dahdi-linux/drivers/dahdi/wctc4xxp/base.c
Shaun Ruffell bf3fe05dfb wct4xxp: Moving the transmit short detection behind debug module param.
This needs some more testing before it's on by default.  If the card is
otherwise functioning, these messages may be confusing to the user.  If
the card is not functioning, the driver can be reloaded with debug to
check for this condition.

Signed-off-by: Shaun Ruffell <sruffell@digium.com>

git-svn-id: http://svn.asterisk.org/svn/dahdi/linux/trunk@9205 a0bf4364-ded3-4de4-8d8a-66a801d63aff
2010-08-27 21:59:27 +00:00

3778 lines
96 KiB
C

/* Wildcard TC400B Driver
*
* Copyright (C) 2006-2010, Digium, Inc.
*
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/kmod.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/etherdevice.h>
#include <linux/timer.h>
#include <stdbool.h>
#include "dahdi/kernel.h"
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18)
#include <asm/io.h>
#else
#include <linux/io.h>
#endif
/* COMPILE TIME OPTIONS =================================================== */
#define INTERRUPT 0
#define WORKQUEUE 1
#define TASKLET 2
#ifndef DEFERRED_PROCESSING
# define DEFERRED_PROCESSING WORKQUEUE
#endif
#if DEFERRED_PROCESSING == INTERRUPT
# define ALLOC_FLAGS GFP_ATOMIC
#elif DEFERRED_PROCESSING == TASKLET
# define ALLOC_FLAGS GFP_ATOMIC
#else
# define ALLOC_FLAGS GFP_KERNEL
#endif
#define WARN_ALWAYS() WARN_ON(1)
#define DTE_PRINTK(_lvl, _fmt, _args...) \
printk(KERN_##_lvl "%s: %s: " _fmt, THIS_MODULE->name, \
(wc)->board_name, ## _args)
#define DTE_DEBUG(_dbgmask, _fmt, _args...) \
if ((debug & _dbgmask) == (_dbgmask)) { \
printk(KERN_DEBUG "%s: %s: " _fmt, THIS_MODULE->name, \
(wc)->board_name, ## _args); \
} \
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18)
#ifndef WARN_ON_ONCE
#define WARN_ON_ONCE(__condition) do { \
static int __once = 1; \
if (unlikely(__condition)) { \
if (__once) { \
__once = 0; \
WARN_ON(0); \
} \
} \
} while (0)
#endif
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14)
/* also added in RHEL kernels with the OpenInfiniband backport: */
#if LINUX_VERSION_CODE != KERNEL_VERSION(2,6,9) || !defined(DEFINE_SPINLOCK)
typedef unsigned gfp_t; /* Added in 2.6.14 */
#endif
#endif
/* define CONFIG_WCTC4XXP_POLLING to operate in a pure polling mode. This is
* was placed in as a debugging tool for a particluar system that wasn't
* routing the interrupt properly. Therefore it is off by default and the
* driver must be recompiled to enable it. */
#undef CONFIG_WCTC4XXP_POLLING
/* The total number of active channels over which the driver will start polling
* the card every 10 ms. */
#define POLLING_CALL_THRESHOLD 40
#define INVALID 999 /* Used to mark invalid channels, commands, etc.. */
#define MAX_CHANNEL_PACKETS 5
#define G729_LENGTH 20
#define G723_LENGTH 30
#define G729_SAMPLES 160 /* G.729 */
#define G723_SAMPLES 240 /* G.723.1 */
#define G729_BYTES 20 /* G.729 */
#define G723_6K_BYTES 24 /* G.723.1 at 6.3kb/s */
#define G723_5K_BYTES 20 /* G.723.1 at 5.3kb/s */
#define G723_SID_BYTES 4 /* G.723.1 SID frame */
#define MAX_CAPTURED_PACKETS 5000
/* The following bit fields are used to set the various debug levels. */
#define DTE_DEBUG_GENERAL (1 << 0) /* 1 */
#define DTE_DEBUG_CHANNEL_SETUP (1 << 1) /* 2 */
#define DTE_DEBUG_RTP_TX (1 << 2) /* 4 */
#define DTE_DEBUG_RTP_RX (1 << 3) /* 8 */
#define DTE_DEBUG_RX_TIMEOUT (1 << 4) /* 16 */
#define DTE_DEBUG_NETWORK_IF (1 << 5) /* 32 */
#define DTE_DEBUG_NETWORK_EARLY (1 << 6) /* 64 */
static int debug;
static char *mode;
static spinlock_t wctc4xxp_list_lock;
static struct list_head wctc4xxp_list;
#define ETH_P_CSM_ENCAPS 0x889B
struct rtphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8 csrc_count:4;
__u8 extension:1;
__u8 padding:1;
__u8 ver:2;
__u8 type:7;
__u8 marker:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
__u8 ver:2;
__u8 padding:1;
__u8 extension:1;
__u8 csrc_count:4;
__u8 marker:1;
__u8 type:7;
#else
#error "Please fix <asm/byteorder.h>"
#endif
__be16 seqno;
__be32 timestamp;
__be32 ssrc;
} __attribute__((packed));
struct rtp_packet {
struct ethhdr ethhdr;
struct iphdr iphdr;
struct udphdr udphdr;
struct rtphdr rtphdr;
__u8 payload[0];
} __attribute__((packed));
/* Ethernet packet type for communication control information to the DTE. */
struct csm_encaps_hdr {
struct ethhdr ethhdr;
/* CSM_ENCAPS HEADER */
__be16 op_code;
__u8 seq_num;
__u8 control;
__be16 channel;
/* COMMON PART OF PAYLOAD HEADER */
__u8 length;
__u8 index;
__u8 type;
__u8 class;
__le16 function;
__le16 reserved;
__le16 params[0];
} __attribute__((packed));
#define CONTROL_PACKET_OPCODE 0x0001
/* Control bits */
#define LITTLE_ENDIAN 0x01
#define SUPPRESS_ACK 0x40
#define MESSAGE_PACKET 0x80
#define SUPERVISOR_CHANNEL 0xffff
/* Supervisor function codes */
#define SUPVSR_CREATE_CHANNEL 0x0010
#define MONITOR_LIVE_INDICATION_TYPE 0x75
#define CONFIG_CHANGE_TYPE 0x00
#define CONFIG_CHANNEL_CLASS 0x02
#define CONFIG_DEVICE_CLASS 0x06
/* Individual channel config commands */
#define MAX_FRAME_SIZE 1518
#define SFRAME_SIZE MAX_FRAME_SIZE
#define DRING_SIZE (1 << 7) /* Must be a power of two */
#define DRING_MASK (DRING_SIZE-1)
#define MIN_PACKET_LEN 64
/* Transcoder buffer (tcb) */
struct tcb {
void *data;
struct list_head node;
unsigned long timeout;
unsigned long retries;
/* NOTE: these flags aren't bit fields because some of the flags are
* combinations of the other ones. */
#define DO_NOT_AUTO_FREE (1 << 0)
#define TX_COMPLETE (1 << 1)
#define DO_NOT_CAPTURE (1 << 2)
#define __WAIT_FOR_ACK (1 << 3)
#define __WAIT_FOR_RESPONSE (1 << 4)
#define DTE_CMD_TIMEOUT (1 << 5)
#define WAIT_FOR_ACK (__WAIT_FOR_ACK | DO_NOT_AUTO_FREE)
#define WAIT_FOR_RESPONSE (__WAIT_FOR_RESPONSE | DO_NOT_AUTO_FREE)
unsigned long flags;
struct tcb *response;
struct completion complete;
struct timer_list timer;
/* The number of bytes available in data. */
int data_len;
spinlock_t lock;
};
static inline const struct csm_encaps_hdr *
response_header(struct tcb *cmd)
{
BUG_ON(!cmd->response);
return (const struct csm_encaps_hdr *)(cmd)->response->data;
}
static inline void
initialize_cmd(struct tcb *cmd, unsigned long cmd_flags)
{
INIT_LIST_HEAD(&cmd->node);
init_completion(&cmd->complete);
cmd->flags = cmd_flags;
spin_lock_init(&cmd->lock);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
/*! Used to allocate commands to submit to the dte. */
kmem_cache_t *cmd_cache;
#else
/*! Used to allocate commands to submit to the dte. */
static struct kmem_cache *cmd_cache;
#endif
static inline struct tcb *
__alloc_cmd(size_t size, gfp_t alloc_flags, unsigned long cmd_flags)
{
struct tcb *cmd;
if (unlikely(size > SFRAME_SIZE))
return NULL;
if (size < MIN_PACKET_LEN)
size = MIN_PACKET_LEN;
cmd = kmem_cache_alloc(cmd_cache, alloc_flags);
if (likely(cmd)) {
memset(cmd, 0, sizeof(*cmd));
cmd->data = kzalloc(size, alloc_flags);
if (unlikely(!cmd->data)) {
kmem_cache_free(cmd_cache, cmd);
return NULL;
}
cmd->data_len = size;
initialize_cmd(cmd, cmd_flags);
}
return cmd;
}
static struct tcb *
alloc_cmd(size_t size)
{
return __alloc_cmd(size, GFP_KERNEL, 0);
}
static void
__free_cmd(struct tcb *cmd)
{
if (cmd)
kfree(cmd->data);
kmem_cache_free(cmd_cache, cmd);
return;
}
static void
free_cmd(struct tcb *cmd)
{
if (cmd->response)
__free_cmd(cmd->response);
__free_cmd(cmd);
}
struct channel_stats {
atomic_t packets_sent;
atomic_t packets_received;
};
struct channel_pvt {
spinlock_t lock; /* Lock for this structure */
struct wcdte *wc;
u16 seqno;
u8 cmd_seqno;
u8 ssrc;
u16 timeslot_in_num; /* DTE timeslot to receive from */
u16 timeslot_out_num; /* DTE timeslot to send data to */
u16 chan_in_num; /* DTE channel to receive from */
u16 chan_out_num; /* DTE channel to send data to */
u32 timestamp;
struct {
u8 encoder:1; /* If we're an encoder */
};
struct channel_stats stats;
struct list_head rx_queue; /* Transcoded packets for this channel. */
};
struct wcdte {
char board_name[40];
const char *variety;
int pos;
struct list_head node;
spinlock_t reglock;
wait_queue_head_t waitq;
struct semaphore chansem;
#define DTE_READY 1
#define DTE_SHUTDOWN 2
#define DTE_POLLING 3
unsigned long flags;
/* This is a device-global list of commands that are waiting to be
* transmited (and did not fit on the transmit descriptor ring) */
spinlock_t cmd_list_lock;
struct list_head cmd_list;
struct list_head waiting_for_response_list;
spinlock_t rx_list_lock;
struct list_head rx_list;
spinlock_t rx_lock;
unsigned int seq_num;
int last_rx_seq_num;
unsigned char numchannels;
unsigned char complexname[40];
/* This section contains the members necessary to communicate with the
* physical interface to the transcoding engine. */
struct pci_dev *pdev;
unsigned int intmask;
void __iomem *iobase;
struct wctc4xxp_descriptor_ring *txd;
struct wctc4xxp_descriptor_ring *rxd;
struct dahdi_transcoder *uencode;
struct dahdi_transcoder *udecode;
struct channel_pvt *encoders;
struct channel_pvt *decoders;
#if DEFERRED_PROCESSING == WORKQUEUE
struct work_struct deferred_work;
#endif
/*
* This section contains the members necessary for exporting the
* network interface to the host system. This is only used for
* debugging purposes.
*
*/
struct sk_buff_head captured_packets;
struct net_device *netdev;
struct net_device_stats net_stats;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24)
struct napi_struct napi;
#endif
struct timer_list watchdog;
atomic_t open_channels;
struct timer_list polling;
#if HZ > 100
unsigned long jiffies_at_last_poll;
#endif
};
#ifdef HAVE_NETDEV_PRIV
struct wcdte_netdev_priv {
struct wcdte *wc;
};
#endif
static inline struct wcdte *
wcdte_from_netdev(struct net_device *netdev)
{
#ifdef HAVE_NETDEV_PRIV
struct wcdte_netdev_priv *priv;
priv = netdev_priv(netdev);
return priv->wc;
#else
return netdev->priv;
#endif
}
static inline void wctc4xxp_set_ready(struct wcdte *wc)
{
set_bit(DTE_READY, &wc->flags);
}
static inline int wctc4xxp_is_ready(struct wcdte *wc)
{
return test_bit(DTE_READY, &wc->flags);
}
#define DTE_FORMAT_ULAW 0x00
#define DTE_FORMAT_G723_1 0x04
#define DTE_FORMAT_ALAW 0x08
#define DTE_FORMAT_G729A 0x12
#define DTE_FORMAT_UNDEF 0xFF
static inline u8 wctc4xxp_dahdifmt_to_dtefmt(unsigned int fmt)
{
u8 pt;
switch (fmt) {
case DAHDI_FORMAT_G723_1:
pt = DTE_FORMAT_G723_1;
break;
case DAHDI_FORMAT_ULAW:
pt = DTE_FORMAT_ULAW;
break;
case DAHDI_FORMAT_ALAW:
pt = DTE_FORMAT_ALAW;
break;
case DAHDI_FORMAT_G729A:
pt = DTE_FORMAT_G729A;
break;
default:
pt = DTE_FORMAT_UNDEF;
break;
}
return pt;
}
static struct sk_buff *
tcb_to_skb(struct net_device *netdev, const struct tcb *cmd)
{
struct sk_buff *skb;
skb = alloc_skb(cmd->data_len, in_atomic() ? GFP_ATOMIC : GFP_KERNEL);
if (skb) {
skb->dev = netdev;
skb_put(skb, cmd->data_len);
memcpy(skb->data, cmd->data, cmd->data_len);
skb->protocol = eth_type_trans(skb, netdev);
}
return skb;
}
/**
* wctc4xxp_skb_to_cmd - Convert a socket buffer (skb) to a tcb
* @wc: The transcoder that we're going to send this command to.
* @skb: socket buffer to convert.
