|
|
flush_hw();
|
|
}
|
|
|
|
static void hfc_enable_interrupts(struct b400m *b4)
|
|
{
|
|
b4->running = 1;
|
|
|
|
/* mask all misc interrupts */
|
|
b4->misc_irq_mask = 0x01;
|
|
b400m_setreg(b4, R_MISC_IRQMSK, b4->misc_irq_mask);
|
|
|
|
/* clear any pending interrupts */
|
|
b400m_getreg(b4, R_STATUS);
|
|
b400m_getreg(b4, R_MISC_IRQ);
|
|
b400m_getreg(b4, R_FIFO_BL0_IRQ);
|
|
b400m_getreg(b4, R_FIFO_BL1_IRQ);
|
|
b400m_getreg(b4, R_FIFO_BL2_IRQ);
|
|
b400m_getreg(b4, R_FIFO_BL3_IRQ);
|
|
|
|
hfc_enable_fifo_irqs(b4);
|
|
}
|
|
|
|
static inline void hfc_reset_fifo(struct b400m *b4)
|
|
{
|
|
hfc_setreg_waitbusy(b4, A_INC_RES_FIFO,
|
|
V_RES_FIFO | V_RES_LOST | V_RES_FIFO_ERR);
|
|
}
|
|
|
|
static void hfc_setup_fifo(struct b400m *b4, int fifo)
|
|
{
|
|
if (fifo < 4) {
|
|
/* TX */
|
|
hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
|
|
b400m_setreg(b4, A_CON_HDLC,
|
|
V_HDLC_IRQ | V_DATA_FLOW_000 | V_IFF);
|
|
hfc_reset_fifo(b4);
|
|
|
|
/* RX */
|
|
hfc_setreg_waitbusy(b4, R_FIFO,
|
|
(fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
|
|
b400m_setreg(b4, A_CON_HDLC,
|
|
V_HDLC_IRQ | V_DATA_FLOW_000 | V_IFF);
|
|
hfc_reset_fifo(b4);
|
|
} else {
|
|
/* TX */
|
|
hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
|
|
b400m_setreg(b4, A_CON_HDLC,
|
|
V_HDLC_TRP | V_TRP_NO_IRQ | V_DATA_FLOW_110);
|
|
hfc_reset_fifo(b4);
|
|
|
|
/* RX */
|
|
hfc_setreg_waitbusy(b4, R_FIFO,
|
|
(fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
|
|
b400m_setreg(b4, A_CON_HDLC,
|
|
V_HDLC_TRP | V_TRP_NO_IRQ | V_DATA_FLOW_110);
|
|
hfc_reset_fifo(b4);
|
|
}
|
|
}
|
|
|
|
static void hfc_setup_pcm(struct b400m *b4, int port)
|
|
{
|
|
int physport;
|
|
int offset;
|
|
int hfc_chan;
|
|
int ts;
|
|
#ifdef HARDHDLC_RX
|
|
const int MAX_OFFSET = 2;
|
|
#else
|
|
const int MAX_OFFSET = 3;
|
|
#endif
|
|
|
|
#ifdef SWAP_PORTS
|
|
/* swap the middle ports */
|
|
physport = (1 == port) ? 2 : (2 == port) ? 1 : port;
|
|
#else
|
|
physport = port;
|
|
#endif
|
|
|
|
for (offset = 0; offset < MAX_OFFSET; offset++) {
|
|
hfc_chan = (port * 4) + offset;
|
|
ts = (physport * 3) + offset;
|
|
ts += (b4->b400m_no * 12);
|
|
b400m_setreg(b4, R_SLOT, (ts << V_SL_NUM_SHIFT));
|
|
b400m_setreg(b4, A_SL_CFG,
|
|
(hfc_chan << V_CH_SNUM_SHIFT) |
|
|
V_ROUT_TX_STIO2);
|
|
|
|
if (offset < 2) {
|
|
b400m_setreg(b4, R_SLOT,
|
|
(ts << V_SL_NUM_SHIFT) |
|
|
V_SL_DIR);
|
|
b400m_setreg(b4, A_SL_CFG,
|
|
(hfc_chan << V_CH_SNUM_SHIFT) |
|
|
V_ROUT_RX_STIO1 | V_CH_SDIR);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef SWAP_PORTS
|
|
#ifdef HARDHDLC_RX
|
|
static const int fifos[24] = {0, 0, 2, 2, 1, 1, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6,
|
|
5, 5, 5, 5, 7, 7, 7, 7 };
|
|
#else
|
|
static const int fifos[24] = {0, 4, 2, 6, 1, 5, 3, 7, 4, 4, 4, 4, 6, 6, 6, 6,
|
|
5, 5, 5, 5, 7, 7, 7, 7 };
|
|
#endif
|
|
static const int hfc_chans[12] = {2, 10, 6, 14, 0, 1, 8, 9, 4, 5, 12, 13 };
|
|
#else
|
|
#ifdef HARDHDLC_RX
|
|
static const int fifos[24] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5,
|
|
6, 6, 6, 6, 7, 7, 7, 7 };
|
|
#else
|
|
static const int fifos[24] = {0, 4, 1, 5, 2, 6, 3, 7, 4, 4, 4, 4, 5, 5, 5, 5,
|
|
6, 6, 6, 6, 7, 7, 7, 7 };
|
|
#endif
|
|
static const int hfc_chans[12] = { 2, 6, 10, 14, 0, 1, 4, 5, 8, 9, 12, 13 };
|
|
#endif
|
|
|
|
static void hfc_setup_fifo_arrays(struct b400m *b4, int fifo)
|
|
{
|
|
int val;
|
|
if (!fifo) {
|
|
val = (fifos[fifo] << V_FIRST_FIFO_NUM_SHIFT) | (fifo & 1);
|
|
b400m_setreg(b4, R_FIRST_FIFO, val);
|
|
} else {
|
|
#ifdef HARDHDLC_RX
|
|
val = (fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) | (fifo & 1);
|
|
#else
|
|
val = (fifo < 8) ? (fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) :
|
|
(fifos[fifo] << V_NEXT_FIFO_NUM_SHIFT) |
|
|
(fifo&1);
|
|
#endif
|
|
b400m_setreg(b4, A_FIFO_SEQ, val);
|
|
}
|
|
|
|
b400m_setreg(b4, R_FSM_IDX, fifo);
|
|
val = (fifo < 8) ? (hfc_chans[fifo>>1] << V_CH_FNUM_SHIFT) :
|
|
(hfc_chans[fifo>>1] << V_CH_FNUM_SHIFT) |
|
|
(fifo & 1);
|
|
|
|
b400m_setreg(b4, A_CHANNEL, val);
|
|
b400m_setreg(b4, A_SUBCH_CFG, 0x02);
|
|
}
|
|
|
|
static void hfc_setup_fsm(struct b400m *b4)
|
|
{
|
|
int chan, fifo, port, offset;
|
|
#ifdef SWAP_PORTS
|
|
const int chan_to_fifo[12] = { 4, 4, 0, 6, 6, 2, 5, 5, 1, 7, 7, 3 };
|
|
#else
|
|
const int chan_to_fifo[12] = { 4, 4, 0, 5, 5, 1, 6, 6, 2, 7, 7, 3 };
|
|
#endif
|
|
|
|
for (port = 0; port < 4; port++) {
|
|
for (offset = 0; offset < 3; offset++) {
|
|
b4->spans[port].fifos[offset] =
|
|
chan_to_fifo[(port * 3) + offset];
|
|
}
|
|
}
|
|
|
|
for (chan = 0; chan < ARRAY_SIZE(fifos); chan++)
|
|
hfc_setup_fifo_arrays(b4, chan);
|
|
|
|
b400m_setreg(b4, A_FIFO_SEQ, V_SEQ_END);
|
|
|
|
for (fifo = 0; fifo < 8; fifo++)
|
|
hfc_setup_fifo(b4, fifo);
|
|
|
|
for (port = 0; port < 4; port++)
|
|
hfc_setup_pcm(b4, port);
|
|
}
|
|
|
|
/* takes a read/write fifo pair and optionally resets it, optionally enabling
|
|
* the rx/tx interrupt */
|
|
static void hfc_reset_fifo_pair(struct b400m *b4, int fifo,
|
|
int reset, int force_no_irq)
|
|
{
|
|
unsigned char b;
|
|
|
|
if (down_interruptible(&b4->fifosem)) {
|
|
b4_info(b4, "Unable to retrieve fifo sem\n");
|
|
return;
|
|
}
|
|
b = (!force_no_irq && b4->fifo_en_txint & (1 << fifo)) ?
|
|
V_FIFO_IRQMSK : 0;
|
|
hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
|
|
|
|
if (fifo < 4)
|
|
b |= V_MIX_IRQ;
|
|
|
|
b400m_setreg(b4, A_FIFO_CTRL, b);
|
|
|
|
if (reset)
|
|
hfc_reset_fifo(b4);
|
|
|
|
b = (!force_no_irq && b4->fifo_en_rxint & (1 << fifo)) ?
