dahdi-linux/drivers/dahdi/wctdm24xxp/base.c
Shaun Ruffell 3933ffd350 wctdm24xxp: Reset module specific type information on probe.
This fixes an issue that affects TDM410 modules when there is not a module
installed in the first port, but there is an FXO module installed in the third
port.

When scaning for QRV modules in the first port, the 3rd port will have the
'hook' struct.qrv set to 0xff. When a QRV module is  not detected, that value
will be left, which then maps to an invalid state for both fxo.ring_state and
fxo.battery_state.

The result would be that FXO ports would fail to run the ring detector state
machine since it did not know what the current state was.

Now we'll just reset all the values in struct fxo or struct fxs to the expected
init state.

Internal-Issue-ID: DAHLIN-332
Signed-off-by: Shaun Ruffell <sruffell@digium.com>
2013-12-20 14:15:26 -06:00

6231 lines
166 KiB
C

/*
* Wildcard TDM2400P TDM FXS/FXO Interface Driver for DAHDI Telephony interface
*
* Written by Mark Spencer <markster@digium.com>
* Support for TDM800P and VPM150M by Matthew Fredrickson <creslin@digium.com>
*
* Support for Hx8 by Andrew Kohlsmith <akohlsmith@mixdown.ca> and Matthew
* Fredrickson <creslin@digium.com>
*
* Copyright (C) 2005 - 2012 Digium, Inc.
* All rights reserved.
*
* Sections for QRV cards written by Jim Dixon <jim@lambdatel.com>
* Copyright (C) 2006, Jim Dixon and QRV Communications
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
/* For QRV DRI cards, gain is signed short, expressed in hundredths of
db (in reference to 1v Peak @ 1000Hz) , as follows:
Rx Gain: -11.99 to 15.52 db
Tx Gain - No Pre-Emphasis: -35.99 to 12.00 db
Tx Gain - W/Pre-Emphasis: -23.99 to 0.00 db
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
#include <linux/semaphore.h>
#else
#include <asm/semaphore.h>
#endif
#include <linux/crc32.h>
#include <stdbool.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30)
/* Define this if you would like to load the modules in parallel. While this
* can speed up loads when multiple cards handled by this driver are installed,
* it also makes it impossible to abort module loads with ctrl-c */
#undef USE_ASYNC_INIT
#include <linux/async.h>
#else
#undef USE_ASYNC_INIT
#endif
#include <dahdi/kernel.h>
#include <dahdi/wctdm_user.h>
#include "proslic.h"
#include "wctdm24xxp.h"
#include "xhfc.h"
#include "adt_lec.h"
#include "voicebus/GpakCust.h"
#include "voicebus/GpakApi.h"
#if VOICEBUS_SFRAME_SIZE != SFRAME_SIZE
#error SFRAME_SIZE must match the VOICEBUS_SFRAME_SIZE
#endif
/*
Experimental max loop current limit for the proslic
Loop current limit is from 20 mA to 41 mA in steps of 3
(according to datasheet)
So set the value below to:
0x00 : 20mA (default)
0x01 : 23mA
0x02 : 26mA
0x03 : 29mA
0x04 : 32mA
0x05 : 35mA
0x06 : 37mA
0x07 : 41mA
*/
static int loopcurrent = 20;
/* Following define is a logical exclusive OR to determine if the polarity of an fxs line is to be reversed.