*
*/
static struct tcb *
wctc4xxp_skb_to_cmd(struct wcdte *wc, const struct sk_buff *skb)
{
const gfp_t alloc_flags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
struct tcb *cmd;
cmd = __alloc_cmd(skb->len, alloc_flags, 0);
if (cmd) {
int res;
cmd->data_len = skb->len;
res = skb_copy_bits(skb, 0, cmd->data, cmd->data_len);
if (res) {
DTE_PRINTK(WARNING,
"Failed call to skb_copy_bits.\n");
free_cmd(cmd);
cmd = NULL;
}
}
return cmd;
}
static void
wctc4xxp_net_set_multi(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s promiscuity:%d\n",
__func__, netdev->promiscuity);
}
static int
wctc4xxp_net_up(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s\n", __func__);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
netif_poll_enable(netdev);
#else
napi_enable(&wc->napi);
#endif
return 0;
}
static int
wctc4xxp_net_down(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s\n", __func__);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
netif_poll_disable(netdev);
#else
napi_disable(&wc->napi);
#endif
return 0;
}
static void wctc4xxp_transmit_cmd(struct wcdte *, struct tcb *);
static int
wctc4xxp_net_hard_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
struct tcb *cmd;
/* We set DO_NOT_CAPTURE because this packet was already captured by
* in code higher up in the networking stack. We don't want to
* capture it twice.
*/
cmd = wctc4xxp_skb_to_cmd(wc, skb);
if (cmd) {
cmd->flags |= DO_NOT_CAPTURE;
wctc4xxp_transmit_cmd(wc, cmd);
}
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static int
wctc4xxp_net_receive(struct wcdte *wc, int max)
{
int count = 0;
struct sk_buff *skb;
WARN_ON(0 == max);
while ((skb = skb_dequeue(&wc->captured_packets))) {
netif_receive_skb(skb);
if (++count >= max)
break;
}
return count;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
static int
wctc4xxp_poll(struct net_device *netdev, int *budget)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
int count = 0;
int quota = min(netdev->quota, *budget);
count = wctc4xxp_net_receive(wc, quota);
*budget -= count;
netdev->quota -= count;
if (!skb_queue_len(&wc->captured_packets)) {
netif_rx_complete(netdev);
return 0;
} else {
return -1;
}
}
#else
static int
wctc4xxp_poll(struct napi_struct *napi, int budget)
{
struct wcdte *wc = container_of(napi, struct wcdte, napi);
int count;
count = wctc4xxp_net_receive(wc, budget);
if (!skb_queue_len(&wc->captured_packets)) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 29)
netif_rx_complete(wc->netdev, &wc->napi);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 30)
netif_rx_complete(&wc->napi);
#else
napi_complete(&wc->napi);
#endif
}
return count;
}
#endif
static struct net_device_stats *
wctc4xxp_net_get_stats(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
return &wc->net_stats;
}
/* Wait until this device is put into promiscuous mode, or we timeout. */
static void
wctc4xxp_net_waitfor_promiscuous(struct wcdte *wc)
{
unsigned int seconds = 15;
unsigned long start = jiffies;
struct net_device *netdev = wc->netdev;
DTE_PRINTK(INFO,
"Waiting %d seconds for adapter to be placed in " \
"promiscuous mode for early trace.\n", seconds);
while (!netdev->promiscuity) {
if (signal_pending(current)) {
DTE_PRINTK(INFO,
"Aborting wait due to signal.\n");
break;
}
msleep(100);
if (time_after(jiffies, start + (seconds * HZ))) {
DTE_PRINTK(INFO,
"Aborting wait due to timeout.\n");
break;
}
}
}
static int wctc4xxp_turn_off_booted_led(struct wcdte *wc);
static void wctc4xxp_turn_on_booted_led(struct wcdte *wc);
static int
wctc4xxp_net_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
switch (cmd) {
case 0x89f0:
down(&wc->chansem);
wctc4xxp_turn_off_booted_led(wc);
break;
case 0x89f1:
wctc4xxp_turn_on_booted_led(wc);
up(&wc->chansem);
break;
default:
return -EOPNOTSUPP;
};
return 0;
}
#ifdef HAVE_NET_DEVICE_OPS
static const struct net_device_ops wctc4xxp_netdev_ops = {
.ndo_set_multicast_list = &wctc4xxp_net_set_multi,
.ndo_open = &wctc4xxp_net_up,
.ndo_stop = &wctc4xxp_net_down,
.ndo_start_xmit = &wctc4xxp_net_hard_start_xmit,
.ndo_get_stats = &wctc4xxp_net_get_stats,
.ndo_do_ioctl = &wctc4xxp_net_ioctl,
};
#endif
/**
* wctc4xxp_net_register - Register a new network interface.
* @wc: transcoder card to register the interface for.
*
* The network interface is primarily used for debugging in order to watch the
* traffic between the transcoder and the host.
*
*/
static int
wctc4xxp_net_register(struct wcdte *wc)
{
int res;
struct net_device *netdev;
# ifdef HAVE_NETDEV_PRIV
struct wcdte_netdev_priv *priv;
# endif
const char our_mac[] = { 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
# ifdef HAVE_NETDEV_PRIV
netdev = alloc_netdev(sizeof(*priv), wc->board_name, ether_setup);
if (!netdev)
return -ENOMEM;
priv = netdev_priv(netdev);
priv->wc = wc;
# else
netdev = alloc_netdev(0, wc->board_name, ether_setup);
if (!netdev)
return -ENOMEM;
netdev->priv = wc;
# endif
memcpy(netdev->dev_addr, our_mac, sizeof(our_mac));
# ifdef HAVE_NET_DEVICE_OPS
netdev->netdev_ops = &wctc4xxp_netdev_ops;
# else
netdev->set_multicast_list = &wctc4xxp_net_set_multi;
netdev->open = &wctc4xxp_net_up;
netdev->stop = &wctc4xxp_net_down;
netdev->hard_start_xmit = &wctc4xxp_net_hard_start_xmit;
netdev->get_stats = &wctc4xxp_net_get_stats;
netdev->do_ioctl = &wctc4xxp_net_ioctl;
# endif
netdev->promiscuity = 0;
netdev->flags |= IFF_NOARP;
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
netdev->poll = &wctc4xxp_poll;
netdev->weight = 64;
# else
netif_napi_add(netdev, &wc->napi, &wctc4xxp_poll, 64);
# endif
res = register_netdev(netdev);
if (res) {
DTE_PRINTK(WARNING,
"Failed to register network device %s.\n",
wc->board_name);
goto error_sw;
}
wc->netdev = netdev;
skb_queue_head_init(&wc->captured_packets);
if (debug & DTE_DEBUG_NETWORK_EARLY)
wctc4xxp_net_waitfor_promiscuous(wc);
DTE_PRINTK(DEBUG,
"Created network device %s for debug.\n", wc->board_name);
return 0;
error_sw:
if (netdev)
free_netdev(netdev);
return res;
}
static void
wctc4xxp_net_unregister(struct wcdte *wc)
{
struct sk_buff *skb;
if (!wc->netdev)
return;
unregister_netdev(wc->netdev);
while ((skb = skb_dequeue(&wc->captured_packets)))
kfree_skb(skb);
free_netdev(wc->netdev);
wc->netdev = NULL;
}
/**
* wctc4xxp_net_capture_cmd - Send a tcb to the network stack.
* @wc: transcoder that received the command.
* @cmd: command to send to network stack.
*
*/
static void
wctc4xxp_net_capture_cmd(struct wcdte *wc, const struct tcb *cmd)
{
struct sk_buff *skb;
struct net_device *netdev = wc->netdev;
if (!netdev)
return;
/* No need to capture if there isn't anyone listening. */
if (!(netdev->flags & IFF_UP))
return;
if (skb_queue_len(&wc->captured_packets) > MAX_CAPTURED_PACKETS) {
WARN_ON_ONCE(1);
return;
}
skb = tcb_to_skb(netdev, cmd);
if (!skb)
return;
skb_queue_tail(&wc->captured_packets, skb);
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
netif_rx_schedule(netdev);
# elif LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 29)
netif_rx_schedule(netdev, &wc->napi);
# elif LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 30)
netif_rx_schedule(&wc->napi);
# else
napi_schedule(&wc->napi);
# endif
return;
}
/*! In-memory structure shared by the host and the adapter. */
struct wctc4xxp_descriptor {
__le32 des0;
__le32 des1;
__le32 buffer1;
__le32 container; /* Unused */
} __attribute__((packed));
struct wctc4xxp_descriptor_ring {
/* Pointer to an array of descriptors to give to hardware. */
struct wctc4xxp_descriptor *desc;
/* Read completed buffers from the head. */
unsigned int head;
/* Write ready buffers to the tail. */
unsigned int tail;
/* Array to save the kernel virtual address of pending commands. */
struct tcb *pending[DRING_SIZE];
/* PCI Bus address of the descriptor list. */
dma_addr_t desc_dma;
/*! either DMA_FROM_DEVICE or DMA_TO_DEVICE */
unsigned int direction;
/*! The number of buffers currently submitted to the hardware. */
unsigned int count;
/*! The number of bytes to pad each descriptor for cache alignment. */
unsigned int padding;
/*! Protects this structure from concurrent access. */
spinlock_t lock;
/*! PCI device for the card associated with this ring. */
struct pci_dev *pdev;
};
/**
* wctc4xxp_descriptor - Returns the desriptor at index.
* @dr: The descriptor ring we're using.
* @index: index of the descriptor we want.
*
* We need this function because we do not know what the padding on the
* descriptors will be. Otherwise, we would just use an array.
*/
static inline struct wctc4xxp_descriptor *
wctc4xxp_descriptor(struct wctc4xxp_descriptor_ring *dr, int index)
{
return (struct wctc4xxp_descriptor *)((u8 *)dr->desc +
((sizeof(*dr->desc) + dr->padding) * index));
}
static int
wctc4xxp_initialize_descriptor_ring(struct pci_dev *pdev,
struct wctc4xxp_descriptor_ring *dr, u32 des1, unsigned int direction)
{
int i;
const u32 END_OF_RING = 0x02000000;
u8 cache_line_size = 0;
struct wctc4xxp_descriptor *d;
int add_padding;
BUG_ON(!pdev);
BUG_ON(!dr);
if (pci_read_config_byte(pdev, 0x0c, &cache_line_size))
return -EIO;
memset(dr, 0, sizeof(*dr));
/*
* Add some padding to each descriptor to ensure that they are
* aligned on host system cache-line boundaries, but only for the
* cache-line sizes that we support.
*
*/
add_padding = (0x08 == cache_line_size) ||
(0x10 == cache_line_size) ||
(0x20 == cache_line_size);
if (add_padding)
dr->padding = (cache_line_size*sizeof(u32)) - sizeof(*d);
dr->desc = pci_alloc_consistent(pdev,
(sizeof(*d)+dr->padding)*DRING_SIZE, &dr->desc_dma);
if (!dr->desc)
return -ENOMEM;
memset(dr->desc, 0, (sizeof(*d) + dr->padding) * DRING_SIZE);
for (i = 0; i < DRING_SIZE; ++i) {
d = wctc4xxp_descriptor(dr, i);
d->des1 = cpu_to_le32(des1);
}
d->des1 |= cpu_to_le32(END_OF_RING);
dr->direction = direction;
spin_lock_init(&dr->lock);
dr->pdev = pdev;
return 0;
}
#define OWN_BIT cpu_to_le32(0x80000000)
#define OWNED(_d_) (((_d_)->des0)&OWN_BIT)
#define SET_OWNED(_d_) do { wmb(); (_d_)->des0 |= OWN_BIT; wmb(); } while (0)
static const unsigned int BUFFER1_SIZE_MASK = 0x7ff;
static int
wctc4xxp_submit(struct wctc4xxp_descriptor_ring *dr, struct tcb *c)
{
volatile struct wctc4xxp_descriptor *d;
unsigned int len;
unsigned long flags;
WARN_ON(!c);
len = (c->data_len < MIN_PACKET_LEN) ? MIN_PACKET_LEN : c->data_len;
if (c->data_len > MAX_FRAME_SIZE) {
WARN_ON_ONCE(!"Invalid command length passed\n");
c->data_len = MAX_FRAME_SIZE;
}
spin_lock_irqsave(&dr->lock, flags);
d = wctc4xxp_descriptor(dr, dr->tail);
WARN_ON(!d);
if (d->buffer1) {
spin_unlock_irqrestore(&dr->lock, flags);
/* Do not overwrite a buffer that is still in progress. */
return -EBUSY;
}
d->des1 &= cpu_to_le32(~(BUFFER1_SIZE_MASK));
d->des1 |= cpu_to_le32(len & BUFFER1_SIZE_MASK);
d->buffer1 = pci_map_single(dr->pdev, c->data,
SFRAME_SIZE, dr->direction);
SET_OWNED(d); /* That's it until the hardware is done with it. */
dr->pending[dr->tail] = c;
dr->tail = (dr->tail + 1) & DRING_MASK;
++dr->count;
spin_unlock_irqrestore(&dr->lock, flags);
return 0;
}
static inline struct tcb*
wctc4xxp_retrieve(struct wctc4xxp_descriptor_ring *dr)
{
volatile struct wctc4xxp_descriptor *d;
struct tcb *c;
unsigned int head = dr->head;
unsigned long flags;
spin_lock_irqsave(&dr->lock, flags);
d = wctc4xxp_descriptor(dr, head);
if (d->buffer1 && !OWNED(d)) {
pci_unmap_single(dr->pdev, d->buffer1,
SFRAME_SIZE, dr->direction);
c = dr->pending[head];
WARN_ON(!c);
dr->head = (++head) & DRING_MASK;
d->buffer1 = 0;
--dr->count;
WARN_ON(!c);
c->data_len = (d->des0 >> 16) & BUFFER1_SIZE_MASK;
WARN_ON(c->data_len > SFRAME_SIZE);
} else {
c = NULL;
}
spin_unlock_irqrestore(&dr->lock, flags);
return c;
}
static inline int wctc4xxp_getcount(struct wctc4xxp_descriptor_ring *dr)
{
int count;
unsigned long flags;
spin_lock_irqsave(&dr->lock, flags);
count = dr->count;
spin_unlock_irqrestore(&dr->lock, flags);
return count;
}
static inline void
__wctc4xxp_setctl(struct wcdte *wc, unsigned int addr, unsigned int val)
{
writel(val, wc->iobase + addr);
readl(wc->iobase + addr);
}
static inline unsigned int
__wctc4xxp_getctl(struct wcdte *wc, unsigned int addr)
{
return readl(wc->iobase + addr);
}
static inline void
wctc4xxp_setctl(struct wcdte *wc, unsigned int addr, unsigned int val)
{
unsigned long flags;
spin_lock_irqsave(&wc->reglock, flags);
__wctc4xxp_setctl(wc, addr, val);
spin_unlock_irqrestore(&wc->reglock, flags);
}
static inline void
wctc4xxp_receive_demand_poll(struct wcdte *wc)
{
__wctc4xxp_setctl(wc, 0x0010, 0x00000000);
}
static inline void
wctc4xxp_transmit_demand_poll(struct wcdte *wc)
{
return;
# if 0
__wctc4xxp_setctl(wc, 0x0008, 0x00000000);
/* \todo Investigate why this register needs to be written twice in
* order to get it to poll reliably. So far, most of the problems
* I've seen with timeouts had more to do with an untransmitted
* packet sitting in the outbound descriptor list as opposed to any
* problem with the dte firmware.