|
|
V_FIFO_IRQMSK : 0;
|
|
hfc_setreg_waitbusy(b4, R_FIFO,
|
|
(fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
|
|
|
|
if (fifo < 4)
|
|
b |= V_MIX_IRQ;
|
|
|
|
b400m_setreg(b4, A_FIFO_CTRL, b);
|
|
|
|
if (reset)
|
|
hfc_reset_fifo(b4);
|
|
|
|
up(&b4->fifosem);
|
|
}
|
|
|
|
static void xhfc_set_sync_src(struct b400m *b4, int port)
|
|
{
|
|
int b;
|
|
|
|
/* -2 means we need to go back and try again later */
|
|
if (port == -2)
|
|
return;
|
|
|
|
if (port == b4->setsyncspan)
|
|
return;
|
|
else
|
|
b4->setsyncspan = port;
|
|
|
|
b4_info(b4, "xhfc_set_sync_src - modpos %d: setting sync to "
|
|
"be port %d\n", b4->position, port);
|
|
|
|
if (port == -1) /* automatic */
|
|
b = 0;
|
|
else {
|
|
#ifdef SWAP_PORTS
|
|
port = (1 == port) ? 2 : (2 == port) ? 1 : port;
|
|
#endif
|
|
b = (port & V_SYNC_SEL_MASK) | V_MAN_SYNC;
|
|
}
|
|
|
|
b400m_setreg(b4, R_SU_SYNC, b);
|
|
}
|
|
|
|
static void wctdm_change_card_sync_src(struct wctdm *wc, int newsrc, int master)
|
|
{
|
|
int newctlreg;
|
|
|
|
newctlreg = wc->ctlreg;
|
|
|
|
if (master)
|
|
newctlreg |= (1 << 5);
|
|
else
|
|
newctlreg &= ~(1 << 5);
|
|
|
|
newctlreg &= 0xfc;
|
|
|
|
newctlreg |= newsrc;
|
|
|
|
if (DBG_TIMING) {
|
|
dev_info(&wc->vb.pdev->dev,
|
|
"Final ctlreg before swap: %02x\n", newctlreg);
|
|
}
|
|
|
|
wc->ctlreg = newctlreg;
|
|
wc->oldsync = newsrc;
|
|
|
|
msleep(10);
|
|
}
|
|
|
|
static void wctdm_change_system_sync_src(int oldsync, int oldspan,
|
|
int newsync, int newspan)
|
|
{
|
|
struct wctdm *wc;
|
|
struct wctdm *oldsyncwc = NULL, *newsyncwc = NULL;
|
|
int newspot;
|
|
int i;
|
|
int max_latency = 0;
|
|
|
|
if (oldsync > -1)
|
|
oldsyncwc = ifaces[oldsync];
|
|
|
|
if (newsync > -1)
|
|
newsyncwc = ifaces[newsync];
|
|
|
|
if (newsync == -1) {
|
|
BUG_ON(!ifaces[0]);
|
|
|
|
newsyncwc = ifaces[0];
|
|
newsync = 0;
|
|
}
|
|
|
|
newspot = (-1 == newspan) ? 0 : 2 | (newspan >> 2);
|
|
|
|
if ((oldsync == newsync) && (oldspan == newspan)) {
|
|
dev_info(&newsyncwc->vb.pdev->dev,
|
|
"No need for timing change. All is same\n");
|
|
return;
|
|
}
|
|
|
|
/* First we set all sources to local timing */
|
|
for (i = 0; i < WC_MAX_IFACES; i++) {
|
|
wc = ifaces[i];
|
|
if ((wc != oldsyncwc) && wc) {
|
|
wctdm_change_card_sync_src(wc, 0, 0);
|
|
if (voicebus_current_latency(&wc->vb) > max_latency)
|
|
max_latency = voicebus_current_latency(&wc->vb);
|
|
}
|
|
}
|
|
msleep(max_latency << 1);
|
|
|
|
/* Set the old sync source to local timing, not driving timing */
|
|
if (oldsyncwc) {
|
|
wctdm_change_card_sync_src(oldsyncwc, 0, 0);
|
|
msleep(voicebus_current_latency(&oldsyncwc->vb) << 1);
|
|
}
|
|
|
|
dev_info(&newsyncwc->vb.pdev->dev,
|
|
"Setting new card %d now to be timing master\n", newsync);
|
|
/* Finally, set the new sync source to broadcast master timing */
|
|
wctdm_change_card_sync_src(newsyncwc, newspot, 1);
|
|
msleep(voicebus_current_latency(&newsyncwc->vb) << 1);
|
|
|
|
/* Last we double verify and set all the remaining cards to be timing
|
|
* slaves */
|
|
for (i = 0; (i < WC_MAX_IFACES) && ifaces[i]; i++) {
|
|
wc = ifaces[i];
|
|
if (i == newsync)
|
|
continue;
|
|
|
|
dev_info(&wc->vb.pdev->dev,
|
|
"Setting card %d to be timing slave\n", i);
|
|
wctdm_change_card_sync_src(wc, 1, 0);
|
|
}
|
|
msleep(max_latency << 1);
|
|
synccard = newsync;
|
|
syncspan = newspan;
|
|
}
|
|
|
|
static int xhfc_find_sync_with_timingcable(struct b400m *b4)
|
|
{
|
|
struct wctdm *wc = b4->wc;
|
|
int i, j, osrc, src = -1;
|
|
int lowestprio = 10000;
|
|
int lowestcard = -1;
|
|
|
|
if (down_trylock(&ifacelock)) {
|
|
set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
|
|
return -2;
|
|
}
|
|
|
|
for (j = 0; j < WC_MAX_IFACES && ifaces[j]; j++) {
|
|
if (is_initialized(ifaces[j])) {
|
|
set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
|
|
osrc = -2;
|
|
goto out;
|
|
} else {
|
|
for (i = 0; i < (MAX_SPANS - 1); i++) {
|
|
struct wctdm_span *wspan = ifaces[j]->spans[i];
|
|
if (wspan &&
|
|
wspan->timing_priority &&
|
|
!wspan->span.alarms &&
|
|
(wspan->timing_priority <
|
|
lowestprio)) {
|
|
src = i;
|
|
lowestprio = wspan->timing_priority;
|
|
lowestcard = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (lowestcard != synccard) {
|
|
b4_info(b4, "Found new timing master, card "
|
|
"%d. Old is card %d\n", lowestcard, synccard);
|
|
} else if (src != syncspan) {
|
|
b4_info(b4, "Timing change, but only from %d to %d on "
|
|
"card %d\n", syncspan, src, lowestcard);
|
|
}
|
|
|
|
wctdm_change_system_sync_src(synccard, syncspan,
|
|
lowestcard, src);
|
|
|
|
osrc = -1;
|
|
|
|
if (wc == ifaces[lowestcard]) {
|
|
if (src < (b4->position + 4) && (src >= b4->position))
|
|
osrc = src - b4->position;
|
|
}
|
|
|
|
out:
|
|
up(&ifacelock);
|
|
|
|
return osrc;
|
|
}
|
|
|
|
static int xhfc_find_sync_without_timingcable(struct b400m *b4)
|
|
{
|
|
struct wctdm *wc = b4->wc;
|
|
int i, osrc, src = -1;
|
|
int lowestprio = 10000;
|
|
int newctlregmux;
|
|
|
|
if (down_trylock(&wc->syncsem)) {
|
|
set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
|
|
return -2;
|
|
}
|
|
|
|
/* Find lowest slave timing priority on digital spans */
|
|
for (i = 0; i < (MAX_SPANS - 1); i++) {
|
|
struct wctdm_span *const wspan = wc->spans[i];
|
|
if (wspan && wspan->timing_priority &&
|
|
!wspan->span.alarms &&
|
|
(wspan->timing_priority < lowestprio)) {
|
|
src = i;
|
|
lowestprio = wspan->timing_priority;
|
|
}
|
|
}
|
|
|
|
if (src < 0) {
|
|
if (DBG_TIMING)
|
|
b4_info(b4, "Picked analog span\n");
|
|
osrc = src;
|
|
goto check_card_timing;
|
|
} else {
|
|
if (DBG_TIMING) {
|
|
b4_info(b4, "Picked span offset %d to be timing "
|
|
"source\n", src);
|
|
}
|
|
}
|
|
|
|
osrc = ((src < (b4->position + 4)) && (src >= b4->position)) ?
|
|
src - b4->position : -1;
|
|
|
|
if (DBG_TIMING) {
|
|
b4_info(b4, "For b4->position %d timing is %d\n",
|
|
b4->position, osrc);
|
|
}
|
|
|
|
check_card_timing:
|
|
|
|
if (src != -1)
|
|
newctlregmux = 2 | (src >> 2);
|
|
else
|
|
newctlregmux = 0;
|
|
|
|
if ((newctlregmux & 3) != (wc->ctlreg & 3)) {
|
|
if (DBG_TIMING) {
|
|
b4_info(b4, "!!!Need to change timing "
|
|
"on baseboard to spot %d!!!\n",
|
|
src >> 2);
|
|
}
|
|
|
|
wctdm_change_card_sync_src(wc, newctlregmux, 0);
|
|
} else {
|
|
if (DBG_TIMING) {
|
|
dev_info(&b4->wc->vb.pdev->dev, "!!!No need to change timing " \
|
|
"on baseboard to spot %d, already there!!!\n",
|
|
src >> 2);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
up(&wc->syncsem);
|
|
|
|
return osrc;
|
|
}
|
|
|
|
/*
|
|
* Finds the highest-priority sync span that is not in alarm and returns it.
|
|
* Note: the span #s in b4->spans[].sync are 1-based, and this returns a
|
|
* 0-based span, or -1 if no spans are found.
|
|
*/
|
|
static inline int xhfc_find_sync(struct b400m *b4)
|
|
{
|
|
if (timingcable)
|
|
return xhfc_find_sync_with_timingcable(b4);
|
|
else
|
|
return xhfc_find_sync_without_timingcable(b4);
|
|
}
|
|
|
|
/*
|
|
* allocates memory and pretty-prints a given S/T state engine state to it.
|
|
* calling routine is responsible for freeing the pointer returned! Performs
|
|
* no hardware access whatsoever, but does use GFP_KERNEL so do not call from
|
|
* IRQ context. if full == 1, prints a "full" dump; otherwise just prints
|
|
* current state.