* The items taken into account are:
* overall polarity reversal for the module,
* polarity reversal for the port,
* and the state of the line reversal MWI indicator
*/
#define POLARITY_XOR(fxs) \
((reversepolarity != 0) ^ ((fxs)->reversepolarity != 0) ^ \
((fxs)->vmwi_linereverse != 0))
static int reversepolarity = 0;
static alpha indirect_regs[] =
{
{0,255,"DTMF_ROW_0_PEAK",0x55C2},
{1,255,"DTMF_ROW_1_PEAK",0x51E6},
{2,255,"DTMF_ROW2_PEAK",0x4B85},
{3,255,"DTMF_ROW3_PEAK",0x4937},
{4,255,"DTMF_COL1_PEAK",0x3333},
{5,255,"DTMF_FWD_TWIST",0x0202},
{6,255,"DTMF_RVS_TWIST",0x0202},
{7,255,"DTMF_ROW_RATIO_TRES",0x0198},
{8,255,"DTMF_COL_RATIO_TRES",0x0198},
{9,255,"DTMF_ROW_2ND_ARM",0x0611},
{10,255,"DTMF_COL_2ND_ARM",0x0202},
{11,255,"DTMF_PWR_MIN_TRES",0x00E5},
{12,255,"DTMF_OT_LIM_TRES",0x0A1C},
{13,0,"OSC1_COEF",0x7B30},
{14,1,"OSC1X",0x0063},
{15,2,"OSC1Y",0x0000},
{16,3,"OSC2_COEF",0x7870},
{17,4,"OSC2X",0x007D},
{18,5,"OSC2Y",0x0000},
{19,6,"RING_V_OFF",0x0000},
{20,7,"RING_OSC",0x7EF0},
{21,8,"RING_X",0x0160},
{22,9,"RING_Y",0x0000},
{23,255,"PULSE_ENVEL",0x2000},
{24,255,"PULSE_X",0x2000},
{25,255,"PULSE_Y",0x0000},
//{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower
{26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower
{27,14,"XMIT_DIGITAL_GAIN",0x4000},
//{27,14,"XMIT_DIGITAL_GAIN",0x2000},
{28,15,"LOOP_CLOSE_TRES",0x1000},
{29,16,"RING_TRIP_TRES",0x3600},
{30,17,"COMMON_MIN_TRES",0x1000},
{31,18,"COMMON_MAX_TRES",0x0200},
{32,19,"PWR_ALARM_Q1Q2",0x07C0},
{33,20,"PWR_ALARM_Q3Q4", 0x4C00 /* 0x2600 */},
{34,21,"PWR_ALARM_Q5Q6",0x1B80},
{35,22,"LOOP_CLOSURE_FILTER",0x8000},
{36,23,"RING_TRIP_FILTER",0x0320},
{37,24,"TERM_LP_POLE_Q1Q2",0x008C},
{38,25,"TERM_LP_POLE_Q3Q4",0x0100},
{39,26,"TERM_LP_POLE_Q5Q6",0x0010},
{40,27,"CM_BIAS_RINGING",0x0C00},
{41,64,"DCDC_MIN_V",0x0C00},
{42,255,"DCDC_XTRA",0x1000},
{43,66,"LOOP_CLOSE_TRES_LOW",0x1000},
};
/* names of HWEC modules */
static const char *vpmadt032_name = "VPMADT032";
static const char *vpmoct_name = "VPMOCT032";
/* Undefine to enable Power alarm / Transistor debug -- note: do not
enable for normal operation! */
/* #define PAQ_DEBUG */
#define DEBUG_CARD (1 << 0)
#define DEBUG_ECHOCAN (1 << 1)
#include "fxo_modes.h"
struct wctdm_desc {
const char *name;
const int flags;
const int ports;
};
static const struct wctdm_desc wctdm2400 = { "Wildcard TDM2400P", 0, 24 };
static const struct wctdm_desc wctdm800 = { "Wildcard TDM800P", 0, 8 };
static const struct wctdm_desc wctdm410 = { "Wildcard TDM410P", 0, 4 };
static const struct wctdm_desc wcaex2400 = { "Wildcard AEX2400", FLAG_EXPRESS, 24 };
static const struct wctdm_desc wcaex800 = { "Wildcard AEX800", FLAG_EXPRESS, 8 };
static const struct wctdm_desc wcaex410 = { "Wildcard AEX410", FLAG_EXPRESS, 4 };
static const struct wctdm_desc wcha80000 = { "HA8-0000", 0, 8 };
static const struct wctdm_desc wchb80000 = { "HB8-0000", FLAG_EXPRESS, 8 };
static inline bool is_pcie(const struct wctdm *wc)
{
return (wc->desc->flags & FLAG_EXPRESS) > 0;
}
/**
* Returns true if the card is one of the Hybrid Digital Analog Cards.