*/
__wctc4xxp_setctl(wc, 0x0008, 0x00000000);
#endif
}
/* Returns the size, in bytes, of a CSM_ENCAPS packet, given the number of
* parameters used. */
#define SIZE_WITH_N_PARAMETERS(__n) (sizeof(struct csm_encaps_hdr) + \
((__n) * (sizeof(u16))))
/* There are 20 bytes in the ethernet header and the common CSM_ENCAPS header
* that we don't want in the length of the actual CSM_ENCAPS command */
#define LENGTH_WITH_N_PARAMETERS(__n) (SIZE_WITH_N_PARAMETERS(__n) - 20)
static const u8 dst_mac[6] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55};
static const u8 src_mac[6] = {0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF};
static int wctc4xxp_transmit_cmd_and_wait(struct wcdte *wc, struct tcb *cmd);
static void
setup_common_header(struct wcdte *wc, struct csm_encaps_hdr *hdr)
{
memcpy(hdr->ethhdr.h_dest, dst_mac, sizeof(dst_mac));
memcpy(hdr->ethhdr.h_source, src_mac, sizeof(src_mac));
hdr->ethhdr.h_proto = cpu_to_be16(ETH_P_CSM_ENCAPS);
}
static void
setup_supervisor_header(struct wcdte *wc, struct csm_encaps_hdr *hdr)
{
setup_common_header(wc, hdr);
hdr->op_code = cpu_to_be16(CONTROL_PACKET_OPCODE);
hdr->control = LITTLE_ENDIAN;
hdr->seq_num = (wc->seq_num++)&0xf;
hdr->channel = cpu_to_be16(SUPERVISOR_CHANNEL);
}
static void
setup_channel_header(struct channel_pvt *pvt, struct csm_encaps_hdr *hdr)
{
setup_common_header(pvt->wc, hdr);
hdr->op_code = cpu_to_be16(CONTROL_PACKET_OPCODE);
hdr->seq_num = (pvt->cmd_seqno++)&0xf;
hdr->channel = cpu_to_be16(pvt->chan_in_num);
}
static void
create_supervisor_cmd(struct wcdte *wc, struct tcb *cmd, u8 type, u8 class,
u16 function, const u16 *parameters, const int num_parameters)
{
struct csm_encaps_hdr *hdr = cmd->data;
int i;
if (cmd->response) {
free_cmd(cmd->response);
cmd->response = NULL;
}
setup_supervisor_header(wc, hdr);
hdr->length = LENGTH_WITH_N_PARAMETERS(num_parameters);
hdr->index = 0;
hdr->type = type;
hdr->class = class;
hdr->function = cpu_to_le16(function);
hdr->reserved = 0;
for (i = 0; i < num_parameters; ++i)
hdr->params[i] = cpu_to_le16(parameters[i]);
cmd->flags = WAIT_FOR_RESPONSE;
cmd->data_len = SIZE_WITH_N_PARAMETERS(num_parameters);
}
static void
create_channel_cmd(struct channel_pvt *pvt, struct tcb *cmd, u8 type, u8 class,
u16 function, const u16 *parameters, int num_parameters)
{
int i;
struct csm_encaps_hdr *hdr = cmd->data;
if (cmd->response) {
free_cmd(cmd->response);
cmd->response = NULL;
}
setup_channel_header(pvt, hdr);
hdr->length = LENGTH_WITH_N_PARAMETERS(num_parameters);
hdr->index = 0;
hdr->type = type;
hdr->class = class;
hdr->function = cpu_to_le16(function);
hdr->reserved = 0;
for (i = 0; i < num_parameters; ++i)
hdr->params[i] = cpu_to_le16(parameters[i]);
cmd->flags = WAIT_FOR_RESPONSE;
cmd->data_len = SIZE_WITH_N_PARAMETERS(num_parameters);
}
static int
send_create_channel_cmd(struct wcdte *wc, struct tcb *cmd, u16 timeslot,
u16 *channel_number)
{
int res;
const u16 parameters[] = {0x0002, timeslot};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, SUPVSR_CREATE_CHANNEL,
parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
if (0x0000 != response_header(cmd)->params[0]) {
/* The DTE failed to create the channel. */
/* TODO put some debug information here. */
WARN_ON(1);
free_cmd(cmd->response);
cmd->response = NULL;
return -EIO;
}
*channel_number = le16_to_cpu(response_header(cmd)->params[1]);
free_cmd(cmd->response);
cmd->response = NULL;
return 0;
}
static int
send_set_arm_clk_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x012c, 0x0000};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0411, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_set_spu_clk_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x012c, 0x0000};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0412, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_tdm_select_bus_mode_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0004};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0417, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_set_eth_header_cmd(struct wcdte *wc, struct tcb *cmd,
const u8 *host_mac, const u8 *assigned_mac)
{
u16 parameters[8];
u16 *part;
parameters[0] = 0x0001;
part = (u16 *)host_mac;
parameters[1] = part[0];
parameters[2] = part[1];
parameters[3] = part[2];
part = (u16 *)assigned_mac;
parameters[4] = part[0];
parameters[5] = part[1];
parameters[6] = part[2];
parameters[7] = 0x0008;
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0100, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_supvsr_setup_tdm_parms(struct wcdte *wc, struct tcb *cmd,
u8 bus_number)
{
const u16 parameters[] = {0x8380, 0x0c00, 0, (bus_number << 2)&0xc};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0407, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_ip_service_config_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0200};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0302, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_arp_service_config_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0001};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0105, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_icmp_service_config_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0xff01};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0304, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_device_set_country_code_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0000};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x041b, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_spu_features_control_cmd(struct wcdte *wc, struct tcb *cmd, u16 options)
{
const u16 parameters[] = {options};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0013, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_tdm_opt_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0000};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0435, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_destroy_channel_cmd(struct wcdte *wc, struct tcb *cmd, u16 channel)
{
int res;
u16 result;
const u16 parameters[] = {channel};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0011, parameters,
ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
result = le16_to_cpu(response_header(cmd)->params[0]);
if (0x0000 != result) {
DTE_PRINTK(ERR, "Failed to destroy channel %04d (%04x)\n",
channel, result);
return -EIO;
}
return 0;
}
static int
send_set_ip_hdr_channel_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
int res;
u16 result;
struct wcdte *wc = pvt->wc;
const u16 parameters[] = {0, 0x0045, 0, 0, 0x0040, 0x1180, 0,
0xa8c0, 0x0309, 0xa8c0, 0x0309,
cpu_to_be16(pvt->timeslot_out_num + 0x5000),
cpu_to_be16(pvt->timeslot_in_num + 0x5000),
0, 0};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x9000, parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
result = le16_to_cpu(response_header(cmd)->params[0]);
if (0x0000 != result) {
DTE_PRINTK(ERR, "Failure in %s (%04x)\n",
__func__, result);
return -EIO;
}
return 0;
}
static int
send_voip_vceopt_cmd(struct channel_pvt *pvt, struct tcb *cmd, u16 length)
{
int res;
u16 result;
const u16 parameters[] = {((length << 8)|0x21), 0x1c00, 0x0004, 0, 0};
struct wcdte *wc = pvt->wc;
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8001, parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
result = le16_to_cpu(response_header(cmd)->params[0]);
if (0x0000 != result) {
DTE_PRINTK(ERR, "Failure in %s (%04x)\n",
__func__, result);
return -EIO;
}
return 0;
}
static int
send_voip_tonectl_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
int res;
u16 result;
const u16 parameters[] = {0};
struct wcdte *wc = pvt->wc;
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x805b, parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
result = le16_to_cpu(response_header(cmd)->params[0]);
if (0x0000 != result) {
DTE_PRINTK(ERR, "Failure in %s (%04x)\n",
__func__, result);
return -EIO;
}
return 0;
}
static int
send_voip_dtmfopt_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
const u16 parameters[] = {0x0008};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8002, parameters, ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(pvt->wc, cmd);
}
static int
send_voip_indctrl_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
const u16 parameters[] = {0x0007};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8084, parameters, ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(pvt->wc, cmd);
}
static int
send_voip_vopena_cmd(struct channel_pvt *pvt, struct tcb *cmd, u8 format)
{
const u16 parameters[] = {1, ((format<<8)|0x80), 0, 0, 0,
0x3412, 0x7856};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8000, parameters, ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(pvt->wc, cmd);
}
static int
send_voip_vopena_close_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
int res;
const u16 parameters[] = {0};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8000, parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(pvt->wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
if (0x0000 != response_header(cmd)->params[0]) {
WARN_ON(1);
return -EIO;
}
return 0;
}
static int
send_ip_options_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0002};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0306, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
_send_trans_connect_cmd(struct wcdte *wc, struct tcb *cmd, u16 enable, u16
encoder_channel, u16 decoder_channel, u16 encoder_format,
u16 decoder_format)
{
int res;
const u16 parameters[] = {enable, encoder_channel, encoder_format,
decoder_channel, decoder_format};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x9322, parameters,
ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
if (0x0000 != response_header(cmd)->params[0]) {
WARN_ON(1);
return -EIO;
}
return 0;
}
static int
send_trans_connect_cmd(struct wcdte *wc, struct tcb *cmd, const u16
encoder_channel, const u16 decoder_channel, const u16 encoder_format,
const u16 decoder_format)
{
return _send_trans_connect_cmd(wc, cmd, 1, encoder_channel,
decoder_channel, encoder_format, decoder_format);
}
static int
send_trans_disconnect_cmd(struct wcdte *wc, struct tcb *cmd, const u16
encoder_channel, const u16 decoder_channel, const u16 encoder_format,
const u16 decoder_format)
{
return _send_trans_connect_cmd(wc, cmd, 0, encoder_channel,
decoder_channel, encoder_format, decoder_format);
}
static struct tcb *
wctc4xxp_create_rtp_cmd(struct wcdte *wc, struct dahdi_transcoder_channel *dtc,
size_t inbytes)
{
const struct channel_pvt *cpvt = dtc->pvt;
struct rtp_packet *packet;
struct tcb *cmd;
cmd = alloc_cmd(sizeof(*packet) + inbytes);
if (!cmd)
return NULL;
packet = cmd->data;
BUG_ON(cmd->data_len < sizeof(*packet));
/* setup the ethernet header */
memcpy(packet->ethhdr.h_dest, dst_mac, sizeof(dst_mac));
memcpy(packet->ethhdr.h_source, src_mac, sizeof(src_mac));
packet->ethhdr.h_proto = cpu_to_be16(ETH_P_IP);
/* setup the IP header */
packet->iphdr.ihl = 5;
packet->iphdr.version = 4;
packet->iphdr.tos = 0;
packet->iphdr.tot_len = cpu_to_be16(inbytes+40);
packet->iphdr.id = 0;
packet->iphdr.frag_off = cpu_to_be16(0x4000);
packet->iphdr.ttl = 64;
packet->iphdr.protocol = 0x11; /* UDP */
packet->iphdr.check = 0;
packet->iphdr.saddr = cpu_to_be32(0xc0a80903);
packet->iphdr.daddr = cpu_to_be32(0xc0a80903);
packet->iphdr.check = ip_fast_csum((void *)&packet->iphdr,
packet->iphdr.ihl);
/* setup the UDP header */
packet->udphdr.source = cpu_to_be16(cpvt->timeslot_out_num + 0x5000);
packet->udphdr.dest = cpu_to_be16(cpvt->timeslot_in_num + 0x5000);
packet->udphdr.len = cpu_to_be16(inbytes + sizeof(struct rtphdr) +
sizeof(struct udphdr));
packet->udphdr.check = 0;
/* Setup the RTP header */
packet->rtphdr.ver = 2;
packet->rtphdr.padding = 0;
packet->rtphdr.extension = 0;
packet->rtphdr.csrc_count = 0;
packet->rtphdr.marker = 0;
packet->rtphdr.type = wctc4xxp_dahdifmt_to_dtefmt(dtc->srcfmt);
packet->rtphdr.seqno = cpu_to_be16(cpvt->seqno);
packet->rtphdr.timestamp = cpu_to_be32(cpvt->timestamp);
packet->rtphdr.ssrc = cpu_to_be32(cpvt->ssrc);
WARN_ON(cmd->data_len > SFRAME_SIZE);
return cmd;
}
static void
wctc4xxp_cleanup_descriptor_ring(struct wctc4xxp_descriptor_ring *dr)
{
int i;
struct wctc4xxp_descriptor *d;
if (!dr || !dr->desc)
return;
for (i = 0; i < DRING_SIZE; ++i) {
d = wctc4xxp_descriptor(dr, i);
if (d->buffer1) {
pci_unmap_single(dr->pdev, d->buffer1,
SFRAME_SIZE, dr->direction);
d->buffer1 = 0;
/* Commands will also be sitting on the waiting for
* response list, so we want to make sure to delete
* them from that list as well. */
list_del_init(&(dr->pending[i])->node);
free_cmd(dr->pending[i]);
dr->pending[i] = NULL;
}
}
dr->head = 0;
dr->tail = 0;
dr->count = 0;
pci_free_consistent(dr->pdev, (sizeof(*d)+dr->padding) * DRING_SIZE,
dr->desc, dr->desc_dma);
}
static void wctc4xxp_cleanup_command_list(struct wcdte *wc)
{
struct tcb *cmd;
unsigned long flags;
LIST_HEAD(local_list);
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_splice_init(&wc->cmd_list, &local_list);
list_splice_init(&wc->waiting_for_response_list, &local_list);
list_splice_init(&wc->rx_list, &local_list);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
while (!list_empty(&local_list)) {
cmd = list_entry(local_list.next, struct tcb, node);
list_del_init(&cmd->node);
free_cmd(cmd);
}
}
/**
* The command list is used to store commands that couldn't fit in the tx
* descriptor list when they were requested.