|
|
*/
|
|
static char *hfc_decode_st_state(struct b400m *b4, struct b400m_span *span,
|
|
unsigned char state, int full)
|
|
{
|
|
int nt, sta;
|
|
char s[128], *str;
|
|
const char *ststr[2][16] = { /* TE, NT */
|
|
{ "RESET", "?", "SENSING", "DEACT.",
|
|
"AWAIT.SIG", "IDENT.INPUT", "SYNCD", "ACTIVATED",
|
|
"LOSTFRAMING", "?", "?", "?",
|
|
"?", "?", "?", "?" },
|
|
{ "RESET", "DEACT.", "PEND.ACT", "ACTIVE",
|
|
"PEND.DEACT", "?", "?", "?",
|
|
"?", "?", "?", "?",
|
|
"?", "?", "?", "?" }
|
|
};
|
|
|
|
str = kmalloc(256, GFP_KERNEL);
|
|
if (!str) {
|
|
dev_warn(&b4->wc->vb.pdev->dev,
|
|
"could not allocate mem for ST state decode " \
|
|
"string!\n");
|
|
return NULL;
|
|
}
|
|
|
|
nt = (span->te_mode == 0);
|
|
sta = (state & V_SU_STA_MASK);
|
|
|
|
sprintf(str, "P%d: %s state %c%d (%s)", span->port + 1,
|
|
(nt ? "NT" : "TE"), (nt ? 'G' : 'F'), sta,
|
|
ststr[nt][sta]);
|
|
|
|
if (full) {
|
|
sprintf(s, " SYNC: %s, RX INFO0: %s",
|
|
((state & V_SU_FR_SYNC) ? "yes" : "no"),
|
|
((state & V_SU_INFO0) ? "yes" : "no"));
|
|
strcat(str, s);
|
|
|
|
if (nt) {
|
|
sprintf(s, ", T2 %s, auto G2->G3: %s",
|
|
((state & V_SU_T2_EXP) ? "expired" : "OK"),
|
|
((state & V_G2_G3) ? "yes" : "no"));
|
|
strcat(str, s);
|
|
}
|
|
}
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* sets an S/T port state machine to a given state. if 'auto' is nonzero,
|
|
* will put the state machine back in auto mode after setting the state.
|
|
*/
|
|
static void hfc_handle_state(struct b400m_span *s);
|
|
static void hfc_force_st_state(struct b400m *b4, struct b400m_span *s,
|
|
int state, int resume_auto)
|
|
{
|
|
b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA,
|
|
state | V_SU_LD_STA);
|
|
|
|
if (resume_auto)
|
|
b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, state);
|
|
|
|
if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
|
|
char *x;
|
|
|
|
x = hfc_decode_st_state(b4, s, state, 1);
|
|
b4_info(b4, "forced port %d to state %d (auto: %d), "
|
|
"new decode: %s\n", s->port + 1, state,
|
|
resume_auto, x);
|
|
kfree(x);
|
|
}
|
|
|
|
/* make sure that we activate any timers/etc needed by this state
|
|
* change */
|
|
hfc_handle_state(s);
|
|
}
|
|
|
|
/* figures out what to do when an S/T port's timer expires. */
|
|
static void hfc_timer_expire(struct b400m_span *s, int t_no)
|
|
{
|
|
struct b400m *b4 = s->parent;
|
|
|
|
if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
|
|
b4_info(b4, "%lu: hfc_timer_expire, Port %d T%d "
|
|
"expired (value=%lu ena=%d)\n", b4->ticks,
|
|
s->port + 1, t_no + 1, s->hfc_timers[t_no],
|
|
s->hfc_timer_on[t_no]);
|
|
}
|
|
/*
|
|
* there are three timers associated with every HFC S/T port.
|
|
*
|
|
* T1 is used by the NT state machine, and is the maximum time the NT
|
|
* side should wait for G3 (active) state.
|
|
*
|
|
* T2 is not actually used in the driver, it is handled by the HFC-4S
|
|
* internally.
|
|
*
|
|
* T3 is used by the TE state machine; it is the maximum time the TE
|
|
* side should wait for the INFO4 (activated) signal.
|
|
*/
|
|
|
|
/* First, disable the expired timer; hfc_force_st_state() may activate
|
|
* it again. */
|
|
s->hfc_timer_on[t_no] = 0;
|
|
|
|
switch (t_no) {
|
|
case XHFC_T1: /* switch to G4 (pending deact.), resume auto mode */
|
|
hfc_force_st_state(b4, s, 4, 1);
|
|
break;
|
|
case XHFC_T2: /* switch to G1 (deactivated), resume auto mode */
|
|
hfc_force_st_state(b4, s, 1, 1);
|
|
break;
|
|
case XHFC_T3: /* switch to F3 (deactivated), resume auto mode */
|
|
hfc_stop_st(s);
|
|
if (bri_persistentlayer1)
|
|
hfc_start_st(s);
|
|
break;
|
|
case XHFC_T4: /* switch to F3 (deactivated), resume auto mode */
|
|
hfc_handle_state(s);
|
|
s->hfc_timers[XHFC_T4] = b4->ticks + 1000;
|
|
s->hfc_timer_on[XHFC_T4] = 1;
|
|
break;
|
|
default:
|
|
if (printk_ratelimit()) {
|
|
dev_warn(&b4->wc->vb.pdev->dev,
|
|
"hfc_timer_expire found an unknown expired "
|
|
"timer (%d)??\n", t_no);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Run through the active timers on a card and deal with any expiries.
|
|
* Also see if the alarm debounce time has expired and if it has, tell DAHDI.
|
|
*/
|
|
static void hfc_update_st_timers(struct b400m *b4)
|
|
{
|
|
int i, j;
|
|
struct b400m_span *s;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
s = &b4->spans[i];
|
|
|
|
for (j = XHFC_T1; j <= XHFC_T4; j++) {
|
|
|
|
/* we don't really do timer2, it is expired by the
|
|
* state change handler */
|
|
if (j == XHFC_T2)
|
|
continue;
|
|
|
|
if (s->hfc_timer_on[j] &&
|
|
time_after_eq(b4->ticks, s->hfc_timers[j]))
|
|
hfc_timer_expire(s, j);
|
|
}
|
|
|
|
if (s->wspan && s->newalarm != s->wspan->span.alarms &&
|
|
time_after_eq(b4->ticks, s->alarmtimer)) {
|
|
s->wspan->span.alarms = s->newalarm;
|
|
if ((!s->newalarm && bri_teignorered) || (!bri_teignorered))
|
|
dahdi_alarm_notify(&s->wspan->span);
|
|
|
|
if (DBG_ALARM) {
|
|
dev_info(&b4->wc->vb.pdev->dev, "span %d: alarm " \
|
|
"%d debounced\n", i + 1,
|
|
s->newalarm);
|
|
}
|
|
set_bit(WCTDM_CHECK_TIMING, &b4->wc->checkflag);
|
|
}
|
|
}
|
|
|
|
if (test_and_clear_bit(WCTDM_CHECK_TIMING, &b4->wc->checkflag))
|
|
xhfc_set_sync_src(b4, xhfc_find_sync(b4));
|
|
}
|
|
|
|
/* this is the driver-level state machine for an S/T port */
|
|
static void hfc_handle_state(struct b400m_span *s)
|
|
{
|
|
struct b400m *b4;
|
|
unsigned char state, sta;
|
|
int nt, newsync, oldalarm;
|
|
unsigned long oldtimer;
|
|
|
|
b4 = s->parent;
|
|
nt = !s->te_mode;
|
|
|
|
state = b400m_getreg_ra(b4, R_SU_SEL, s->port, A_SU_RD_STA);
|
|
sta = (state & V_SU_STA_MASK);
|
|
|
|
if (DBG_ST && ((1 << s->port) & bri_spanfilter)) {
|
|
char *x;
|
|
|
|
x = hfc_decode_st_state(b4, s, state, 1);
|
|
b4_info(b4, "port %d A_SU_RD_STA old=0x%02x "
|
|
"now=0x%02x, decoded: %s\n", s->port + 1,
|
|
s->oldstate, state, x);
|
|
kfree(x);
|
|
}
|
|
|
|
oldalarm = s->newalarm;
|
|
oldtimer = s->alarmtimer;
|
|
|
|
if (nt) {
|
|
switch (sta) {
|
|
default: /* Invalid NT state */
|
|
case 0x0: /* NT state G0: Reset */
|
|
case 0x1: /* NT state G1: Deactivated */
|
|
case 0x4: /* NT state G4: Pending Deactivation */
|
|
s->newalarm = DAHDI_ALARM_RED;
|
|
break;
|
|
case 0x2: /* NT state G2: Pending Activation */
|
|
s->newalarm = DAHDI_ALARM_YELLOW;
|
|
break;
|
|
case 0x3: /* NT state G3: Active */
|
|
s->hfc_timer_on[XHFC_T1] = 0;
|
|
s->newalarm = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (sta) {
|
|
default: /* Invalid TE state */
|
|
case 0x0: /* TE state F0: Reset */
|
|
case 0x2: /* TE state F2: Sensing */
|
|
case 0x3: /* TE state F3: Deactivated */
|
|
case 0x4: /* TE state F4: Awaiting Signal */
|
|
case 0x8: /* TE state F8: Lost Framing */
|
|
s->newalarm = DAHDI_ALARM_RED;
|
|
break;