*/
static inline bool is_hx8(const struct wctdm *wc)
{
return (&wcha80000 == wc->desc) || (&wchb80000 == wc->desc);
}
static inline struct dahdi_chan *
get_dahdi_chan(const struct wctdm *wc, struct wctdm_module *const mod)
{
return wc->aspan->span.chans[mod->card];
}
static inline void
mod_hooksig(struct wctdm *wc, struct wctdm_module *mod, enum dahdi_rxsig rxsig)
{
dahdi_hooksig(get_dahdi_chan(wc, mod), rxsig);
}
struct wctdm *ifaces[WC_MAX_IFACES];
DEFINE_SEMAPHORE(ifacelock);
static void wctdm_release(struct wctdm *wc);
static int fxovoltage = 0;
static unsigned int battdebounce;
static unsigned int battalarm;
static unsigned int battthresh;
static int debug = 0;
#ifdef DEBUG
static int robust = 0;
static int digitalloopback;
#endif
static int lowpower = 0;
static int boostringer = 0;
static int fastringer = 0;
static int _opermode = 0;
static char *opermode = "FCC";
static int fxshonormode = 0;
static int alawoverride = 0;
static char *companding = "auto";
static int fastpickup = -1; /* -1 auto, 0 no, 1 yes */
static int fxotxgain = 0;
static int fxorxgain = 0;
static int fxstxgain = 0;
static int fxsrxgain = 0;
static int nativebridge = 0;
static int ringdebounce = DEFAULT_RING_DEBOUNCE;
static int latency = VOICEBUS_DEFAULT_LATENCY;
static unsigned int max_latency = VOICEBUS_DEFAULT_MAXLATENCY;
static int forceload;
#define MS_PER_HOOKCHECK (1)
#define NEONMWI_ON_DEBOUNCE (100/MS_PER_HOOKCHECK)
static int neonmwi_monitor = 0; /* Note: this causes use of full wave ring detect */
static int neonmwi_level = 75; /* neon mwi trip voltage */
static int neonmwi_envelope = 10;
static int neonmwi_offlimit = 16000; /* Time in milliseconds the monitor is checked before saying no message is waiting */
static int neonmwi_offlimit_cycles; /* Time in milliseconds the monitor is checked before saying no message is waiting */
static int vpmsupport = 1;
static int vpmnlptype = DEFAULT_NLPTYPE;
static int vpmnlpthresh = DEFAULT_NLPTHRESH;
static int vpmnlpmaxsupp = DEFAULT_NLPMAXSUPP;
static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec);
static const struct dahdi_echocan_features vpm_ec_features = {
.NLP_automatic = 1,
.CED_tx_detect = 1,
.CED_rx_detect = 1,
};
static const struct dahdi_echocan_ops vpm_ec_ops = {
.echocan_free = echocan_free,
};
static int
wctdm_init_proslic(struct wctdm *wc, struct wctdm_module *const mod, int fast,
int manual, int sane);
static void set_offsets(struct wctdm_module *const mod, int altcs)
{
int card = mod->card;
int bit;
mod->subaddr = (altcs) ? 0 : (mod->card & 0x3);
for (bit = 0; bit < ARRAY_SIZE(mod->offsets); ++bit) {
/* Let's add some trickery to make the TDM410 work */
if (altcs == 3) {
if (card == 2) {
card = 4;
altcs = 0;
} else if (card == 3) {
card = 5;
altcs = 2;
}
}
mod->offsets[bit] = ((((card & 0x3) * 3 + bit) * 7) +
(card >> 2) + altcs +
((altcs) ? -21 : 0));
}
}
static inline __attribute_const__ int
CMD_BYTE(const struct wctdm_module *const mod, const int bit)
{
return mod->offsets[bit];
}
static inline __attribute_const__ int VPM_CMD_BYTE(int timeslot, int bit)
{
return ((((timeslot) & 0x3) * 3 + (bit)) * 7) + ((timeslot) >> 2);
}
typedef int (*bg_work_func_t)(struct wctdm *wc, unsigned long data);
struct bg {
struct workqueue_struct *wq;
struct work_struct work;
struct completion complete;
struct wctdm *wc;
bg_work_func_t fn;
unsigned long param;
int ret;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void bg_work_func(void *data)
{
struct bg *bg = data;
#else
static void bg_work_func(struct work_struct *work)
{
struct bg *bg = container_of(work, struct bg, work);
#endif
bg->ret = bg->fn(bg->wc, bg->param);
complete(&bg->complete);
}
/**
* bg_create - Call a function running in a background thread.