*/
static void
wctc4xxp_add_to_command_list(struct wcdte *wc, struct tcb *cmd)
{
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_add_tail(&cmd->node, &wc->cmd_list);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
}
static void
wctc4xxp_add_to_response_list(struct wcdte *wc, struct tcb *cmd)
{
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_add_tail(&cmd->node, &wc->waiting_for_response_list);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
}
static void
wctc4xxp_remove_from_response_list(struct wcdte *wc, struct tcb *cmd)
{
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_del_init(&cmd->node);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
}
static void
wctc4xxp_transmit_cmd(struct wcdte *wc, struct tcb *cmd)
{
int res;
if (cmd->data_len < MIN_PACKET_LEN) {
memset((u8 *)(cmd->data) + cmd->data_len, 0,
MIN_PACKET_LEN-cmd->data_len);
cmd->data_len = MIN_PACKET_LEN;
}
WARN_ON(cmd->response);
WARN_ON(cmd->flags & TX_COMPLETE);
cmd->timeout = jiffies + HZ/4;
if (cmd->flags & (__WAIT_FOR_ACK | __WAIT_FOR_RESPONSE)) {
if (cmd->flags & __WAIT_FOR_RESPONSE) {
/* We don't need both an ACK and a response. Let's
* tell the DTE not to generate an ACK, and we'll just
* retry if we do not get the response within the
* timeout period. */
struct csm_encaps_hdr *hdr = cmd->data;
hdr->control |= SUPPRESS_ACK;
}
WARN_ON(!list_empty(&cmd->node));
wctc4xxp_add_to_response_list(wc, cmd);
mod_timer(&wc->watchdog, jiffies + HZ/2);
}
if (!(cmd->flags & DO_NOT_CAPTURE))
wctc4xxp_net_capture_cmd(wc, cmd);
res = wctc4xxp_submit(wc->txd, cmd);
if (-EBUSY == res) {
/* Looks like we're out of room in the descriptor
* ring. We'll add this command to the pending list
* and the interrupt service routine will pull from
* this list as it clears up room in the descriptor
* ring. */
wctc4xxp_remove_from_response_list(wc, cmd);
wctc4xxp_add_to_command_list(wc, cmd);
} else if (0 == res) {
wctc4xxp_transmit_demand_poll(wc);
} else {
/* Unknown return value... */
WARN_ON(1);
}
}
static int
wctc4xxp_transmit_cmd_and_wait(struct wcdte *wc, struct tcb *cmd)
{
cmd->flags |= DO_NOT_AUTO_FREE;
wctc4xxp_transmit_cmd(wc, cmd);
wait_for_completion(&cmd->complete);
if (cmd->flags & DTE_CMD_TIMEOUT) {
DTE_DEBUG(DTE_DEBUG_GENERAL, "Timeout waiting for command.\n");
return -EIO;
}
return 0;
}
static int wctc4xxp_create_channel_pair(struct wcdte *wc,
struct channel_pvt *cpvt, u8 simple, u8 complicated);
static int wctc4xxp_destroy_channel_pair(struct wcdte *wc,
struct channel_pvt *cpvt);
static int __wctc4xxp_setup_channels(struct wcdte *wc);
static void
wctc4xxp_init_state(struct channel_pvt *cpvt, int encoder,
unsigned int channel, struct wcdte *wc)
{
memset(cpvt, 0, sizeof(*cpvt));
cpvt->encoder = encoder;
cpvt->wc = wc;
cpvt->chan_in_num = INVALID;
cpvt->chan_out_num = INVALID;
cpvt->ssrc = 0x78;
cpvt->timeslot_in_num = channel*2;
cpvt->timeslot_out_num = channel*2;
if (encoder)
++cpvt->timeslot_out_num;
else
++cpvt->timeslot_in_num;
spin_lock_init(&cpvt->lock);
INIT_LIST_HEAD(&cpvt->rx_queue);
}
static unsigned int
wctc4xxp_getctl(struct wcdte *wc, unsigned int addr)
{
unsigned int val;
unsigned long flags;
spin_lock_irqsave(&wc->reglock, flags);
val = __wctc4xxp_getctl(wc, addr);
spin_unlock_irqrestore(&wc->reglock, flags);
return val;
}
static void
wctc4xxp_cleanup_channel_private(struct wcdte *wc,
struct dahdi_transcoder_channel *dtc)
{
struct tcb *cmd, *temp;
struct channel_pvt *cpvt = dtc->pvt;
unsigned long flags;
LIST_HEAD(local_list);
spin_lock_irqsave(&cpvt->lock, flags);
list_splice_init(&cpvt->rx_queue, &local_list);
dahdi_tc_clear_data_waiting(dtc);
spin_unlock_irqrestore(&cpvt->lock, flags);
memset(&cpvt->stats, 0, sizeof(cpvt->stats));
list_for_each_entry_safe(cmd, temp, &local_list, node) {
list_del(&cmd->node);
free_cmd(cmd);
}
}
static int
wctc4xxp_mark_channel_complement_built(struct wcdte *wc,
struct dahdi_transcoder_channel *dtc)
{
int index;
struct channel_pvt *cpvt = dtc->pvt;
struct dahdi_transcoder_channel *compl_dtc;
struct channel_pvt *compl_cpvt;
BUG_ON(!cpvt);
index = cpvt->timeslot_in_num/2;
BUG_ON(index >= wc->numchannels);
if (cpvt->encoder)
compl_dtc = &(wc->udecode->channels[index]);
else
compl_dtc = &(wc->uencode->channels[index]);
/* It shouldn't already have been built... */
WARN_ON(dahdi_tc_is_built(compl_dtc));
compl_dtc->built_fmts = dtc->dstfmt | dtc->srcfmt;
compl_cpvt = compl_dtc->pvt;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"dtc: %p is the complement to %p\n", compl_dtc, dtc);
compl_cpvt->chan_in_num = cpvt->chan_out_num;
compl_cpvt->chan_out_num = cpvt->chan_in_num;
dahdi_tc_set_built(compl_dtc);
wctc4xxp_cleanup_channel_private(wc, dtc);
return 0;
}
static int
do_channel_allocate(struct dahdi_transcoder_channel *dtc)
{
struct channel_pvt *cpvt = dtc->pvt;
struct wcdte *wc = cpvt->wc;
u8 wctc4xxp_srcfmt; /* Digium Transcoder Engine Source Format */
u8 wctc4xxp_dstfmt; /* Digium Transcoder Engine Dest Format */
int res;
#ifndef DEBUG_WCTC4XXP
down(&wc->chansem);
#else
if (down_interruptible(&wc->chansem))
return -EINTR;
#endif
/* Check again to see if the channel was built after grabbing the
* channel semaphore, in case the previous holder of the semaphore
* built this channel as a complement to itself. */
if (dahdi_tc_is_built(dtc)) {
up(&wc->chansem);
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Allocating channel %p which is already built.\n", dtc);
return 0;
}
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Entering %s for channel %p.\n", __func__, dtc);
/* Anything on the rx queue now is old news... */
wctc4xxp_cleanup_channel_private(wc, dtc);
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Allocating a new channel: %p.\n", dtc);
wctc4xxp_srcfmt = wctc4xxp_dahdifmt_to_dtefmt(dtc->srcfmt);
wctc4xxp_dstfmt = wctc4xxp_dahdifmt_to_dtefmt(dtc->dstfmt);
res = wctc4xxp_create_channel_pair(wc, cpvt, wctc4xxp_srcfmt,
wctc4xxp_dstfmt);
if (res) {
/* There was a problem creating the channel.... */
up(&wc->chansem);
return res;
}
/* Mark this channel as built */
dahdi_tc_set_built(dtc);
dtc->built_fmts = dtc->dstfmt | dtc->srcfmt;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Channel %p has dstfmt=%x and srcfmt=%x\n", dtc, dtc->dstfmt,
dtc->srcfmt);
/* Mark the channel complement (other half of encoder/decoder pair) as
* built */
res = wctc4xxp_mark_channel_complement_built(wc, dtc);
up(&wc->chansem);
dahdi_transcoder_alert(dtc);
return res;
}
static void
wctc4xxp_setintmask(struct wcdte *wc, unsigned int intmask)
{
wc->intmask = intmask;
wctc4xxp_setctl(wc, 0x0038, intmask);
}
static void
wctc4xxp_enable_interrupts(struct wcdte *wc)
{
wctc4xxp_setintmask(wc, 0x000180c0);
}
static void
wctc4xxp_disable_interrupts(struct wcdte *wc)
{
/* Disable interrupts */
wctc4xxp_setintmask(wc, 0x00000000);
wctc4xxp_setctl(wc, 0x0084, 0x00000000);
}
static void
wctc4xxp_enable_polling(struct wcdte *wc)
{
set_bit(DTE_POLLING, &wc->flags);
mod_timer(&wc->polling, jiffies + 1);
wctc4xxp_disable_interrupts(wc);
}
static int
wctc4xxp_operation_allocate(struct dahdi_transcoder_channel *dtc)
{
struct wcdte *wc = ((struct channel_pvt *)(dtc->pvt))->wc;
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags))) {
/* The shudown flags can also be set if there is a
* catastrophic failure. */
return -EIO;
}
atomic_inc(&wc->open_channels);
if (atomic_read(&wc->open_channels) > POLLING_CALL_THRESHOLD) {
if (!test_bit(DTE_POLLING, &wc->flags))
wctc4xxp_enable_polling(wc);
}
if (dahdi_tc_is_built(dtc)) {
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Allocating channel %p which is already built.\n", dtc);
return 0;
}
return do_channel_allocate(dtc);
}
static void
wctc4xxp_disable_polling(struct wcdte *wc)
{
clear_bit(DTE_POLLING, &wc->flags);
wctc4xxp_enable_interrupts(wc);
}
static int
wctc4xxp_operation_release(struct dahdi_transcoder_channel *dtc)
{
int res;
int index;
/* This is the 'complimentary channel' to dtc. I.e., if dtc is an
* encoder, compl_dtc is the decoder and vice-versa */
struct dahdi_transcoder_channel *compl_dtc;
struct channel_pvt *compl_cpvt;
struct channel_pvt *cpvt = dtc->pvt;
struct wcdte *wc = cpvt->wc;
int packets_received, packets_sent;
BUG_ON(!cpvt);
BUG_ON(!wc);
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags))) {
/* The shudown flags can also be set if there is a
* catastrophic failure. */
return -EIO;
}
#ifndef DEBUG_WCTC4XXP
down(&wc->chansem);
#else
if (down_interruptible(&wc->chansem))
return -EINTR;
#endif
atomic_dec(&wc->open_channels);
#if !defined(CONFIG_WCTC4XXP_POLLING)
if (atomic_read(&wc->open_channels) < POLLING_CALL_THRESHOLD) {
if (test_bit(DTE_POLLING, &wc->flags))
wctc4xxp_disable_polling(wc);
}
#endif
packets_received = atomic_read(&cpvt->stats.packets_received);
packets_sent = atomic_read(&cpvt->stats.packets_sent);
if ((packets_sent - packets_received) > 5) {
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s channel %d sent %d packets "
"and received %d packets.\n", (cpvt->encoder) ?