|
|
case 0x5: /* TE state F5: Identifying Input */
|
|
case 0x6: /* TE state F6: Synchronized */
|
|
s->newalarm = DAHDI_ALARM_YELLOW;
|
|
break;
|
|
case 0x7: /* TE state F7: Activated */
|
|
s->hfc_timer_on[XHFC_T3] = 0;
|
|
s->hfc_timer_on[XHFC_T4] = 0;
|
|
s->newalarm = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
s->alarmtimer = b4->ticks + bri_alarmdebounce;
|
|
s->oldstate = state;
|
|
|
|
if (DBG_ALARM) {
|
|
b4_info(b4, "span %d: old alarm %d expires %ld, "
|
|
"new alarm %d expires %ld\n", s->port + 1, oldalarm,
|
|
oldtimer, s->newalarm, s->alarmtimer);
|
|
}
|
|
|
|
/* we only care about T2 expiry in G4. */
|
|
if (nt && (sta == 4) && (state & V_SU_T2_EXP)) {
|
|
if (s->hfc_timer_on[XHFC_T2])
|
|
hfc_timer_expire(s, XHFC_T2); /* handle T2 expiry */
|
|
}
|
|
|
|
/* If we're in F3 and receiving INFO0, start T3 and jump to F4 */
|
|
if (!nt && (sta == 3) && (state & V_SU_INFO0)) {
|
|
if (bri_persistentlayer1) {
|
|
s->hfc_timers[XHFC_T3] = b4->ticks + TIMER_3_MS;
|
|
s->hfc_timer_on[XHFC_T3] = 1;
|
|
if (DBG_ST) {
|
|
b4_info(b4, "port %d: receiving "
|
|
"INFO0 in state 3, setting T3 and "
|
|
"jumping to F4\n", s->port + 1);
|
|
}
|
|
hfc_start_st(s);
|
|
}
|
|
}
|
|
|
|
/* read in R_BERT_STA to determine where our current sync source is */
|
|
newsync = b400m_getreg(b4, R_BERT_STA) & 0x07;
|
|
if (newsync != b4->reportedsyncspan) {
|
|
if (DBG_TIMING) {
|
|
if (newsync == 5) {
|
|
b4_info(b4, "new card sync source: SYNC_I\n");
|
|
} else {
|
|
b4_info(b4, "Card position %d: new "
|
|
"sync source: port %d\n",
|
|
b4->position, newsync);
|
|
}
|
|
}
|
|
|
|
b4->reportedsyncspan = newsync;
|
|
}
|
|
}
|
|
|
|
static void hfc_stop_all_timers(struct b400m_span *s)
|
|
{
|
|
s->hfc_timer_on[XHFC_T4] = 0;
|
|
s->hfc_timer_on[XHFC_T3] = 0;
|
|
s->hfc_timer_on[XHFC_T2] = 0;
|
|
s->hfc_timer_on[XHFC_T1] = 0;
|
|
}
|
|
|
|
static void hfc_stop_st(struct b400m_span *s)
|
|
{
|
|
struct b400m *b4 = s->parent;
|
|
|
|
hfc_stop_all_timers(s);
|
|
|
|
b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_ACT_DEACTIVATE);
|
|
}
|
|
|
|
/*
|
|
* resets an S/T interface to a given NT/TE mode
|
|
*/
|
|
static void hfc_reset_st(struct b400m_span *s)
|
|
{
|
|
int b;
|
|
struct b400m *b4;
|
|
|
|
b4 = s->parent;
|
|
|
|
hfc_stop_st(s);
|
|
|
|
/* force state G0/F0 (reset), then force state 1/2
|
|
* (deactivated/sensing) */
|
|
b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_LD_STA);
|
|
flush_hw(); /* make sure write hit hardware */
|
|
|
|
s->wspan->span.alarms = DAHDI_ALARM_RED;
|
|
s->newalarm = DAHDI_ALARM_RED;
|
|
dahdi_alarm_notify(&s->wspan->span);
|
|
|
|
/* set up the clock control register. Must be done before we activate
|
|
* the interface. */
|
|
if (s->te_mode)
|
|
b = 0x0e;
|
|
else
|
|
b = 0x0c | (6 << V_SU_SMPL_SHIFT);
|
|
|
|
b400m_setreg(b4, A_SU_CLK_DLY, b);
|
|
|
|
/* set TE/NT mode, enable B and D channels. */
|
|
b400m_setreg(b4, A_SU_CTRL0, V_B1_TX_EN | V_B2_TX_EN |
|
|
(s->te_mode ? 0 : V_SU_MD) | V_ST_PU_CTRL);
|
|
b400m_setreg(b4, A_SU_CTRL1, V_G2_G3_EN);
|
|
b400m_setreg(b4, A_SU_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
|
|
b400m_setreg(b4, A_ST_CTRL3, (0x7c << 1));
|
|
|
|
/* enable the state machine. */
|
|
b400m_setreg(b4, A_SU_WR_STA, 0x00);
|
|
flush_hw();
|
|
}
|
|
|
|
static void hfc_start_st(struct b400m_span *s)
|
|
{
|
|
struct b400m *b4 = s->parent;
|
|
|
|
b400m_setreg_ra(b4, R_SU_SEL, s->port, A_SU_WR_STA, V_SU_ACT_ACTIVATE);
|
|
|
|
/* start T1 if in NT mode, T3 if in TE mode */
|
|
if (s->te_mode) {
|
|
/* 500ms wait first time, TIMER_3_MS afterward. */
|
|
s->hfc_timers[XHFC_T3] = b4->ticks + TIMER_3_MS;
|
|
s->hfc_timer_on[XHFC_T3] = 1;
|
|
s->hfc_timer_on[XHFC_T1] = 0;
|
|
|
|
s->hfc_timers[XHFC_T4] = b4->ticks + 1000;
|
|
s->hfc_timer_on[XHFC_T4] = 1;
|
|
|
|
if (DBG_ST) {
|
|
b4_info(b4, "setting port %d t3 timer to %lu\n",
|
|
s->port + 1, s->hfc_timers[XHFC_T3]);
|
|
}
|
|
} else {
|
|
static const int TIMER_1_MS = 2000;
|
|
s->hfc_timers[XHFC_T1] = b4->ticks + TIMER_1_MS;
|
|
s->hfc_timer_on[XHFC_T1] = 1;
|
|
s->hfc_timer_on[XHFC_T3] = 0;
|
|
if (DBG_ST) {
|
|
b4_info(b4, "setting port %d t1 timer to %lu\n",
|
|
s->port + 1, s->hfc_timers[XHFC_T1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* read in the HFC GPIO to determine each port's mode (TE or NT).
|
|
* Then, reset and start the port.
|
|
* the flow controller should be set up before this is called.
|
|
*/
|
|
static int hdlc_start(struct b400m *b4, int fifo);
|
|
static void hfc_init_all_st(struct b400m *b4)
|
|
{
|
|
int i;
|
|
struct b400m_span *s;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
s = &b4->spans[i];
|
|
s->parent = b4;
|
|
|
|
#ifdef SWAP_PORTS
|
|
s->port = (1 == i) ? 2 : (2 == i) ? 1 : i;
|
|
#else
|
|
s->port = i;
|
|
#endif
|
|
s->te_mode = 1;
|
|
|
|
hdlc_start(b4, s->fifos[2]);
|
|
}
|
|
|
|
}
|
|
|
|
/* NOTE: assumes fifo lock is held */
|
|
#define debug_fz(b4, fifo, prefix, buf) \
|
|
do { \
|
|
sprintf(buf, "%s: (fifo %d): f1/f2/flen=%d/%d/%d, " \
|
|
"z1/z2/zlen=%d/%d/%d\n", prefix, fifo, f1, f2, flen, z1, \
|
|
z2, zlen); \
|
|
} while (0)
|
|
|
|
/* enable FIFO RX int and reset the FIFO */
|
|
static int hdlc_start(struct b400m *b4, int fifo)
|
|
{
|
|
b4->fifo_en_txint |= (1 << fifo);
|
|
b4->fifo_en_rxint |= (1 << fifo);
|
|
|
|
hfc_reset_fifo_pair(b4, fifo, 1, 0);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HARDHDLC_RX
|
|
|
|
/**
|
|
* hdlc_signal_complete() - Signal dahdi that we have a complete frame.
|
|
*
|
|
* @bpan: The span which received the frame.
|
|
* @stat: The frame status from the XHFC controller.
|
|
*
|
|
*/
|
|
static void hdlc_signal_complete(struct b400m_span *bspan, u8 stat)
|
|
{
|
|
struct b400m *b4 = bspan->parent;
|
|
|
|
/* if STAT != 0, indicates bad frame */
|
|
if (stat != 0x00) {
|
|
if (DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4, "(span %d) STAT=0x%02x indicates " \
|
|
"frame problem: %s\n", bspan->port + 1, stat,
|
|
(0xff == stat) ? "HDLC Abort" : "Bad FCS");
|
|
}
|
|
|
|
dahdi_hdlc_abort(bspan->sigchan, (0xff == stat) ?
|
|
DAHDI_EVENT_ABORT : DAHDI_EVENT_BADFCS);
|
|
/* STAT == 0, means frame was OK */
|
|
} else {
|
|
if (DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4, "(span %d) Frame %d is good!\n",
|
|
bspan->port + 1, bspan->frames_in);
|
|
}
|
|
dahdi_hdlc_finish(bspan->sigchan);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inner loop for D-channel receive function. Retrieves HDLC data from the
|
|
* hardware. If the hardware indicates that the frame is complete, we check
|
|
* the HDLC engine's STAT byte and update DAHDI as needed.
|
|
*
|
|
* Returns the number of HDLC frames left in the FIFO, or -1 if we couldn't
|
|
* get the lock.