* @wc: The board structure passed to fn
* @fn: The function to run in it's own thread.
* @parma: An extra parameter to pass to the fn.
*
* Returns NULL if the thread could not be created, otherwise a pointer to be
* passed to bg_join in order to get the return value.
*
* The function 'fn' will be run in a new thread. The return value is the
* return from the bg_join function.
*
* This would probably be best served by concurrency managed workqueues before
* merging, but this will at least work on the older kernels tht DAHDI
* supports.
*/
static struct bg *
bg_create(struct wctdm *wc, bg_work_func_t fn, unsigned long param)
{
struct bg *bg;
bg = kzalloc(sizeof(*bg), GFP_KERNEL);
if (!bg)
return NULL;
bg->wq = create_singlethread_workqueue("wctdm_bg");
if (!bg->wq) {
kfree(bg);
return NULL;
}
init_completion(&bg->complete);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&bg->work, bg_work_func, bg);
#else
INIT_WORK(&bg->work, bg_work_func);
#endif
bg->wc = wc;
bg->fn = fn;
bg->param = param;
queue_work(bg->wq, &bg->work);
return bg;
}
/**
* bg_join - Wait for a background function to complete and get the result.
* @bg: Pointer returned from the bg_create call.
*
* Returns the result of the function passed to bg_create.
*/
static int bg_join(struct bg *bg)
{
int ret = -ERESTARTSYS;
if (unlikely(!bg))
return -EINVAL;
while (ret)
ret = wait_for_completion_interruptible(&bg->complete);
ret = bg->ret;
destroy_workqueue(bg->wq);
kfree(bg);
return ret;
}
static void
setchanconfig_from_state(struct vpmadt032 *vpm, int channel,
GpakChannelConfig_t *chanconfig)
{
GpakEcanParms_t *p;
BUG_ON(!vpm);
chanconfig->PcmInPortA = 3;
chanconfig->PcmInSlotA = channel;
chanconfig->PcmOutPortA = SerialPortNull;
chanconfig->PcmOutSlotA = channel;
chanconfig->PcmInPortB = 2;
chanconfig->PcmInSlotB = channel;
chanconfig->PcmOutPortB = 3;
chanconfig->PcmOutSlotB = channel;
chanconfig->ToneTypesA = Null_tone;
chanconfig->MuteToneA = Disabled;
chanconfig->FaxCngDetA = Disabled;
chanconfig->ToneTypesB = Null_tone;
chanconfig->EcanEnableA = Enabled;
chanconfig->EcanEnableB = Disabled;
chanconfig->MuteToneB = Disabled;
chanconfig->FaxCngDetB = Disabled;
/* The software companding will be overridden on a channel by channel
* basis when the channel is enabled. */
chanconfig->SoftwareCompand = cmpPCMU;
chanconfig->FrameRate = rate2ms;
p = &chanconfig->EcanParametersA;
vpmadt032_get_default_parameters(p);
p->EcanNlpType = vpm->curecstate[channel].nlp_type;
p->EcanNlpThreshold = vpm->curecstate[channel].nlp_threshold;
p->EcanNlpMaxSuppress = vpm->curecstate[channel].nlp_max_suppress;
memcpy(&chanconfig->EcanParametersB,
&chanconfig->EcanParametersA,