"encoder" : "decoder", cpvt->chan_out_num,
packets_sent, packets_received);
}
/* Remove any packets that are waiting on the outbound queue. */
wctc4xxp_cleanup_channel_private(wc, dtc);
index = cpvt->timeslot_in_num/2;
BUG_ON(index >= wc->numchannels);
if (cpvt->encoder)
compl_dtc = &(wc->udecode->channels[index]);
else
compl_dtc = &(wc->uencode->channels[index]);
BUG_ON(!compl_dtc);
if (!dahdi_tc_is_built(compl_dtc)) {
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Releasing a channel that was never built.\n");
res = 0;
goto error_exit;
}
/* If the channel complement (other half of the encoder/decoder pair) is
* being used. */
if (dahdi_tc_is_busy(compl_dtc)) {
res = 0;
goto error_exit;
}
res = wctc4xxp_destroy_channel_pair(wc, cpvt);
if (res)
goto error_exit;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP, "Releasing channel: %p\n", dtc);
/* Mark this channel as not built */
dahdi_tc_clear_built(dtc);
dtc->built_fmts = 0;
cpvt->chan_in_num = INVALID;
cpvt->chan_out_num = INVALID;
/* Mark the channel complement as not built */
dahdi_tc_clear_built(compl_dtc);
compl_dtc->built_fmts = 0;
compl_cpvt = compl_dtc->pvt;
compl_cpvt->chan_in_num = INVALID;
compl_cpvt->chan_out_num = INVALID;
error_exit:
up(&wc->chansem);
return res;
}
static inline struct tcb*
get_ready_cmd(struct dahdi_transcoder_channel *dtc)
{
struct channel_pvt *cpvt = dtc->pvt;
struct tcb *cmd;
unsigned long flags;
spin_lock_irqsave(&cpvt->lock, flags);
if (!list_empty(&cpvt->rx_queue)) {
WARN_ON(!dahdi_tc_is_data_waiting(dtc));
cmd = list_entry(cpvt->rx_queue.next, struct tcb, node);
list_del_init(&cmd->node);
} else {
cmd = NULL;
}
if (list_empty(&cpvt->rx_queue))
dahdi_tc_clear_data_waiting(dtc);
spin_unlock_irqrestore(&cpvt->lock, flags);
return cmd;
}
static int
wctc4xxp_handle_receive_ring(struct wcdte *wc)
{
struct tcb *cmd;
unsigned long flags;
unsigned int count = 0;
/* If we can't grab this lock, another thread must already be checking
* the receive ring...so we should just finish up, and we'll try again
* later. */
#if defined(spin_trylock_irqsave)
if (!spin_trylock_irqsave(&wc->rx_lock, flags))
return 0;
#else
if (spin_is_locked(&wc->rx_lock))
return 0;
spin_lock_irqsave(&wc->rx_lock, flags);
#endif
while ((cmd = wctc4xxp_retrieve(wc->rxd))) {
++count;
spin_lock(&wc->rx_list_lock);
list_add_tail(&cmd->node, &wc->rx_list);
spin_unlock(&wc->rx_list_lock);
cmd = __alloc_cmd(SFRAME_SIZE, GFP_ATOMIC, 0);
if (!cmd) {
DTE_PRINTK(ERR, "Out of memory in %s.\n", __func__);
} else {
if (wctc4xxp_submit(wc->rxd, cmd)) {
DTE_PRINTK(ERR, "Failed submit in %s\n",
__func__);
free_cmd(cmd);
}
}
}
spin_unlock_irqrestore(&wc->rx_lock, flags);
return count;
}
static void
__wctc4xxp_polling(struct wcdte *wc)
{
if (wctc4xxp_handle_receive_ring(wc))
schedule_work(&wc->deferred_work);
}
static void
wctc4xxp_polling(unsigned long data)
{
struct wcdte *wc = (struct wcdte *)data;
__wctc4xxp_polling(wc);
if (test_bit(DTE_POLLING, &wc->flags))
mod_timer(&wc->polling, jiffies + 1);
}
/* Called with a buffer in which to copy a transcoded frame. */
static ssize_t
wctc4xxp_read(struct file *file, char __user *frame, size_t count, loff_t *ppos)
{
ssize_t ret;
struct dahdi_transcoder_channel *dtc = file->private_data;
struct channel_pvt *cpvt = dtc->pvt;
struct wcdte *wc = cpvt->wc;
struct tcb *cmd;
struct rtp_packet *packet;
ssize_t payload_bytes;
ssize_t returned_bytes = 0;
unsigned long flags;
BUG_ON(!dtc);
BUG_ON(!cpvt);
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags))) {
/* The shudown flags can also be set if there is a
* catastrophic failure. */
return -EIO;
}
cmd = get_ready_cmd(dtc);
if (!cmd) {
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
ret = wait_event_interruptible(dtc->ready,
dahdi_tc_is_data_waiting(dtc));
if (-ERESTARTSYS == ret)
return -EINTR;
/* List went not empty. */
cmd = get_ready_cmd(dtc);
}
do {
BUG_ON(!cmd);
packet = cmd->data;
payload_bytes = be16_to_cpu(packet->udphdr.len) -
sizeof(struct rtphdr) -
sizeof(struct udphdr);
if (count < (payload_bytes + returned_bytes)) {
if (returned_bytes) {
/* If we have already returned at least one
* packets worth of data, we'll add this next
* packet to the head of the receive queue so
* it will be picked up next time. */
spin_lock_irqsave(&cpvt->lock, flags);
list_add(&cmd->node, &cpvt->rx_queue);
dahdi_tc_set_data_waiting(dtc);
spin_unlock_irqrestore(&cpvt->lock, flags);
return returned_bytes;
}
if (printk_ratelimit()) {
DTE_PRINTK(ERR,
"Cannot copy %zd bytes into %zd byte user " \
"buffer.\n", payload_bytes, count);
}
free_cmd(cmd);
return -EFBIG;
}
atomic_inc(&cpvt->stats.packets_received);
ret = copy_to_user(&frame[returned_bytes],
&packet->payload[0], payload_bytes);
if (unlikely(ret)) {
DTE_PRINTK(ERR, "Failed to copy data in %s\n",
__func__);
free_cmd(cmd);
return -EFAULT;
}
returned_bytes += payload_bytes;
free_cmd(cmd);
} while ((cmd = get_ready_cmd(dtc)));
return returned_bytes;
}
/* Called with a frame in the srcfmt to be transcoded into the dstfmt. */
static ssize_t
wctc4xxp_write(struct file *file, const char __user *frame,
size_t count, loff_t *ppos)
{
struct dahdi_transcoder_channel *dtc = file->private_data;
struct channel_pvt *cpvt = dtc->pvt;
struct wcdte *wc = cpvt->wc;
struct tcb *cmd;
BUG_ON(!cpvt);
BUG_ON(!wc);
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags)))
return -EIO;
if (!test_bit(DAHDI_TC_FLAG_CHAN_BUILT, &dtc->flags))
return -EAGAIN;
if (count < 2) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Cannot request to transcode a packet that is less than " \
"2 bytes.\n");
return -EINVAL;
}
if (unlikely(count > SFRAME_SIZE - sizeof(struct rtp_packet))) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Cannot transcode packet of %Zu bytes. This exceeds the " \
"maximum size of %Zu bytes.\n", count,
SFRAME_SIZE - sizeof(struct rtp_packet));
return -EINVAL;
}
if (DAHDI_FORMAT_G723_1 == dtc->srcfmt) {
if ((G723_5K_BYTES != count) && (G723_6K_BYTES != count)) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Trying to transcode packet into G723 format " \
"that is %Zu bytes instead of the expected " \
"%d/%d bytes.\n", count, G723_5K_BYTES,
G723_6K_BYTES);
return -EINVAL;
}
cpvt->timestamp += G723_SAMPLES;
} else if (DAHDI_FORMAT_G723_1 == dtc->dstfmt) {
cpvt->timestamp = G723_SAMPLES;
} else {
/* Same for ulaw and alaw */
cpvt->timestamp += G729_SAMPLES;
}
cmd = wctc4xxp_create_rtp_cmd(wc, dtc, count);
if (!cmd)
return -ENOMEM;
/* Copy the data directly from user space into the command buffer. */
if (copy_from_user(&((struct rtp_packet *)(cmd->data))->payload[0],
frame, count)) {
DTE_PRINTK(ERR, "Failed to copy packet from userspace.\n");
free_cmd(cmd);
return -EFAULT;
}
cpvt->seqno += 1;
DTE_DEBUG(DTE_DEBUG_RTP_TX,
"Sending packet of %Zu byte on channel (%p).\n", count, dtc);
atomic_inc(&cpvt->stats.packets_sent);
wctc4xxp_transmit_cmd(wc, cmd);
if (test_bit(DTE_POLLING, &wc->flags)) {
#if HZ == 100
__wctc4xxp_polling(wc);
#else
if (jiffies != wc->jiffies_at_last_poll) {
wc->jiffies_at_last_poll = jiffies;
__wctc4xxp_polling(wc);
}
#endif
}
return count;
}
static void
wctc4xxp_send_ack(struct wcdte *wc, u8 seqno, __be16 channel)
{
struct tcb *cmd;
struct csm_encaps_hdr *hdr;
cmd = __alloc_cmd(sizeof(*hdr), ALLOC_FLAGS, 0);
if (!cmd) {
WARN_ON(1);
return;
}
hdr = cmd->data;
BUG_ON(sizeof(*hdr) > cmd->data_len);
setup_common_header(wc, hdr);
hdr->op_code = cpu_to_be16(0x0001);
hdr->seq_num = seqno;
hdr->control = 0xe0;
hdr->channel = channel;
wctc4xxp_transmit_cmd(wc, cmd);
}
static bool do_rx_response_packet(struct wcdte *wc, struct tcb *cmd)
{
const struct csm_encaps_hdr *listhdr, *rxhdr;
struct tcb *pos, *temp;
unsigned long flags;
bool handled = false;
rxhdr = cmd->data;
if (SUPERVISOR_CHANNEL == rxhdr->channel) {
/* We received a duplicate response. */
if (rxhdr->seq_num == wc->last_rx_seq_num) {
free_cmd(cmd);
return false;
}
wc->last_rx_seq_num = rxhdr->seq_num;
}
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_for_each_entry_safe(pos, temp,
&wc->waiting_for_response_list, node) {
listhdr = pos->data;
if ((listhdr->function == rxhdr->function) &&
(listhdr->channel == rxhdr->channel)) {
spin_lock(&pos->lock);
list_del_init(&pos->node);
pos->flags &= ~(__WAIT_FOR_RESPONSE);
pos->response = cmd;
/* If this isn't TX_COMPLETE yet, then this packet will
* be completed in service_tx_ring. */
if (pos->flags & TX_COMPLETE)
complete(&pos->complete);
spin_unlock(&pos->lock);
handled = true;
break;
}
}
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
if (!handled) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Freeing unhandled response ch:(%04x)\n",
be16_to_cpu(rxhdr->channel));
free_cmd(cmd);
return false;
}
return true;
}
static void
do_rx_ack_packet(struct wcdte *wc, struct tcb *cmd)
{
const struct csm_encaps_hdr *listhdr, *rxhdr;
struct tcb *pos, *temp;
unsigned long flags;
rxhdr = cmd->data;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_for_each_entry_safe(pos, temp,
&wc->waiting_for_response_list, node) {
listhdr = pos->data;
if (cpu_to_be16(0xefed) == listhdr->ethhdr.h_proto) {
wc->seq_num = (rxhdr->seq_num + 1) & 0xff;
WARN_ON(!(pos->flags & DO_NOT_AUTO_FREE));
WARN_ON(!(pos->flags & TX_COMPLETE));
list_del_init(&pos->node);
WARN_ON(!(pos->flags & TX_COMPLETE));
complete(&pos->complete);
} else if ((listhdr->seq_num == rxhdr->seq_num) &&
(listhdr->channel == rxhdr->channel)) {
spin_lock(&pos->lock);
if (pos->flags & __WAIT_FOR_RESPONSE) {
pos->flags &= ~(__WAIT_FOR_ACK);
spin_unlock(&pos->lock);
} else {
list_del_init(&pos->node);
if (pos->flags & DO_NOT_AUTO_FREE) {
WARN_ON(!(pos->flags & TX_COMPLETE));
complete(&pos->complete);
spin_unlock(&pos->lock);
} else {
spin_unlock(&pos->lock);
free_cmd(pos);
}
}
break;
}
}
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
/* There is never a reason to store up the ack packets. */
free_cmd(cmd);
}
static inline int
is_response(const struct csm_encaps_hdr *hdr)
{
return ((0x02 == hdr->type) || (0x04 == hdr->type)) ? 1 : 0;
}
static void
print_command(struct wcdte *wc, const struct tcb *cmd)
{
int i, curlength;
const struct csm_encaps_hdr *hdr = cmd->data;
char *buffer;
const int BUFFER_SIZE = 1024;
int parameters = ((hdr->length - 8)/sizeof(__le16));
buffer = kzalloc(BUFFER_SIZE + 1, GFP_ATOMIC);
if (!buffer) {
DTE_PRINTK(DEBUG, "Failed print_command\n");
return;
}
curlength = snprintf(buffer, BUFFER_SIZE,
"opcode: %04x seq: %02x control: %02x "
"channel: %04x ", be16_to_cpu(hdr->op_code),
hdr->seq_num, hdr->control, be16_to_cpu(hdr->channel));
curlength += snprintf(buffer + curlength, BUFFER_SIZE - curlength,
"length: %02x index: %02x type: %02x "
"class: %02x function: %04x",
hdr->length, hdr->index, hdr->type, hdr->class,