|
|
*/
|
|
static int hdlc_rx_frame(struct b400m_span *bspan)
|
|
{
|
|
int fifo, i, j, x, zleft;
|
|
int z1, z2, zlen, f1, f2, flen, new_flen;
|
|
unsigned char buf[B400M_HDLC_BUF_LEN];
|
|
char debugbuf[256];
|
|
struct b400m *b4 = bspan->parent;
|
|
|
|
fifo = bspan->fifos[2];
|
|
|
|
if (DBG_HDLC && DBG_SPANFILTER)
|
|
b4_info(b4, "hdlc_rx_frame fifo %d: start\n", fifo);
|
|
|
|
if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4, "rx_frame: fifo %d 1: couldn't get lock\n",
|
|
fifo);
|
|
return -1;
|
|
}
|
|
|
|
hfc_setreg_waitbusy(b4, R_FIFO,
|
|
(fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
|
|
get_F(f1, f2, flen);
|
|
get_Z(z1, z2, zlen);
|
|
debug_fz(b4, fifo, "hdlc_rx_frame", debugbuf);
|
|
up(&b4->fifosem);
|
|
|
|
if (DBG_HDLC && DBG_SPANFILTER)
|
|
pr_info("%s", debugbuf);
|
|
|
|
/* if we have at least one complete frame, increment zleft to include
|
|
* status byte */
|
|
zleft = zlen;
|
|
if (flen)
|
|
zleft++;
|
|
|
|
do {
|
|
if (zleft > B400M_HDLC_BUF_LEN)
|
|
j = B400M_HDLC_BUF_LEN;
|
|
else
|
|
j = zleft;
|
|
|
|
if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4,
|
|
"rx_frame fifo %d 2: couldn't get lock\n",
|
|
fifo);
|
|
return -1;
|
|
}
|
|
hfc_setreg_waitbusy(b4, R_FIFO,
|
|
(fifo << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
|
|
for (i = 0; i < j; i++)
|
|
buf[i] = b400m_getreg(b4, A_FIFO_DATA);
|
|
up(&b4->fifosem);
|
|
|
|
/* don't send STAT byte to DAHDI */
|
|
x = j;
|
|
if (bspan->sigchan) {
|
|
if ((j != B400M_HDLC_BUF_LEN) && flen)
|
|
x--;
|
|
if (x)
|
|
dahdi_hdlc_putbuf(bspan->sigchan, buf, x);
|
|
}
|
|
|
|
zleft -= j;
|
|
|
|
if (DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4, "transmitted %d bytes to dahdi, " \
|
|
"zleft=%d\n", x, zleft);
|
|
}
|
|
|
|
if (DBG_HDLC && DBG_SPANFILTER) {
|
|
/* !!! */
|
|
b4_info(b4, "hdlc_rx_frame(span %d): " \
|
|
"z1/z2/zlen=%d/%d/%d, zleft=%d\n",
|
|
bspan->port + 1, z1, z2, zlen, zleft);
|
|
for (i = 0; i < j; i++) {
|
|
b4_info(b4, "%02x%c", buf[i],
|
|
(i < (j - 1)) ? ' ' : '\n');
|
|
}
|
|
}
|
|
} while (zleft > 0);
|
|
|
|
/* Frame received, increment F2 and get an updated count of frames
|
|
* left */
|
|
if (down_trylock(&b4->fifosem) && DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4, "rx_frame fifo %d 3: couldn't get lock\n",
|
|
fifo);
|
|
return 0;
|
|
}
|
|
|
|
/* go get the F count again, just in case another frame snuck in while
|
|
* we weren't looking. */
|
|
if (flen) {
|
|
hfc_setreg_waitbusy(b4, A_INC_RES_FIFO, V_INC_F);
|
|
++bspan->frames_in;
|
|
get_F(f1, f2, new_flen);
|
|
} else
|
|
new_flen = flen;
|
|
|
|
up(&b4->fifosem);
|
|
|
|
/* If this channel is not configured with a signalling span we don't
|
|
* need to notify the rest of dahdi about this frame. */
|
|
if (!bspan->sigchan) {
|
|
if (DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4, "hdlc_rx_frame fifo %d: " \
|
|
"new_flen %d, early end.\n", fifo, new_flen);
|
|
}
|
|
return new_flen;
|
|
}
|
|
|
|
if (flen) {
|
|
/* disable < 3 check for now */
|
|
if (0 && zlen < 3) {
|
|
if (DBG_HDLC && DBG_SPANFILTER)
|
|
b4_info(b4, "odd, zlen less then 3?\n");
|
|
dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_ABORT);
|
|
} else {
|
|
hdlc_signal_complete(bspan, buf[i - 1]);
|
|
}
|
|
}
|
|
|
|
if (DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4, "hdlc_rx_frame fifo %d: new_flen=%d end.\n",
|
|
fifo, new_flen);
|
|
}
|
|
|
|
return new_flen;
|
|
}
|
|
|
|
#endif /* HARDHDLC_RX */
|
|
|
|
|
|
/*
|
|
* Takes one blob of data from DAHDI and shoots it out to the hardware. The
|
|
* blob may or may not be a complete HDLC frame. If it isn't, the D-channel
|
|
* FIFO interrupt handler will take care of pulling the rest. Returns nonzero
|
|
* if there is still data to send in the current HDLC frame.
|
|
*/
|
|
static int hdlc_tx_frame(struct b400m_span *bspan)
|
|
{
|
|
struct b400m *b4 = bspan->parent;
|
|
int res, i, fifo;
|
|
int z1, z2, zlen;
|
|
int f1 = -1, f2 = -1, flen = -1;
|
|
unsigned char buf[B400M_HDLC_BUF_LEN];
|
|
unsigned int size = ARRAY_SIZE(buf);
|
|
char debugbuf[256];
|
|
|
|
/* if we're ignoring TE red alarms and we are in alarm, restart the
|
|
* S/T state machine */
|
|
if (bspan->te_mode && (bspan->newalarm != 0)) {
|
|
hfc_start_st(bspan);
|
|
}
|
|
|
|
fifo = bspan->fifos[2];
|
|
res = dahdi_hdlc_getbuf(bspan->sigchan, buf, &size);
|
|
|
|
if (down_interruptible(&b4->fifosem)) {
|
|
static int arg;
|
|
b4_info(b4, "b400m: arg (%d), grabbed data from DAHDI " \
|
|
"but couldn't grab the lock!\n", ++arg);
|
|
/* TODO: Inform DAHDI that we have grabbed data and can't use
|
|
* it */
|
|
dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_OVERRUN);
|
|
return 1; /* return 1 so we keep trying */
|
|
}
|
|
hfc_setreg_waitbusy(b4, R_FIFO, (fifo << V_FIFO_NUM_SHIFT));
|
|
|
|
get_Z(z1, z2, zlen);
|
|
debug_fz(b4, fifo, __func__, debugbuf);
|
|
|
|
/* TODO: check zlen, etc. */
|
|
if ((HFC_ZMAX-zlen) < size) {
|
|
static int arg;
|
|
b4_info(b4, "b400m: arg (%d), zlen (%d) < what we " \
|
|
"grabbed from DAHDI (%d)!\n", ++arg, zlen, size);
|
|
size = zlen;
|
|
dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_OVERRUN);
|
|
}
|
|
|
|
if (size > 0) {
|
|
bspan->sigactive = 1;
|
|
|
|
for (i = 0; i < size; i++)
|
|
b400m_setreg(b4, A_FIFO_DATA, buf[i]);
|
|
/*
|
|
* If we got a full frame from DAHDI, increment F and
|
|
* decrement our HDLC pending counter. Otherwise, select the
|
|
* FIFO again (to start transmission) and make sure the TX IRQ
|
|
* is enabled so we will get called again to finish off the
|
|
* data
|
|
*/
|
|
if (res != 0) {
|
|
++bspan->frames_out;
|
|
bspan->sigactive = 0;
|
|
hfc_setreg_waitbusy(b4, A_INC_RES_FIFO, V_INC_F);
|
|
atomic_dec(&bspan->hdlc_pending);
|
|
} else {
|
|
hfc_setreg_waitbusy(b4, R_FIFO,
|
|
(fifo << V_FIFO_NUM_SHIFT));
|
|
}
|
|
}
|
|
|
|
up(&b4->fifosem);
|
|
|
|
if (0 && DBG_HDLC && DBG_SPANFILTER) {
|
|
b4_info(b4, "%s", debugbuf);
|
|
|
|
b4_info(b4, "hdlc_tx_frame(span %d): DAHDI gave %d " \
|
|
"bytes for FIFO %d (res = %d)\n",
|
|
bspan->port + 1, size, fifo, res);
|
|
|
|
for (i = 0; i < size; i++)
|
|
b4_info(b4,
|
|
"%02x%c\n", buf[i],
|
|
(i < (size - 1)) ? ' ' : '\n');
|
|
|
|
if (size && res != 0) {
|
|
pr_info("Transmitted frame %d on span %d\n",
|
|
bspan->frames_out - 1, bspan->port);
|
|
}
|
|
}
|
|
|
|
return (res == 0);
|
|
}
|
|
|
|
/*
|
|
* b400m lowlevel functions These are functions which impact more than just
|
|
* the HFC controller. (those are named hfc_xxx())
|
|
*/
|
|
|
|
/*
|
|
* Performs a total reset of the card, reinitializes GPIO. The card is
|
|
* initialized enough to have LEDs running, and that's about it. Anything to
|
|
* do with audio and enabling any kind of processing is done in stage2.