sizeof(chanconfig->EcanParametersB));
}
struct vpmadt032_channel_setup {
struct work_struct work;
struct wctdm *wc;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpm_setup_work_func(void *data)
{
struct vpmadt032_channel_setup *setup = data;
#else
static void vpm_setup_work_func(struct work_struct *work)
{
struct vpmadt032_channel_setup *setup =
container_of(work, struct vpmadt032_channel_setup, work);
#endif
int i;
int res;
GpakChannelConfig_t chanconfig;
GPAK_ChannelConfigStat_t cstatus;
GPAK_AlgControlStat_t algstatus;
GpakPortConfig_t portconfig = {0};
gpakConfigPortStatus_t configportstatus;
GPAK_PortConfigStat_t pstatus;
struct vpmadt032 *vpm;
struct wctdm *const wc = setup->wc;
WARN_ON(!wc);
WARN_ON(!wc->vpmadt032);
if (unlikely(!wc || !wc->vpmadt032))
return;
vpm = wc->vpmadt032;
/* First Serial Port config */
portconfig.SlotsSelect1 = SlotCfgNone;
portconfig.FirstBlockNum1 = 0;
portconfig.FirstSlotMask1 = 0x0000;
portconfig.SecBlockNum1 = 1;
portconfig.SecSlotMask1 = 0x0000;
portconfig.SerialWordSize1 = SerWordSize8;
portconfig.CompandingMode1 = cmpNone;
portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh;
portconfig.TxClockPolarity1 = SerClockActHigh;
portconfig.RxClockPolarity1 = SerClockActHigh;
portconfig.TxDataDelay1 = DataDelay0;
portconfig.RxDataDelay1 = DataDelay0;
portconfig.DxDelay1 = Disabled;
portconfig.ThirdSlotMask1 = 0x0000;
portconfig.FouthSlotMask1 = 0x0000;
portconfig.FifthSlotMask1 = 0x0000;
portconfig.SixthSlotMask1 = 0x0000;
portconfig.SevenSlotMask1 = 0x0000;
portconfig.EightSlotMask1 = 0x0000;
/* Second Serial Port config */
portconfig.SlotsSelect2 = SlotCfg2Groups;
portconfig.FirstBlockNum2 = 0;
portconfig.FirstSlotMask2 = 0xffff;
portconfig.SecBlockNum2 = 1;
portconfig.SecSlotMask2 = 0xffff;
portconfig.SerialWordSize2 = SerWordSize8;
portconfig.CompandingMode2 = cmpNone;
portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh;
portconfig.TxClockPolarity2 = SerClockActHigh;
portconfig.RxClockPolarity2 = SerClockActLow;
portconfig.TxDataDelay2 = DataDelay0;
portconfig.RxDataDelay2 = DataDelay0;
portconfig.DxDelay2 = Disabled;
portconfig.ThirdSlotMask2 = 0x0000;
portconfig.FouthSlotMask2 = 0x0000;
portconfig.FifthSlotMask2 = 0x0000;
portconfig.SixthSlotMask2 = 0x0000;
portconfig.SevenSlotMask2 = 0x0000;
portconfig.EightSlotMask2 = 0x0000;
/* Third Serial Port Config */
portconfig.SlotsSelect3 = SlotCfg2Groups;
portconfig.FirstBlockNum3 = 0;
portconfig.FirstSlotMask3 = 0xffff;
portconfig.SecBlockNum3 = 1;
portconfig.SecSlotMask3 = 0xffff;
portconfig.SerialWordSize3 = SerWordSize8;
portconfig.CompandingMode3 = cmpNone;
portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh;