le16_to_cpu(hdr->function));
for (i = 0; i < parameters; ++i) {
curlength += snprintf(buffer + curlength,
BUFFER_SIZE - curlength, " %04x",
le16_to_cpu(hdr->params[i]));
}
DTE_PRINTK(DEBUG, "%s\n", buffer);
kfree(buffer);
}
static void
receive_csm_encaps_packet(struct wcdte *wc, struct tcb *cmd)
{
const struct csm_encaps_hdr *hdr = cmd->data;
if (!(hdr->control & MESSAGE_PACKET)) {
const bool suppress_ack = ((hdr->control & SUPPRESS_ACK) > 0);
if (is_response(hdr)) {
u8 seq_num = hdr->seq_num;
__be16 channel = hdr->channel;
if (do_rx_response_packet(wc, cmd) && !suppress_ack)
wctc4xxp_send_ack(wc, seq_num, channel);
} else if (0xc1 == hdr->type) {
if (!suppress_ack) {
wctc4xxp_send_ack(wc, hdr->seq_num,
hdr->channel);
}
if (0x75 == hdr->class) {
DTE_PRINTK(WARNING,
"Received alert (0x%04x) from dsp\n",
le16_to_cpu(hdr->params[0]));
}
free_cmd(cmd);
} else if (0xd4 == hdr->type) {
if (!suppress_ack) {
wctc4xxp_send_ack(wc, hdr->seq_num,
hdr->channel);
}
if (hdr->params[0] != le16_to_cpu(0xffff)) {
DTE_PRINTK(WARNING,
"DTE Failed self test (%04x).\n",
le16_to_cpu(hdr->params[0]));
} else if ((hdr->params[1] != le16_to_cpu(0x000c)) &&
(hdr->params[1] != le16_to_cpu(0x010c))) {
DTE_PRINTK(WARNING,
"Unexpected ERAM status (%04x).\n",
le16_to_cpu(hdr->params[1]));
} else {
wctc4xxp_set_ready(wc);
wake_up(&wc->waitq);
}
free_cmd(cmd);
} else if (MONITOR_LIVE_INDICATION_TYPE == hdr->type) {
if (!suppress_ack) {
wctc4xxp_send_ack(wc, hdr->seq_num,
hdr->channel);
}
DTE_PRINTK(WARNING, "Received diagnostic message:\n");
print_command(wc, cmd);
free_cmd(cmd);
} else {
if (!suppress_ack) {
wctc4xxp_send_ack(wc, hdr->seq_num,
hdr->channel);
}
DTE_PRINTK(WARNING,
"Unknown command type received. %02x\n", hdr->type);
free_cmd(cmd);
}
} else {
do_rx_ack_packet(wc, cmd);
}
}
static void
queue_rtp_packet(struct wcdte *wc, struct tcb *cmd)
{
unsigned index;
struct dahdi_transcoder_channel *dtc;
struct channel_pvt *cpvt;
struct rtp_packet *packet = cmd->data;
unsigned long flags;
if (unlikely(ip_fast_csum((void *)(&packet->iphdr),
packet->iphdr.ihl))) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Invalid checksum in RTP packet %04x\n",
ip_fast_csum((void *)(&packet->iphdr),
packet->iphdr.ihl));
free_cmd(cmd);
return;
}
index = (be16_to_cpu(packet->udphdr.dest) - 0x5000) / 2;
if (unlikely(!(index < wc->numchannels))) {
DTE_PRINTK(ERR,
"Invalid channel number in response from DTE.\n");
free_cmd(cmd);
return;
}
switch (packet->rtphdr.type) {
case 0x00:
case 0x08:
dtc = &(wc->udecode->channels[index]);
break;
case 0x04:
case 0x12:
dtc = &(wc->uencode->channels[index]);
break;
default:
DTE_PRINTK(ERR, "Unknown codec in packet (0x%02x).\n",\
packet->rtphdr.type);
free_cmd(cmd);
return;
}
cpvt = dtc->pvt;
spin_lock_irqsave(&cpvt->lock, flags);
list_add_tail(&cmd->node, &cpvt->rx_queue);
dahdi_tc_set_data_waiting(dtc);
spin_unlock_irqrestore(&cpvt->lock, flags);
dahdi_transcoder_alert(dtc);
return;
}
static inline void
wctc4xxp_receiveprep(struct wcdte *wc, struct tcb *cmd)
{
const struct ethhdr *ethhdr = (const struct ethhdr *)(cmd->data);
if (cpu_to_be16(ETH_P_IP) == ethhdr->h_proto) {
queue_rtp_packet(wc, cmd);
} else if (cpu_to_be16(ETH_P_CSM_ENCAPS) == ethhdr->h_proto) {
receive_csm_encaps_packet(wc, cmd);
} else {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Unknown packet protocol received: %04x.\n",
be16_to_cpu(ethhdr->h_proto));
free_cmd(cmd);
}
}
static inline void service_tx_ring(struct wcdte *wc)
{
struct tcb *cmd;
unsigned long flags;
while ((cmd = wctc4xxp_retrieve(wc->txd))) {
spin_lock_irqsave(&cmd->lock, flags);
cmd->flags |= TX_COMPLETE;
if (!(cmd->flags & (__WAIT_FOR_ACK | __WAIT_FOR_RESPONSE))) {
/* If we're not waiting for an ACK or Response from
* the DTE, this message should not be sitting on any
* lists. */
WARN_ON(!list_empty(&cmd->node));
if (DO_NOT_AUTO_FREE & cmd->flags) {
spin_unlock_irqrestore(&cmd->lock, flags);
WARN_ON(!(cmd->flags & TX_COMPLETE));
complete(&cmd->complete);
} else {
spin_unlock_irqrestore(&cmd->lock, flags);
free_cmd(cmd);
}
} else {
spin_unlock_irqrestore(&cmd->lock, flags);
}
/* We've freed up a spot in the hardware ring buffer. If
* another packet is queued up, let's submit it to the
* hardware. */
spin_lock_irqsave(&wc->cmd_list_lock, flags);
if (!list_empty(&wc->cmd_list)) {
cmd = list_entry(wc->cmd_list.next, struct tcb, node);
list_del_init(&cmd->node);
} else {
cmd = NULL;
}
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
if (cmd)
wctc4xxp_transmit_cmd(wc, cmd);
}
}
static inline void service_rx_ring(struct wcdte *wc)
{
struct tcb *cmd;
unsigned long flags;
LIST_HEAD(local_list);
spin_lock_irqsave(&wc->rx_list_lock, flags);
list_splice_init(&wc->rx_list, &local_list);
spin_unlock_irqrestore(&wc->rx_list_lock, flags);
/*
* Process the received packets
*/
while (!list_empty(&local_list)) {
cmd = container_of(local_list.next, struct tcb, node);
list_del_init(&cmd->node);
wctc4xxp_net_capture_cmd(wc, cmd);
wctc4xxp_receiveprep(wc, cmd);
}
wctc4xxp_receive_demand_poll(wc);
}
static inline void service_dte(struct wcdte *wc)
{
service_tx_ring(wc);
service_rx_ring(wc);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void deferred_work_func(void *param)
{
struct wcdte *wc = param;
#else
static void deferred_work_func(struct work_struct *work)
{
struct wcdte *wc = container_of(work, struct wcdte, deferred_work);
#endif
service_dte(wc);
}
DAHDI_IRQ_HANDLER(wctc4xxp_interrupt)
{
struct wcdte *wc = dev_id;
u32 ints;
u32 reg;
#define TX_COMPLETE_INTERRUPT 0x00000001
#define RX_COMPLETE_INTERRUPT 0x00000040
#define NORMAL_INTERRUPTS (TX_COMPLETE_INTERRUPT | RX_COMPLETE_INTERRUPT)
/* Read and clear interrupts */
ints = __wctc4xxp_getctl(wc, 0x0028);
ints &= wc->intmask;
if (!ints)
return IRQ_NONE;
if (likely(ints & NORMAL_INTERRUPTS)) {
reg = 0;
if (ints & TX_COMPLETE_INTERRUPT)
reg |= TX_COMPLETE_INTERRUPT;
if (ints & RX_COMPLETE_INTERRUPT) {
wctc4xxp_handle_receive_ring(wc);
reg |= RX_COMPLETE_INTERRUPT;
}
#if DEFERRED_PROCESSING == WORKQUEUE
schedule_work(&wc->deferred_work);
#elif DEFERRED_PROCESSING == INTERRUPT
#error "You will need to change the locks if you want to run the processing " \
"in the interrupt handler."
#else
#error "Define a deferred processing function in kernel/wctc4xxp/wctc4xxp.h"
#endif
__wctc4xxp_setctl(wc, 0x0028, reg);
} else {
if ((ints & 0x00008000) && debug)
DTE_PRINTK(INFO, "Abnormal Interrupt.\n");
if ((ints & 0x00002000) && debug)
DTE_PRINTK(INFO, "Fatal Bus Error INT\n");
if ((ints & 0x00000100) && debug)
DTE_PRINTK(INFO, "Receive Stopped INT\n");
if ((ints & 0x00000080) && debug) {
DTE_PRINTK(INFO, "Receive Desciptor Unavailable INT " \
"(%d)\n", wctc4xxp_getcount(wc->rxd));
}
if ((ints & 0x00000020) && debug)
DTE_PRINTK(INFO, "Transmit Under-flow INT\n");
if ((ints & 0x00000008) && debug)
DTE_PRINTK(INFO, "Jabber Timer Time-out INT\n");
if ((ints & 0x00000002) && debug)
DTE_PRINTK(INFO, "Transmit Processor Stopped INT\n");
/* Clear all the pending interrupts. */
__wctc4xxp_setctl(wc, 0x0028, ints);
}
return IRQ_HANDLED;
}
static int
wctc4xxp_hardware_init(struct wcdte *wc)
{
/* Hardware stuff */
u32 reg;
unsigned long newjiffies;
u8 cache_line_size;
const u32 DEFAULT_PCI_ACCESS = 0xfff80000;
/* Enable I/O Access */
pci_read_config_dword(wc->pdev, 0x0004, &reg);
reg |= 0x00000007;
pci_write_config_dword(wc->pdev, 0x0004, reg);
if (pci_read_config_byte(wc->pdev, 0x0c, &cache_line_size))
return -EIO;
switch (cache_line_size) {
case 0x08:
reg = DEFAULT_PCI_ACCESS | (0x1 << 14);
break;
case 0x10:
reg = DEFAULT_PCI_ACCESS | (0x2 << 14);
break;
case 0x20:
reg = DEFAULT_PCI_ACCESS | (0x3 << 14);
break;
default:
reg = 0xfe584202;
break;
}
reg |= ((wc->txd->padding / sizeof(u32)) << 2) & 0x7c;
/* Reset the DTE... */
wctc4xxp_setctl(wc, 0x0000, reg | 1);
newjiffies = jiffies + HZ; /* One second timeout */
/* ...and wait for it to come out of reset. */
while (((wctc4xxp_getctl(wc, 0x0000)) & 0x00000001) &&
(newjiffies > jiffies))
msleep(1);
wctc4xxp_setctl(wc, 0x0000, reg | 0x60000);
/* Configure watchdogs, access, etc */
wctc4xxp_setctl(wc, 0x0030, 0x00280040);
wctc4xxp_setctl(wc, 0x0078, 0x00000013);
reg = wctc4xxp_getctl(wc, 0x00fc);
wctc4xxp_setctl(wc, 0x00fc, (reg & ~0x7) | 0x7);
reg = wctc4xxp_getctl(wc, 0x00fc);
return 0;
}
static void
wctc4xxp_start_dma(struct wcdte *wc)
{
int res;
int i;
u32 reg;
struct tcb *cmd;
for (i = 0; i < DRING_SIZE; ++i) {
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd) {
WARN_ALWAYS();
return;
}
WARN_ON(SFRAME_SIZE != cmd->data_len);
res = wctc4xxp_submit(wc->rxd, cmd);
if (res) {
/* When we're starting the DMA, we should always be
* able to fill the ring....so something is wrong
* here. */
WARN_ALWAYS();
free_cmd(cmd);
break;
}
}
wmb();
wctc4xxp_setctl(wc, 0x0020, wc->txd->desc_dma);
wctc4xxp_setctl(wc, 0x0018, wc->rxd->desc_dma);
/* Start receiver/transmitter */
reg = wctc4xxp_getctl(wc, 0x0030);
wctc4xxp_setctl(wc, 0x0030, reg | 0x00002002);
wctc4xxp_receive_demand_poll(wc);
reg = wctc4xxp_getctl(wc, 0x0028);
wctc4xxp_setctl(wc, 0x0028, reg);
}
static void
wctc4xxp_stop_dma(struct wcdte *wc)
{
/* Disable interrupts and reset */
unsigned int reg;
unsigned long newjiffies;
/* Disable interrupts */
wctc4xxp_setintmask(wc, 0x00000000);
wctc4xxp_setctl(wc, 0x0084, 0x00000000);
wctc4xxp_setctl(wc, 0x0048, 0x00000000);
/* Reset the part to be on the safe side */
reg = wctc4xxp_getctl(wc, 0x0000);
reg |= 0x00000001;
wctc4xxp_setctl(wc, 0x0000, reg);
newjiffies = jiffies + HZ; /* One second timeout */
/* We'll wait here for the part to come out of reset */
while (((wctc4xxp_getctl(wc, 0x0000)) & 0x00000001) &&
(newjiffies > jiffies))
msleep(1);
}
#define MDIO_SHIFT_CLK 0x10000
#define MDIO_DATA_WRITE1 0x20000
#define MDIO_ENB 0x00000
#define MDIO_ENB_IN 0x40000
#define MDIO_DATA_READ 0x80000
static int
wctc4xxp_read_phy(struct wcdte *wc, int location)
{
int i;
long mdio_addr = 0x0048;
int read_cmd = (0xf6 << 10) | (1 << 5) | location;
int retval = 0;
/* Establish sync by sending at least 32 logic ones. */
for (i = 32; i >= 0; --i) {
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | MDIO_DATA_WRITE1);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
/* Shift the read command bits out. */
for (i = 17; i >= 0; --i) {
int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB | dataval);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | dataval | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
/* Read the two transition, 16 data, and wire-idle bits. */
for (i = 19; i > 0; --i) {
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB_IN);
wctc4xxp_getctl(wc, mdio_addr);
retval = (retval << 1) |
((wctc4xxp_getctl(wc, mdio_addr) & MDIO_DATA_READ) ?