|
|
*/
|
|
static void xhfc_init_stage1(struct b400m *b4)
|
|
{
|
|
int i;
|
|
|
|
hfc_reset(b4);
|
|
hfc_gpio_init(b4);
|
|
|
|
/* make sure interrupts are disabled */
|
|
b400m_setreg(b4, R_IRQ_CTRL, 0x00);
|
|
|
|
/* make sure write hits hardware */
|
|
flush_hw();
|
|
|
|
/* disable all FIFO interrupts */
|
|
for (i = 0; i < HFC_NR_FIFOS; i++) {
|
|
hfc_setreg_waitbusy(b4, R_FIFO, (i << V_FIFO_NUM_SHIFT));
|
|
/* disable the interrupt */
|
|
b400m_setreg(b4, A_FIFO_CTRL, 0x00);
|
|
hfc_setreg_waitbusy(b4, R_FIFO,
|
|
(i << V_FIFO_NUM_SHIFT) | V_FIFO_DIR);
|
|
/* disable the interrupt */
|
|
b400m_setreg(b4, A_FIFO_CTRL, 0x00);
|
|
flush_hw();
|
|
}
|
|
|
|
/* set fill threshhold to 16 bytes */
|
|
b400m_setreg(b4, R_FIFO_THRES, 0x11);
|
|
|
|
/* clear any pending FIFO interrupts */
|
|
b400m_getreg(b4, R_FIFO_BL2_IRQ);
|
|
b400m_getreg(b4, R_FIFO_BL3_IRQ);
|
|
|
|
b4->misc_irq_mask = 0x00;
|
|
b400m_setreg(b4, R_MISC_IRQMSK, b4->misc_irq_mask);
|
|
b400m_setreg(b4, R_IRQ_CTRL, 0);
|
|
}
|
|
|
|
/*
|
|
* Stage 2 hardware init. Sets up the flow controller, PCM and FIFOs.
|
|
* Initializes the echo cancellers. S/T interfaces are not initialized here,
|
|
* that is done later, in hfc_init_all_st(). Interrupts are enabled and once
|
|
* the s/t interfaces are configured, chip should be pretty much operational.
|
|
*/
|
|
static void xhfc_init_stage2(struct b400m *b4)
|
|
{
|
|
/*
|
|
* set up PCM bus. XHFC is PCM slave C2IO is the clock, auto sync,
|
|
* SYNC_O follows SYNC_I. 128 timeslots, long frame sync positive
|
|
* polarity, sample on falling clock edge. STIO2 is transmit-only,
|
|
* STIO1 is receive-only.
|
|
*/
|
|
b400m_setreg(b4, R_PCM_MD0, V_PCM_IDX_MD1);
|
|
b400m_setreg(b4, R_PCM_MD1, V_PCM_DR_8192 | (0x3 << 2));
|
|
b400m_setreg(b4, R_PCM_MD0, V_PCM_IDX_MD2);
|
|
b400m_setreg(b4, R_PCM_MD2, V_C2I_EN | V_SYNC_OUT1);
|
|
b400m_setreg(b4, R_SU_SYNC, V_SYNC_SEL_PORT0);
|
|
|
|
/* Now set up the flow controller. */
|
|
hfc_setup_fsm(b4);
|
|
|
|
/*
|
|
* At this point, everything's set up and ready to go. Don't actually
|
|
* enable the global interrupt pin. DAHDI still needs to start up the
|
|
* spans, and we don't know exactly when.
|
|
*/
|
|
}
|
|
|
|
static inline struct b400m_span *bspan_from_dspan(struct dahdi_span *span)
|
|
{
|
|
return container_of(span, struct wctdm_span, span)->bspan;
|
|
}
|
|
|
|
static int xhfc_startup(struct dahdi_span *span)
|
|
{
|
|
struct b400m_span *bspan = bspan_from_dspan(span);
|
|
struct b400m *b4 = bspan->parent;
|
|
if (!b4->running)
|
|
hfc_enable_interrupts(bspan->parent);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* resets all the FIFOs for a given span. Disables IRQs for the span FIFOs */
|
|
static void xhfc_reset_span(struct b400m_span *bspan)
|
|
{
|
|
int i;
|
|
struct b400m *b4 = bspan->parent;
|
|
|
|
/* b4_info(b4, "xhfc_reset_span()\n"); */
|
|
for (i = 0; i < 3; i++)
|
|
hfc_reset_fifo_pair(b4, bspan->fifos[i], (i == 2) ? 1 : 0, 1);
|
|
}
|
|
|
|
static void b400m_enable_workqueues(struct wctdm *wc)
|
|
{
|
|
struct b400m *b4s[2];
|
|
int i, numb4s = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&wc->reglock, flags);
|
|
for (i = 0; i < wc->mods_per_board; i += 4) {
|
|
if (wc->mods[i].type == BRI)
|
|
b4s[numb4s++] = wc->mods[i].mod.bri;
|
|
}
|
|
spin_unlock_irqrestore(&wc->reglock, flags);
|
|
|
|
for (i = 0; i < numb4s; i++) {
|
|
if (b4s[i])
|
|
b4s[i]->shutdown = 0;
|
|
}
|
|
|
|
}
|
|
|
|
static void b400m_disable_workqueues(struct wctdm *wc)
|
|
{
|
|
struct b400m *b4s[2];
|
|
int i, numb4s = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&wc->reglock, flags);
|
|
for (i = 0; i < wc->mods_per_board; i += 4) {
|
|
if (wc->mods[i].type == BRI)
|
|
b4s[numb4s++] = wc->mods[i].mod.bri;
|
|
}
|
|
spin_unlock_irqrestore(&wc->reglock, flags);
|
|
|
|
for (i = 0; i < numb4s; i++) {
|
|
if (b4s[i]) {
|
|
down(&wc->syncsem);
|
|
b4s[i]->shutdown = 1;
|
|
up(&wc->syncsem);
|
|
flush_workqueue(b4s[i]->xhfc_ws);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Software selectable NT and TE mode settings on the B400M.
|
|
*
|
|
* mode - bitwise selection of NT vs TE mode
|
|
* 1 = NT; 0 = TE;
|
|
* bit 0 is port 0
|
|
* bit 1 is port 1
|
|
* ...
|
|
* term - termination resistance
|
|
* 0 = no termination resistance
|
|
* 1 = 390 ohm termination resistance switched on
|
|
*/
|
|
static int b400m_set_ntte(struct b400m_span *bspan, int te_mode, int term_on)
|
|
{
|
|
struct b400m *b4 = bspan->parent;
|
|
unsigned char data;
|
|
unsigned char addr;
|
|
int all_modes = 0, all_terms = 0;
|
|
int i;
|
|
|
|
bspan->wspan->span.spantype = (te_mode > 0)
|
|
? SPANTYPE_DIGITAL_BRI_TE
|
|
: SPANTYPE_DIGITAL_BRI_NT;
|
|
|
|
bspan->te_mode = te_mode;
|
|
bspan->term_on = term_on;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (!b4->spans[i].te_mode)
|
|
all_modes |= (1 << i);
|
|
if (b4->spans[i].term_on)
|
|
all_terms |= (1 << i);
|
|
}
|
|
|
|
data = 0x10 | ((all_terms << 4) & 0xc0) | ((all_terms << 2) & 0x0c);
|
|
addr = 0x10 | all_modes;
|
|
|
|
msleep(voicebus_current_latency(&b4->wc->vb) + 2);
|
|
wctdm_setreg(b4->wc, get_mod(b4), addr, data);
|
|
|
|
b4->lastreg = 0xff;
|
|
msleep(voicebus_current_latency(&b4->wc->vb) + 2);
|
|
|
|
hfc_reset_st(bspan);
|
|
|
|
if (bri_persistentlayer1)
|
|
hfc_start_st(bspan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* spanconfig for us means ...? */
|
|
int b400m_spanconfig(struct file *file, struct dahdi_span *span,
|
|
struct dahdi_lineconfig *lc)
|
|
{
|
|
struct b400m_span *bspan;
|
|
struct b400m *b4;
|
|
struct wctdm *wc;
|
|
int te_mode, term;
|
|
int pos;
|
|
int res;
|
|
|
|
bspan = bspan_from_dspan(span);
|
|
b4 = bspan->parent;
|
|
wc = b4->wc;
|
|
|
|
if ((file->f_flags & O_NONBLOCK) && !is_initialized(wc))
|
|
return -EAGAIN;
|
|
|
|
res = wctdm_wait_for_ready(wc);
|
|
if (res)
|
|
return res;
|
|
|
|
b400m_disable_workqueues(b4->wc);
|
|
|
|
te_mode = (lc->lineconfig & DAHDI_CONFIG_NTTE) ? 0 : 1;
|
|
|
|
term = (lc->lineconfig & DAHDI_CONFIG_TERM) ? 1 : 0;
|
|
|
|
b4_info(b4, "xhfc: Configuring port %d span %d in %s " \
|
|
"mode with termination resistance %s\n", bspan->port,
|
|
span->spanno, (te_mode) ? "TE" : "NT",
|
|
(term) ? "ENABLED" : "DISABLED");
|
|
|
|
b400m_set_ntte(bspan, te_mode, term);
|
|
if (lc->sync < 0) {
|
|
b4_info(b4, "Span %d has invalid sync priority (%d), " \
|
|
"removing from sync source list\n", span->spanno,
|
|
lc->sync);
|
|
lc->sync = 0;
|
|
}
|
|
|
|
if (span->offset >= 4) {
|
|
pos = span->offset;
|
|
} else {
|
|
/* This is tricky. Have to figure out if we're slot 1 or slot
|
|
* 2 */
|
|
pos = span->offset + b4->position;
|
|
}
|
|
|
|
if (!te_mode && lc->sync) {
|
|
b4_info(b4, "NT Spans cannot be timing sources. " \
|
|
"Span %d requested to be timing source of " \
|
|
"priority %d. Changing priority to 0\n", pos,
|
|
lc->sync);
|
|
lc->sync = 0;
|
|
}
|
|
|
|
wc->spans[pos]->timing_priority = lc->sync;
|
|
|
|
bspan->wspan = container_of(span, struct wctdm_span, span);
|
|
xhfc_reset_span(bspan);
|
|
|
|
/* call startup() manually here, because DAHDI won't call the startup
|
|
* function unless it receives an IOCTL to do so, and dahdi_cfg
|
|
* doesn't. */
|
|
xhfc_startup(span);
|
|
|
|
span->flags |= DAHDI_FLAG_RUNNING;
|
|
|
|
set_bit(WCTDM_CHECK_TIMING, &wc->checkflag);
|
|
|
|
b400m_enable_workqueues(b4->wc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* chanconfig for us means to configure the HDLC controller, if appropriate
|
|
*
|
|
* NOTE: apparently the DAHDI ioctl function calls us with a interrupts
|
|
* disabled. This means we cannot actually touch the hardware, because all
|
|
* register accesses are wrapped up in a mutex that can sleep.
|
|
*
|
|
* The solution to that is to simply increment the span's "restart" flag, and
|
|
* the driver's workqueue will do the dirty work on our behalf.
|
|
*/
|
|
int b400m_chanconfig(struct file *file, struct dahdi_chan *chan, int sigtype)
|
|
{
|
|
int alreadyrunning;
|
|
struct b400m_span *bspan = bspan_from_dspan(chan->span);
|
|
struct b400m *b4 = bspan->parent;
|
|
int res;
|
|
|
|
if ((file->f_flags & O_NONBLOCK) && !is_initialized(b4->wc))
|
|
return -EAGAIN;
|
|
|
|
res = wctdm_wait_for_ready(b4->wc);
|
|
if (res)
|
|
return res;
|
|
|
|
alreadyrunning = bspan->wspan->span.flags & DAHDI_FLAG_RUNNING;
|
|
|
|
if (DBG_FOPS) {
|
|
b4_info(b4, "%s channel %d (%s) sigtype %08x\n",
|
|
alreadyrunning ? "Reconfigured" : "Configured",
|
|
chan->channo, chan->name, sigtype);
|
|
}
|
|
|
|
switch (sigtype) {
|
|
case DAHDI_SIG_HARDHDLC:
|
|
if (DBG_FOPS) {
|
|
b4_info(b4, "%sonfiguring hardware HDLC on %s\n",
|
|
((sigtype == DAHDI_SIG_HARDHDLC) ? "C" :
|
|
"Unc"), chan->name);
|
|
}
|
|
bspan->sigchan = chan;
|
|
bspan->sigactive = 0;
|
|
atomic_set(&bspan->hdlc_pending, 0);
|
|
res = 0;
|
|
break;
|
|
case DAHDI_SIG_HDLCFCS:
|
|
case DAHDI_SIG_HDLCNET:
|
|
case DAHDI_SIG_HDLCRAW:
|
|
/* Only HARDHDLC is supported for the signalling channel on BRI
|
|
* spans. */
|
|
res = -EINVAL;
|
|
break;
|
|
default:
|
|
res = 0;
|
|
break;
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
int b400m_dchan(struct dahdi_span *span)
|
|
{
|
|
struct b400m_span *bspan;
|
|
struct b400m *b4;
|
|
unsigned char *rxb;
|
|
int res;
|
|
int i;
|
|
|
|
bspan = bspan_from_dspan(span);
|
|
b4 = bspan->parent;
|
|
#ifdef HARDHDLC_RX
|
|
return 0;
|
|
#else
|
|
#endif
|
|
|
|
if (!bspan->sigchan)
|
|
return 0;
|
|
|
|
rxb = bspan->sigchan->readchunk;
|
|
|
|
if (!rxb) {
|
|
b4_info(b4, "No RXB!\n");
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < DAHDI_CHUNKSIZE; i++) {
|
|
fasthdlc_rx_load_nocheck(&bspan->rxhdlc, *(rxb++));
|
|
res = fasthdlc_rx_run(&bspan->rxhdlc);
|
|
/* If there is nothing there, continue */
|
|
if (res & RETURN_EMPTY_FLAG)
|
|
continue;
|
|
else if (res & RETURN_COMPLETE_FLAG) {
|
|
|
|
if (!bspan->f_sz)
|
|
continue;
|
|
|
|
/* Only count this if it's a non-empty frame */
|
|
if (bspan->infcs != PPP_GOODFCS) {
|
|
dahdi_hdlc_abort(bspan->sigchan,
|
|
DAHDI_EVENT_BADFCS);
|
|
} else {
|
|
dahdi_hdlc_finish(bspan->sigchan);
|
|
}
|
|
bspan->infcs = PPP_INITFCS;
|
|
bspan->f_sz = 0;
|
|
continue;
|
|
} else if (res & RETURN_DISCARD_FLAG) {
|
|
|
|
if (!bspan->f_sz)
|
|
continue;
|
|
|
|
dahdi_hdlc_abort(bspan->sigchan, DAHDI_EVENT_ABORT);
|
|
bspan->infcs = PPP_INITFCS;
|
|
bspan->f_sz = 0;
|
|
break;
|
|
} else {
|
|
unsigned char rxc = res;
|
|
bspan->infcs = PPP_FCS(bspan->infcs, rxc);
|
|
bspan->f_sz++;
|
|
dahdi_hdlc_putbuf(bspan->sigchan, &rxc, 1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* internal functions, not specific to the hardware or DAHDI */
|
|
|
|
/*
|
|
*/
|
|
static void xhfc_work(struct work_struct *work)
|
|
{
|
|
struct b400m *b4 = container_of(work, struct b400m, xhfc_wq);
|
|
int i, j, k, fifo;
|
|
unsigned char b, b2;
|
|
|
|
if (b4->shutdown || !is_initialized(b4->wc))
|
|
return;
|
|
|
|
b4->irq_oview = b400m_getreg(b4, R_IRQ_OVIEW);
|
|
b4->fifo_fill = b400m_getreg(b4, R_FILL_BL0);
|
|
|
|
if (b4->irq_oview & V_FIFO_BL0_IRQ) {
|
|
b4->fifo_irqstatus |= b400m_getreg(b4, R_FIFO_BL0_IRQ);
|
|
b4->irq_oview &= ~V_FIFO_BL0_IRQ;
|
|
}
|
|
|
|
/* only look at BL0, we put all D channel FIFOs in the first block. */
|
|
b = b2 = b4->fifo_irqstatus;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
#ifdef SWAP_PORTS
|
|
fifo = (1 == j) ? 2 : (2 == j) ? 1 : j;
|
|
#else
|
|
fifo = j;
|
|
#endif
|
|
|
|
#ifdef HARDHDLC_RX
|
|
if (b & V_FIFOx_RX_IRQ) {
|
|
if (fifo < 4) { /* d-channel FIFO */
|
|
|
|
/*
|
|
* I have to loop here until hdlc_rx_frame
|
|
* says there are no more frames waiting. for
|
|
* whatever reason, the HFC will not generate
|
|
* another interrupt if there are still HDLC
|
|
* frames waiting to be received. i.e. I get
|
|
* an int when F1 changes, not when F1 != F2.
|
|
*
|
|
*/
|
|
do {
|
|
k = hdlc_rx_frame(&b4->spans[fifo]);
|
|
} while (k);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
b >>= 2;
|
|
}
|
|
|
|
/* zero the bits we just processed */
|
|
b4->fifo_irqstatus &= ~b2;
|
|
b4->fifo_fill &= ~b2;
|
|
|
|
|
|
#if 1
|
|
/* All four D channel FIFOs are in BL0. */
|
|
b = b2 = b4->fifo_fill;
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
#ifdef SWAP_PORTS
|
|
fifo = (1 == j) ? 2 : (2 == j) ? 1 : j;
|
|
#else
|
|
fifo = j;
|
|
#endif
|
|
if (b4->spans[fifo].sigactive && (b & V_FIFOx_TX_IRQ))
|
|
hdlc_tx_frame(&b4->spans[fifo]);
|
|
|
|
#ifdef HARDHDLC_RX
|
|
if (b & V_FIFOx_RX_IRQ)
|
|
hdlc_rx_frame(&b4->spans[fifo]);
|
|
#endif
|
|
|
|
b >>= 2;
|
|
}
|
|
#endif
|
|
|
|
/* Check for outgoing HDLC frame requests The HFC does not generate TX
|
|
* interrupts when there is room to send, so I use an atomic counter
|
|
* that is incremented every time DAHDI wants to send a frame, and
|
|
* decremented every time I send a frame. It'd be better if I could
|
|
* just use the interrupt handler, but the HFC seems to trigger a FIFO
|
|
* TX IRQ only when it has finished sending a frame, not when one can
|
|
* be sent.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(b4->spans); i++) {
|
|
struct b400m_span *bspan = &b4->spans[i];
|
|
|
|
if (atomic_read(&bspan->hdlc_pending)) {
|
|
do {
|
|
k = hdlc_tx_frame(bspan);
|
|
} while (k);
|
|
}
|
|
}
|
|
|
|
b = b400m_getreg(b4, R_SU_IRQ);
|
|
|
|
if (b) {
|
|
for (i = 0; i < ARRAY_SIZE(b4->spans); i++) {
|
|
int physport;
|
|
|
|
#ifdef SWAP_PORTS
|
|
if (i == 1)
|
|
physport = 2;
|
|
else if (i == 2)
|
|
physport = 1;
|
|
else
|
|
physport = i;
|
|
#else
|
|
physport = i;
|
|
#endif
|
|
if (b & (1 << i))
|
|
hfc_handle_state(&b4->spans[physport]);
|
|
}
|
|
}
|
|
|
|
hfc_update_st_timers(b4);
|
|
}
|
|
|
|
void wctdm_bri_checkisr(struct wctdm *wc, struct wctdm_module *const mod,
|
|
int offset)
|
|
{
|
|
struct b400m *b4 = mod->mod.bri;
|
|
|
|
/* don't do anything for non-base card slots */
|
|
if (mod->card & 0x03)
|
|
return;
|
|
|
|
/* DEFINITELY don't do anything if our structures aren't ready! */
|
|
if (!is_initialized(wc) || !b4 || !b4->inited)
|
|
return;
|
|
|
|
if (offset == 0) {
|
|
if (!b4->shutdown)
|
|
queue_work(b4->xhfc_ws, &b4->xhfc_wq);
|
|
b4->ticks++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* DAHDI calls this when it has data it wants to send to the HDLC controller */
|
|
void wctdm_hdlc_hard_xmit(struct dahdi_chan *chan)
|
|
{
|
|
struct b400m *b4;
|
|