1 : 0);
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB_IN | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
retval = (retval>>1) & 0xffff;
return retval;
}
static void
wctc4xxp_write_phy(struct wcdte *wc, int location, int value)
{
int i;
int cmd = (0x5002 << 16) | (1 << 23) | (location<<18) | value;
long mdio_addr = 0x0048;
/* Establish sync by sending 32 logic ones. */
for (i = 32; i >= 0; --i) {
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB | MDIO_DATA_WRITE1);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
/* Shift the command bits out. */
for (i = 31; i >= 0; --i) {
int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB | dataval);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | dataval | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
/* Clear out extra bits. */
for (i = 2; i > 0; --i) {
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB_IN);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB_IN | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
return;
}
static int
wctc4xxp_wait_for_link(struct wcdte *wc)
{
int reg;
unsigned int delay_count = 0;
do {
reg = wctc4xxp_getctl(wc, 0x00fc);
msleep(2);
delay_count++;
if (delay_count >= 5000) {
DTE_PRINTK(ERR, "Failed to link to DTE processor!\n");
return -EIO;
}
} while ((reg & 0xE0000000) != 0xE0000000);
return 0;
}
static int
wctc4xxp_load_firmware(struct wcdte *wc, const struct firmware *firmware)
{
unsigned int byteloc;
unsigned int last_byteloc;
unsigned int length;
struct tcb *cmd;
byteloc = 17;
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd)
return -ENOMEM;
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_enable_polling(wc);
#endif
while (byteloc < (firmware->size-20)) {
last_byteloc = byteloc;
length = (firmware->data[byteloc] << 8) |
firmware->data[byteloc+1];
byteloc += 2;
cmd->data_len = length;
BUG_ON(length > cmd->data_len);
memcpy(cmd->data, &firmware->data[byteloc], length);
byteloc += length;
cmd->flags = WAIT_FOR_ACK;
wctc4xxp_transmit_cmd(wc, cmd);
wait_for_completion(&cmd->complete);
if (cmd->flags & DTE_CMD_TIMEOUT) {
free_cmd(cmd);
DTE_PRINTK(ERR, "Failed to load firmware.\n");
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_disable_polling(wc);
#endif
return -EIO;
}
}
free_cmd(cmd);
if (!wait_event_timeout(wc->waitq, wctc4xxp_is_ready(wc), 15*HZ)) {
DTE_PRINTK(ERR, "Failed to boot firmware.\n");
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_disable_polling(wc);
#endif
return -EIO;
}
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_disable_polling(wc);
#endif
return 0;
}
static int
wctc4xxp_turn_off_booted_led(struct wcdte *wc)
{
int ret = 0;
int reg;
/* Turn off auto negotiation */
wctc4xxp_write_phy(wc, 0, 0x2100);
DTE_DEBUG(DTE_DEBUG_GENERAL, "PHY register 0 = %X\n",
wctc4xxp_read_phy(wc, 0));
/* Set reset */
wctc4xxp_setctl(wc, 0x00A0, 0x04000000);
/* Wait 4 ms to ensure processor reset */
msleep(4);
/* Clear reset */
wctc4xxp_setctl(wc, 0x00A0, 0x04080000);
/* Wait for the ethernet link */
ret = wctc4xxp_wait_for_link(wc);
if (ret)
return ret;
/* Turn off booted LED */
wctc4xxp_setctl(wc, 0x00A0, 0x04084000);
reg = wctc4xxp_getctl(wc, 0x00fc);
DTE_DEBUG(DTE_DEBUG_GENERAL, "LINK STATUS: reg(0xfc) = %X\n", reg);
reg = wctc4xxp_getctl(wc, 0x00A0);
return ret;
}
static void
wctc4xxp_turn_on_booted_led(struct wcdte *wc)
{
wctc4xxp_setctl(wc, 0x00A0, 0x04080000);
}
static int
wctc4xxp_boot_processor(struct wcdte *wc, const struct firmware *firmware)
{
int ret;
wctc4xxp_turn_off_booted_led(wc);
ret = wctc4xxp_load_firmware(wc, firmware);
if (ret)
return ret;
wctc4xxp_turn_on_booted_led(wc);
DTE_DEBUG(DTE_DEBUG_GENERAL, "Successfully booted DTE processor.\n");
return 0;
}
static int
setup_half_channel(struct channel_pvt *pvt, struct tcb *cmd, u16 length)
{
if (send_set_ip_hdr_channel_cmd(pvt, cmd))
return -EIO;
if (send_voip_vceopt_cmd(pvt, cmd, length))
return -EIO;
if (send_voip_tonectl_cmd(pvt, cmd))
return -EIO;
if (send_voip_dtmfopt_cmd(pvt, cmd))
return -EIO;
if (send_voip_indctrl_cmd(pvt, cmd))
return -EIO;
return 0;
}
static int
wctc4xxp_create_channel_pair(struct wcdte *wc, struct channel_pvt *cpvt,
u8 simple, u8 complicated)
{
struct channel_pvt *encoder_pvt, *decoder_pvt;
u16 encoder_timeslot, decoder_timeslot;
u16 encoder_channel, decoder_channel;
u16 length;
struct tcb *cmd;
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd)
return -ENOMEM;
BUG_ON(!wc || !cpvt);
if (cpvt->encoder) {
encoder_timeslot = cpvt->timeslot_in_num;
decoder_timeslot = cpvt->timeslot_out_num;
} else {
u8 temp;
encoder_timeslot = cpvt->timeslot_out_num;
decoder_timeslot = cpvt->timeslot_in_num;
temp = simple;
simple = complicated;
complicated = temp;
}
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"DTE is using the following channels encoder_channel: " \
"%d decoder_channel: %d\n", encoder_channel, decoder_channel);
BUG_ON(encoder_timeslot/2 >= wc->numchannels);
BUG_ON(decoder_timeslot/2 >= wc->numchannels);
encoder_pvt = wc->uencode->channels[encoder_timeslot/2].pvt;
decoder_pvt = wc->udecode->channels[decoder_timeslot/2].pvt;
BUG_ON(!encoder_pvt);
BUG_ON(!decoder_pvt);
WARN_ON(encoder_timeslot == decoder_timeslot);
/* First, let's create two channels, one for the simple -> complex
* encoder and another for the complex->simple decoder. */
if (send_create_channel_cmd(wc, cmd, encoder_timeslot,
&encoder_channel))
goto error_exit;
if (send_create_channel_cmd(wc, cmd, decoder_timeslot,
&decoder_channel))
goto error_exit;
length = (DTE_FORMAT_G729A == complicated) ? G729_LENGTH :
(DTE_FORMAT_G723_1 == complicated) ? G723_LENGTH : 0;
WARN_ON(encoder_channel == decoder_channel);
/* Now set all the default parameters for the encoder. */
encoder_pvt->chan_in_num = encoder_channel;
encoder_pvt->chan_out_num = decoder_channel;
if (setup_half_channel(encoder_pvt, cmd, length))
goto error_exit;
/* And likewise for the decoder. */
decoder_pvt->chan_in_num = decoder_channel;
decoder_pvt->chan_out_num = encoder_channel;
if (setup_half_channel(decoder_pvt, cmd, length))
goto error_exit;
if (send_trans_connect_cmd(wc, cmd, encoder_channel,
decoder_channel, complicated, simple))
goto error_exit;
if (send_voip_vopena_cmd(encoder_pvt, cmd, complicated))
goto error_exit;
if (send_voip_vopena_cmd(decoder_pvt, cmd, simple))
goto error_exit;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"DTE has completed setup and connected the " \
"two channels together.\n");
free_cmd(cmd);
return 0;
error_exit:
free_cmd(cmd);
return -EIO;
}
static int
wctc4xxp_destroy_channel_pair(struct wcdte *wc, struct channel_pvt *cpvt)
{
struct dahdi_transcoder_channel *dtc1, *dtc2;
struct channel_pvt *encoder_pvt, *decoder_pvt;
int chan1, chan2, timeslot1, timeslot2;
struct tcb *cmd;
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd)
return -ENOMEM;
if (cpvt->encoder) {
chan1 = cpvt->chan_in_num;
timeslot1 = cpvt->timeslot_in_num;
chan2 = cpvt->chan_out_num;
timeslot2 = cpvt->timeslot_out_num;
} else {
chan1 = cpvt->chan_out_num;
timeslot1 = cpvt->timeslot_out_num;
chan2 = cpvt->chan_in_num;
timeslot2 = cpvt->timeslot_in_num;
}
if (timeslot1/2 >= wc->numchannels || timeslot2/2 >= wc->numchannels) {
DTE_PRINTK(WARNING,
"Invalid channel numbers in %s. chan1:%d chan2: %d\n",
__func__, timeslot1/2, timeslot2/2);
return 0;
}
dtc1 = &(wc->uencode->channels[timeslot1/2]);
dtc2 = &(wc->udecode->channels[timeslot2/2]);
encoder_pvt = dtc1->pvt;
decoder_pvt = dtc2->pvt;
if (send_voip_vopena_close_cmd(encoder_pvt, cmd))
goto error_exit;
if (send_voip_vopena_close_cmd(decoder_pvt, cmd))
goto error_exit;
if (send_trans_disconnect_cmd(wc, cmd, chan1, chan2, 0, 0))
goto error_exit;
if (send_destroy_channel_cmd(wc, cmd, chan1))
goto error_exit;
if (send_destroy_channel_cmd(wc, cmd, chan2))
goto error_exit;
free_cmd(cmd);
return 0;
error_exit:
free_cmd(cmd);
return -1;
}
static int
__wctc4xxp_setup_channels(struct wcdte *wc)
{
struct tcb *cmd;
int tdm_bus;
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd)
return -ENOMEM;
if (send_set_arm_clk_cmd(wc, cmd))
goto error_exit;
if (send_set_spu_clk_cmd(wc, cmd))
goto error_exit;
if (send_tdm_select_bus_mode_cmd(wc, cmd))
goto error_exit;
for (tdm_bus = 0; tdm_bus < 4; ++tdm_bus) {
if (send_supvsr_setup_tdm_parms(wc, cmd, tdm_bus))
goto error_exit;
}
if (send_set_eth_header_cmd(wc, cmd, src_mac, dst_mac))
goto error_exit;
if (send_ip_service_config_cmd(wc, cmd))
goto error_exit;
if (send_arp_service_config_cmd(wc, cmd))
goto error_exit;
if (send_icmp_service_config_cmd(wc, cmd))
goto error_exit;
if (send_device_set_country_code_cmd(wc, cmd))
goto error_exit;
if (send_spu_features_control_cmd(wc, cmd, 0x02))
goto error_exit;
if (send_ip_options_cmd(wc, cmd))
goto error_exit;
if (send_spu_features_control_cmd(wc, cmd, 0x04))
goto error_exit;
if (send_tdm_opt_cmd(wc, cmd))
goto error_exit;
free_cmd(cmd);
return 0;
error_exit:
free_cmd(cmd);
return -1;
}
static int
wctc4xxp_setup_channels(struct wcdte *wc)
{
int ret;
#ifndef DEBUG_WCTC4XXP
down(&wc->chansem);
#else
if (down_interruptible(&wc->chansem))
return -EINTR;
#endif
ret = __wctc4xxp_setup_channels(wc);
up(&wc->chansem);
return ret;
}
static void wctc4xxp_setup_file_operations(struct file_operations *fops)
{
fops->owner = THIS_MODULE;
fops->read = wctc4xxp_read;
fops->write = wctc4xxp_write;
}
static int
initialize_channel_pvt(struct wcdte *wc, int encoder,
struct channel_pvt **cpvt)
{
int chan;
*cpvt = kmalloc(sizeof(struct channel_pvt) * wc->numchannels,
GFP_KERNEL);
if (!(*cpvt))
return -ENOMEM;
for (chan = 0; chan < wc->numchannels; ++chan)
wctc4xxp_init_state((*cpvt) + chan, encoder, chan, wc);
return 0;
}
static int
initialize_transcoder(struct wcdte *wc, unsigned int srcfmts,
unsigned int dstfmts, struct channel_pvt *pvts,
struct dahdi_transcoder **zt)
{
int chan;
*zt = dahdi_transcoder_alloc(wc->numchannels);
if (!(*zt))
return -ENOMEM;
(*zt)->srcfmts = srcfmts;
(*zt)->dstfmts = dstfmts;
(*zt)->allocate = wctc4xxp_operation_allocate;
(*zt)->release = wctc4xxp_operation_release;
wctc4xxp_setup_file_operations(&((*zt)->fops));
for (chan = 0; chan < wc->numchannels; ++chan)
(*zt)->channels[chan].pvt = &pvts[chan];
return 0;
}
static int initialize_encoders(struct wcdte *wc, unsigned int complexfmts)
{
int res;
res = initialize_channel_pvt(wc, 1, &wc->encoders);
if (res)
return res;
res = initialize_transcoder(wc, DAHDI_FORMAT_ULAW | DAHDI_FORMAT_ALAW,
complexfmts, wc->encoders, &wc->uencode);
if (res)
return res;
sprintf(wc->uencode->name, "DTE Encoder");
return res;
}
static int
initialize_decoders(struct wcdte *wc, unsigned int complexfmts)
{
int res;
res = initialize_channel_pvt(wc, 0, &wc->decoders);
if (res)
return res;
res = initialize_transcoder(wc, complexfmts,
DAHDI_FORMAT_ULAW | DAHDI_FORMAT_ALAW,
wc->decoders, &wc->udecode);
if (res)
return res;
sprintf(wc->udecode->name, "DTE Decoder");
return res;
}
static void
wctc4xxp_send_commands(struct wcdte *wc, struct list_head *to_send)
{
struct tcb *cmd;
while (!list_empty(to_send)) {
cmd = container_of(to_send->next, struct tcb, node);
list_del_init(&cmd->node);
wctc4xxp_transmit_cmd(wc, cmd);
}
}
static void
wctc4xxp_watchdog(unsigned long data)
{
struct wcdte *wc = (struct wcdte *)data;
struct tcb *cmd, *temp;
LIST_HEAD(cmds_to_retry);
const int MAX_RETRIES = 5;
int reschedule_timer = 0;
service_tx_ring(wc);
spin_lock(&wc->cmd_list_lock);
/* Go through the list of messages that are waiting for responses from
* the DTE, and complete or retry any that have timed out. */
list_for_each_entry_safe(cmd, temp,
&wc->waiting_for_response_list, node) {
if (time_after(jiffies, cmd->timeout)) {
if (++cmd->retries > MAX_RETRIES) {
if (!(cmd->flags & TX_COMPLETE)) {
set_bit(DTE_SHUTDOWN, &wc->flags);
spin_unlock(&wc->cmd_list_lock);
wctc4xxp_stop_dma(wc);
DTE_PRINTK(ERR,
"Board malfunctioning. " \
"Halting operation.\n");
return;
}
/* ERROR: We've retried the command and
* haven't received the ACK or the response.