struct b400m_span *bspan;
|
|
struct dahdi_span *dspan;
|
|
int span;
|
|
|
|
dspan = chan->span;
|
|
bspan = bspan_from_dspan(dspan);
|
|
b4 = bspan->parent;
|
|
span = bspan->port;
|
|
|
|
if ((DBG_FOPS || DBG_HDLC) && DBG_SPANFILTER) {
|
|
b4_info(b4, "hdlc_hard_xmit on chan %s (%i/%i), " \
|
|
"span=%i (sigchan=%p, chan=%p)\n", chan->name,
|
|
chan->channo, chan->chanpos, span + 1,
|
|
bspan->sigchan, chan);
|
|
}
|
|
|
|
/* Increment the hdlc_pending counter and trigger the bottom-half so
|
|
* it will be picked up and sent. */
|
|
if (bspan->sigchan == chan)
|
|
atomic_inc(&bspan->hdlc_pending);
|
|
}
|
|
|
|
static int b400m_probe(struct wctdm *wc, int modpos)
|
|
{
|
|
unsigned char id, x;
|
|
struct b400m *b4;
|
|
unsigned long flags;
|
|
int chiprev;
|
|
|
|
wctdm_setreg(wc, &wc->mods[modpos], 0x10, 0x10);
|
|
id = xhfc_getreg(wc, &wc->mods[modpos], R_CHIP_ID, &x);
|
|
|
|
/* chip ID high 7 bits must be 0x62, see datasheet */
|
|
if ((id & 0xfe) != 0x62)
|
|
return -2;
|
|
|
|
b4 = kzalloc(sizeof(struct b400m), GFP_KERNEL);
|
|
if (!b4) {
|
|
dev_err(&wc->vb.pdev->dev,
|
|
"Couldn't allocate memory for b400m structure!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* card found, enabled and main struct allocated. Fill it out. */
|
|
b4->wc = wc;
|
|
b4->position = modpos;
|
|
|
|
/* which B400M in the system is this one? count all of them found so
|
|
* far */
|
|
for (x = 0; x < modpos; x += 4) {
|
|
if (wc->mods[x].type == BRI)
|
|
++b4->b400m_no;
|
|
}
|
|
|
|
spin_lock_init(&b4->reglock);
|
|
sema_init(&b4->regsem, 1);
|
|
sema_init(&b4->fifosem, 1);
|
|
|
|
for (x = 0; x < 4; x++) {
|
|
fasthdlc_init(&b4->spans[x].rxhdlc, FASTHDLC_MODE_16);
|
|
b4->spans[x].infcs = PPP_INITFCS;
|
|
}
|
|
|
|
b4->lastreg = 0xff; /* a register we won't hit right off the bat */
|
|
|
|
chiprev = b400m_getreg(b4, R_CHIP_RV);
|
|
|
|
b4->setsyncspan = -1; /* sync span is unknown */
|
|
b4->reportedsyncspan = -1; /* sync span is unknown */
|
|
|
|
if (DBG) {
|
|
b4_info(b4, "Identified controller rev %d in module %d.\n",
|
|
chiprev, b4->position);
|
|
}
|
|
|
|
xhfc_init_stage1(b4);
|
|
|
|
xhfc_init_stage2(b4);
|
|
hfc_init_all_st(b4);
|
|
|
|
hfc_enable_interrupts(b4);
|
|
|
|
spin_lock_irqsave(&wc->reglock, flags);
|
|
wc->mods[modpos].mod.bri = (void *)b4;
|
|
spin_unlock_irqrestore(&wc->reglock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void b400m_post_init(struct b400m *b4)
|
|
{
|
|
snprintf(b4->name, sizeof(b4->name) - 1, "b400m-%d",
|
|
b4->b400m_no);
|
|
b4->xhfc_ws = create_singlethread_workqueue(b4->name);
|
|
INIT_WORK(&b4->xhfc_wq, xhfc_work);
|
|
b4->inited = 1;
|
|
}
|
|
|
|
/* functions called from the wctdm code */
|
|
int wctdm_init_b400m(struct wctdm *wc, int card)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
if (wc->mods[card & 0xfc].type == QRV)
|
|
return -2;
|
|
|
|
if (!(card & 0x03)) { /* only init if at lowest port in module */
|
|
spin_lock_irqsave(&wc->reglock, flags);
|
|
wc->mods[card + 0].type = BRI;
|
|
wc->mods[card + 0].mod.bri = NULL;
|
|
wc->mods[card + 1].type = BRI;
|
|
wc->mods[card + 1].mod.bri = NULL;
|
|
wc->mods[card + 2].type = BRI;
|
|
wc->mods[card + 2].mod.bri = NULL;
|
|
wc->mods[card + 3].type = BRI;
|
|
wc->mods[card + 3].mod.bri = NULL;
|
|
spin_unlock_irqrestore(&wc->reglock, flags);
|
|
|
|
msleep(20);
|
|
|
|
if (b400m_probe(wc, card) != 0) {
|
|
spin_lock_irqsave(&wc->reglock, flags);
|
|
wc->mods[card + 0].type = NONE;
|
|
wc->mods[card + 1].type = NONE;
|
|
wc->mods[card + 2].type = NONE;
|
|
wc->mods[card + 3].type = NONE;
|
|
spin_unlock_irqrestore(&wc->reglock, flags);
|
|
ret = -2;
|
|
}
|
|
} else { /* for the "sub-cards" */
|
|
if (wc->mods[card & 0xfc].type == BRI) {
|
|
spin_lock_irqsave(&wc->reglock, flags);
|
|
wc->mods[card].type = BRI;
|
|
wc->mods[card].mod.bri = wc->mods[card & 0xfc].mod.bri;
|
|
spin_unlock_irqrestore(&wc->reglock, flags);
|
|
} else {
|
|
ret = -2;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void wctdm_unload_b400m(struct wctdm *wc, int card)
|
|
{
|
|
struct b400m *b4 = wc->mods[card].mod.bri;
|
|
int i;
|
|
|
|
/* TODO: shutdown once won't work if just a single card is hotswapped
|
|
* out. But since most of the time this is called because the entire
|
|
* driver is in the process of unloading, I'll leave it here. */
|
|
static int shutdown_once;
|
|
|
|
|
|
/* only really unload with the 'base' card number. base+1/2/3 aren't
|
|
* real. */
|
|
if (card & 0x03)
|
|
return;
|
|
|
|
if (timingcable && !shutdown_once) {
|
|
b4_info(b4, "Disabling all workqueues for B400Ms\n");
|
|
/* Gotta shut down timing change potential during this */
|
|
for (i = 0; i < WC_MAX_IFACES; i++) {
|
|
if (ifaces[i])
|
|
b400m_disable_workqueues(ifaces[i]);
|
|
}
|
|
b4_info(b4, "Forcing sync to card 0\n");
|
|
/* Put the timing configuration in a known state: card 0 is
|
|
* master */
|
|
wctdm_change_system_sync_src(synccard, syncspan, -1, -1);
|
|
/* Change all other cards in the system to self time before
|
|
* card 0 is removed */
|
|
b4_info(b4, "Setting all cards to return to self sync\n");
|
|
for (i = 1; i < WC_MAX_IFACES; i++) {
|
|
if (ifaces[i])
|
|
wctdm_change_card_sync_src(ifaces[i], 0, 0);
|
|
}
|
|
|
|
b4_info(b4,
|
|
"Finished preparing timing linked cards for "
|
|
"shutdown\n");
|
|
|
|
shutdown_once = 1;
|
|
}
|
|
|
|
if (b4) {
|
|
b4->inited = 0;
|
|
|
|
msleep(100);
|
|
|
|
/* TODO: wait for tdm24xx driver to unregister the spans */
|
|
/* do { ... } while(not_unregistered); */
|
|
|
|
/* Change sync source back to base board so we don't freeze up
|
|
* when we reset the XHFC */
|
|
b400m_disable_workqueues(wc);
|
|
|
|
for (i = 0; i < (MAX_SPANS - 1); i++) {
|
|
if (wc->spans[i])
|
|
wc->spans[i]->timing_priority = 0;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(b4->spans); i++)
|
|
b4->spans[i].wspan->span.flags &= ~DAHDI_FLAG_RUNNING;
|
|
|
|
wctdm_change_card_sync_src(b4->wc, 0, 0);
|
|
|
|
xhfc_init_stage1(b4);
|
|
|
|
destroy_workqueue(b4->xhfc_ws);
|
|
|
|
/* Set these to NONE to ensure that our checkisr
|
|
* routines are not entered */
|
|
wc->mods[card].type = NONE;
|
|
wc->mods[card + 1].type = NONE;
|
|
wc->mods[card + 2].type = NONE;
|
|
wc->mods[card + 3].type = NONE;
|
|
|
|
wc->mods[card].mod.bri = NULL;
|
|
wc->mods[card + 1].mod.bri = NULL;
|
|
wc->mods[card + 2].mod.bri = NULL;
|
|
wc->mods[card + 3].mod.bri = NULL;
|
|
|
|
msleep(voicebus_current_latency(&wc->vb) << 1);
|
|
b4_info(b4, "Driver unloaded.\n");
|
|
kfree(b4);
|
|
}
|
|
|
|
}
|
|
|
|
void b400m_module_init(void)
|
|
{
|
|
fasthdlc_precalc();
|
|
}
|
|
|
|
void b400m_module_cleanup(void)
|
|
{
|
|
}
|