*/
cmd->flags |= DTE_CMD_TIMEOUT;
list_del_init(&cmd->node);
complete(&cmd->complete);
} else if (cmd->flags & TX_COMPLETE) {
/* Move this to the local list because we're
* going to resend it once we free the locks
*/
list_move_tail(&cmd->node, &cmds_to_retry);
cmd->flags &= ~(TX_COMPLETE);
} else {
/* The command is still sitting on the tx
* descriptor ring. We don't want to move it
* off any lists, lets just reset the timeout
* and tell the hardware to look for another
* command . */
DTE_PRINTK(WARNING,
"Retrying command that was " \
"still on descriptor list.\n");
cmd->timeout = jiffies + HZ/4;
wctc4xxp_transmit_demand_poll(wc);
reschedule_timer = 1;
}
}
}
spin_unlock(&wc->cmd_list_lock);
if (list_empty(&cmds_to_retry) && reschedule_timer)
mod_timer(&wc->watchdog, jiffies + HZ/2);
else if (!list_empty(&cmds_to_retry))
wctc4xxp_send_commands(wc, &cmds_to_retry);
}
/**
* Insert an struct wcdte on the global list in sorted order
*
*/
static int __devinit
wctc4xxp_add_to_device_list(struct wcdte *wc)
{
struct wcdte *cur;
int pos = 0;
INIT_LIST_HEAD(&wc->node);
spin_lock(&wctc4xxp_list_lock);
list_for_each_entry(cur, &wctc4xxp_list, node) {
if (cur->pos != pos) {
/* Add the new entry before the one here */
list_add_tail(&wc->node, &cur->node);
break;
} else {
++pos;
}
}
/* If we didn't already add the new entry to the list, add it now */
if (list_empty(&wc->node))
list_add_tail(&wc->node, &wctc4xxp_list);
spin_unlock(&wctc4xxp_list_lock);
return pos;
}
static void wctc4xxp_remove_from_device_list(struct wcdte *wc)
{
spin_lock(&wctc4xxp_list_lock);
list_del(&wc->node);
spin_unlock(&wctc4xxp_list_lock);
}
struct wctc4xxp_desc {
const char *short_name;
const char *long_name;
};
static struct wctc4xxp_desc wctc400p = {
.short_name = "tc400b",
.long_name = "Wildcard TC400P+TC400M",
};
static struct wctc4xxp_desc wctce400 = {
.short_name = "tce400",
.long_name = "Wildcard TCE400+TC400M",
};
static int __devinit
wctc4xxp_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int res, reg, position_on_list;
struct wcdte *wc = NULL;
struct wctc4xxp_desc *d = (struct wctc4xxp_desc *)ent->driver_data;
unsigned char g729_numchannels, g723_numchannels, min_numchannels;
unsigned char wctc4xxp_firmware_ver, wctc4xxp_firmware_ver_minor;
unsigned int complexfmts;
struct firmware embedded_firmware;
const struct firmware *firmware = &embedded_firmware;
#if !defined(HOTPLUG_FIRMWARE)
extern void _binary_dahdi_fw_tc400m_bin_size;
extern u8 _binary_dahdi_fw_tc400m_bin_start[];
#else
static const char tc400m_firmware[] = "dahdi-fw-tc400m.bin";
#endif
/* ------------------------------------------------------------------
* Setup the pure software constructs internal to this driver.
* --------------------------------------------------------------- */
wc = kzalloc(sizeof(*wc), GFP_KERNEL);
if (!wc)
return -ENOMEM;
position_on_list = wctc4xxp_add_to_device_list(wc);
snprintf(wc->board_name, sizeof(wc->board_name)-1, "%s%d",
d->short_name, position_on_list);
wc->iobase = pci_iomap(pdev, 1, 0);
wc->pdev = pdev;
wc->pos = position_on_list;
wc->variety = d->long_name;
wc->last_rx_seq_num = -1;
if (!request_mem_region(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1), wc->board_name)) {
dev_err(&pdev->dev, "IO Registers are in use by another "
"module.\n");
wctc4xxp_remove_from_device_list(wc);
kfree(wc);
return -EIO;
}
init_MUTEX(&wc->chansem);
spin_lock_init(&wc->reglock);
spin_lock_init(&wc->cmd_list_lock);
spin_lock_init(&wc->rx_list_lock);
spin_lock_init(&wc->rx_lock);
INIT_LIST_HEAD(&wc->cmd_list);
INIT_LIST_HEAD(&wc->waiting_for_response_list);
INIT_LIST_HEAD(&wc->rx_list);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&wc->deferred_work, deferred_work_func, wc);
#else
INIT_WORK(&wc->deferred_work, deferred_work_func);
#endif
DTE_PRINTK(INFO, "Attached to device at %s.\n", pci_name(wc->pdev));
init_waitqueue_head(&wc->waitq);
if (pci_set_dma_mask(wc->pdev, DMA_BIT_MASK(32))) {
release_mem_region(pci_resource_start(wc->pdev, 1),
pci_resource_len(wc->pdev, 1));
if (wc->iobase)
pci_iounmap(wc->pdev, wc->iobase);
DTE_PRINTK(WARNING, "No suitable DMA available.\n");
return -EIO;
}
wc->txd = kmalloc(sizeof(*wc->txd), GFP_KERNEL);
if (!wc->txd) {
res = -ENOMEM;
goto error_exit_swinit;
}
res = wctc4xxp_initialize_descriptor_ring(wc->pdev, wc->txd,
0xe0800000, DMA_TO_DEVICE);
if (res)
goto error_exit_swinit;
wc->rxd = kmalloc(sizeof(*wc->rxd), GFP_KERNEL);
if (!wc->rxd) {
res = -ENOMEM;
goto error_exit_swinit;
}
res = wctc4xxp_initialize_descriptor_ring(wc->pdev, wc->rxd, 0,
DMA_FROM_DEVICE);
if (res)
goto error_exit_swinit;
#if defined(HOTPLUG_FIRMWARE)
res = request_firmware(&firmware, tc400m_firmware, &wc->pdev->dev);
if (res || !firmware) {
DTE_PRINTK(ERR,
"Firmware %s not available from userspace. (%d)\n",
tc400m_firmware, res);
goto error_exit_swinit;
}
#else
embedded_firmware.data = _binary_dahdi_fw_tc400m_bin_start;
embedded_firmware.size = (size_t) &_binary_dahdi_fw_tc400m_bin_size;
#endif
wctc4xxp_firmware_ver = firmware->data[0];
wctc4xxp_firmware_ver_minor = firmware->data[16];
g729_numchannels = firmware->data[1];
g723_numchannels = firmware->data[2];
min_numchannels = min(g723_numchannels, g729_numchannels);
if (!mode || strlen(mode) < 4) {
sprintf(wc->complexname, "G.729a / G.723.1");
complexfmts = DAHDI_FORMAT_G729A | DAHDI_FORMAT_G723_1;
wc->numchannels = min_numchannels;
} else if (mode[3] == '9') { /* "G.729" */
sprintf(wc->complexname, "G.729a");
complexfmts = DAHDI_FORMAT_G729A;
wc->numchannels = g729_numchannels;
} else if (mode[3] == '3') { /* "G.723.1" */
sprintf(wc->complexname, "G.723.1");
complexfmts = DAHDI_FORMAT_G723_1;
wc->numchannels = g723_numchannels;
} else {
sprintf(wc->complexname, "G.729a / G.723.1");
complexfmts = DAHDI_FORMAT_G729A | DAHDI_FORMAT_G723_1;
wc->numchannels = min_numchannels;
}
res = initialize_encoders(wc, complexfmts);
if (res)
goto error_exit_swinit;
res = initialize_decoders(wc, complexfmts);
if (res)
goto error_exit_swinit;
if (DTE_DEBUG_NETWORK_IF & debug) {
res = wctc4xxp_net_register(wc);
if (res)
goto error_exit_swinit;
}
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18)
wc->watchdog.function = wctc4xxp_watchdog;
wc->watchdog.data = (unsigned long)wc;
init_timer(&wc->watchdog);
# else
setup_timer(&wc->watchdog, wctc4xxp_watchdog, (unsigned long)wc);
# endif
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18)
wc->polling.function = wctc4xxp_polling;
wc->polling.data = (unsigned long)wc;
init_timer(&wc->polling);
# else
setup_timer(&wc->polling, wctc4xxp_polling, (unsigned long)wc);
# endif
/* ------------------------------------------------------------------
* Load the firmware and start the DTE.
* --------------------------------------------------------------- */
res = pci_enable_device(pdev);
if (res) {
DTE_PRINTK(ERR, "Failed to enable device.\n");
goto error_exit_swinit;;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, wc);
res = request_irq(pdev->irq, wctc4xxp_interrupt,
DAHDI_IRQ_SHARED, wc->board_name, wc);
if (res) {
DTE_PRINTK(ERR, "Unable to request IRQ %d\n", pdev->irq);
if (firmware != &embedded_firmware)
release_firmware(firmware);
goto error_exit_hwinit;
}
res = wctc4xxp_hardware_init(wc);
if (res) {
if (firmware != &embedded_firmware)
release_firmware(firmware);
goto error_exit_hwinit;
}
wctc4xxp_enable_interrupts(wc);
wctc4xxp_start_dma(wc);
res = wctc4xxp_boot_processor(wc, firmware);
if (firmware != &embedded_firmware)
release_firmware(firmware);
if (res)
goto error_exit_hwinit;
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_enable_polling(wc);
#endif
res = wctc4xxp_setup_channels(wc);
if (res)
goto error_exit_hwinit;
/* \todo Read firmware version directly from tc400b.*/
DTE_PRINTK(INFO, "(%s) Transcoder support LOADED " \
"(firm ver = %d.%d)\n", wc->complexname, wctc4xxp_firmware_ver,
wctc4xxp_firmware_ver_minor);
reg = wctc4xxp_getctl(wc, 0x00fc);
DTE_DEBUG(DTE_DEBUG_GENERAL,
"debug: (post-boot) Reg fc is %08x\n", reg);
DTE_PRINTK(INFO, "Installed a Wildcard TC: %s \n", wc->variety);
DTE_DEBUG(DTE_DEBUG_GENERAL, "Operating in DEBUG mode.\n");
dahdi_transcoder_register(wc->uencode);
dahdi_transcoder_register(wc->udecode);
return 0;
error_exit_hwinit:
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_disable_polling(wc);
#endif
wctc4xxp_stop_dma(wc);
wctc4xxp_cleanup_command_list(wc);
free_irq(pdev->irq, wc);
pci_set_drvdata(pdev, NULL);
error_exit_swinit:
wctc4xxp_net_unregister(wc);
kfree(wc->encoders);
kfree(wc->decoders);
dahdi_transcoder_free(wc->uencode);
dahdi_transcoder_free(wc->udecode);
wctc4xxp_cleanup_descriptor_ring(wc->txd);
kfree(wc->txd);
wctc4xxp_cleanup_descriptor_ring(wc->rxd);
kfree(wc->rxd);
release_mem_region(pci_resource_start(wc->pdev, 1),
pci_resource_len(wc->pdev, 1));
if (wc->iobase)
pci_iounmap(wc->pdev, wc->iobase);
wctc4xxp_remove_from_device_list(wc);
kfree(wc);
return res;
}
static void wctc4xxp_cleanup_channels(struct wcdte *wc)
{
int i;
struct dahdi_transcoder_channel *dtc_en, *dtc_de;
for (i = 0; i < wc->numchannels; ++i) {
dtc_en = &(wc->uencode->channels[i]);
wctc4xxp_cleanup_channel_private(wc, dtc_en);
dtc_de = &(wc->udecode->channels[i]);
wctc4xxp_cleanup_channel_private(wc, dtc_de);
}
}
static void __devexit wctc4xxp_remove_one(struct pci_dev *pdev)
{
struct wcdte *wc = pci_get_drvdata(pdev);
if (!wc)
return;
wctc4xxp_remove_from_device_list(wc);
set_bit(DTE_SHUTDOWN, &wc->flags);
if (del_timer_sync(&wc->watchdog))
del_timer_sync(&wc->watchdog);
/* This should already be stopped, but it doesn't hurt to make sure. */
clear_bit(DTE_POLLING, &wc->flags);
if (del_timer_sync(&wc->polling))
del_timer_sync(&wc->polling);
wctc4xxp_net_unregister(wc);
/* Stop any DMA */
wctc4xxp_stop_dma(wc);
/* In case hardware is still there */
wctc4xxp_disable_interrupts(wc);
free_irq(pdev->irq, wc);
/* There isn't anything that would run in the workqueue that will wait
* on an interrupt. */
dahdi_transcoder_unregister(wc->udecode);
dahdi_transcoder_unregister(wc->uencode);
/* Free Resources */
release_mem_region(pci_resource_start(wc->pdev, 1),
pci_resource_len(wc->pdev, 1));
if (wc->iobase)
pci_iounmap(wc->pdev, wc->iobase);
wctc4xxp_cleanup_descriptor_ring(wc->txd);
kfree(wc->txd);
wctc4xxp_cleanup_descriptor_ring(wc->rxd);
kfree(wc->rxd);
wctc4xxp_cleanup_command_list(wc);
wctc4xxp_cleanup_channels(wc);
pci_set_drvdata(pdev, NULL);
dahdi_transcoder_free(wc->uencode);
dahdi_transcoder_free(wc->udecode);
kfree(wc->encoders);
kfree(wc->decoders);
kfree(wc);
}
static struct pci_device_id wctc4xxp_pci_tbl[] = {
{ 0xd161, 0x3400, PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) &wctc400p }, /* Digium board */
{ 0xd161, 0x8004, PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) &wctce400 }, /* Digium board */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, wctc4xxp_pci_tbl);
static struct pci_driver wctc4xxp_driver = {
.name = "wctc4xxp",
.probe = wctc4xxp_init_one,
.remove = __devexit_p(wctc4xxp_remove_one),
.id_table = wctc4xxp_pci_tbl,
};
static int __init wctc4xxp_init(void)
{
int res;
unsigned long cache_flags;
#if defined(CONFIG_SLUB) && (LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 22))
cache_flags = SLAB_HWCACHE_ALIGN | SLAB_STORE_USER | SLAB_DEBUG_FREE;
#else
cache_flags = SLAB_HWCACHE_ALIGN;
#endif
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 23)
cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct tcb),
0, cache_flags, NULL, NULL);
# else
cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct tcb),
0, cache_flags, NULL);
# endif
if (!cmd_cache)
return -ENOMEM;
spin_lock_init(&wctc4xxp_list_lock);
INIT_LIST_HEAD(&wctc4xxp_list);
res = dahdi_pci_module(&wctc4xxp_driver);
if (res) {
kmem_cache_destroy(cmd_cache);
return -ENODEV;
}
return 0;
}
static void __exit wctc4xxp_cleanup(void)
{
pci_unregister_driver(&wctc4xxp_driver);
kmem_cache_destroy(cmd_cache);
}
module_param(debug, int, S_IRUGO | S_IWUSR);
module_param(mode, charp, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(mode, "'g729', 'g723.1', or 'any'. Default 'any'.");
MODULE_DESCRIPTION("Wildcard TC400P+TC400M Driver");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_LICENSE("GPL");
module_init(wctc4xxp_init);
module_exit(wctc4xxp_cleanup);