portconfig.TxClockPolarity3 = SerClockActHigh;
portconfig.RxClockPolarity3 = SerClockActLow;
portconfig.TxDataDelay3 = DataDelay0;
portconfig.RxDataDelay3 = DataDelay0;
portconfig.DxDelay3 = Disabled;
portconfig.ThirdSlotMask3 = 0x0000;
portconfig.FouthSlotMask3 = 0x0000;
portconfig.FifthSlotMask3 = 0x0000;
portconfig.SixthSlotMask3 = 0x0000;
portconfig.SevenSlotMask3 = 0x0000;
portconfig.EightSlotMask3 = 0x0000;
if ((configportstatus = gpakConfigurePorts(vpm->dspid, &portconfig, &pstatus))) {
dev_notice(&wc->vb.pdev->dev, "Configuration of ports failed (%d)!\n", configportstatus);
return;
} else {
if (vpm->options.debug & DEBUG_ECHOCAN)
dev_info(&wc->vb.pdev->dev, "Configured McBSP ports successfully\n");
}
res = gpakPingDsp(vpm->dspid, &vpm->version);
if (res) {
dev_notice(&wc->vb.pdev->dev, "Error pinging DSP (%d)\n", res);
return;
}
for (i = 0; i < vpm->options.channels; ++i) {
vpm->curecstate[i].tap_length = 0;
vpm->curecstate[i].nlp_type = vpm->options.vpmnlptype;
vpm->curecstate[i].nlp_threshold = vpm->options.vpmnlpthresh;
vpm->curecstate[i].nlp_max_suppress =
vpm->options.vpmnlpmaxsupp;
vpm->curecstate[i].companding = ADT_COMP_ULAW;
vpm->setchanconfig_from_state(vpm, i, &chanconfig);
res = gpakConfigureChannel(vpm->dspid, i, tdmToTdm,
&chanconfig, &cstatus);
if (res) {
dev_notice(&wc->vb.pdev->dev,
"Unable to configure channel #%d (%d)",
i, res);
if (res == 1)
printk(KERN_CONT ", reason %d", cstatus);
printk(KERN_CONT "\n");
goto exit;
}
res = gpakAlgControl(vpm->dspid, i, BypassEcanA, &algstatus);
if (res) {
dev_notice(&wc->vb.pdev->dev,
"Unable to disable echo can on channel %d "
"(reason %d:%d)\n", i + 1, res, algstatus);
goto exit;
}
res = gpakAlgControl(vpm->dspid, i,
BypassSwCompanding, &algstatus);
if (res) {
dev_notice(&wc->vb.pdev->dev,
"Unable to disable echo can on channel %d "
"(reason %d:%d)\n", i + 1, res, algstatus);
goto exit;
}
}
res = gpakPingDsp(vpm->dspid, &vpm->version);
if (res) {
dev_notice(&wc->vb.pdev->dev, "Error pinging DSP (%d)\n", res);
goto exit;
}
set_bit(VPM150M_ACTIVE, &vpm->control);
exit:
kfree(setup);
}
static int config_vpmadt032(struct vpmadt032 *vpm, struct wctdm *wc)
{
struct vpmadt032_channel_setup *setup;
/* Because the channel configuration can take such a long time, let's
* move this out onto the VPM workqueue so the system can proceeded
* with startup. */
setup = kzalloc(sizeof(*setup), GFP_KERNEL);
if (!setup)
return -ENOMEM;
setup->wc = wc;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&setup->work, vpm_setup_work_func, setup);
#else
INIT_WORK(&setup->work, vpm_setup_work_func);
#endif
queue_work(vpm->wq, &setup->work);
return 0;
}
/**
* is_good_frame() - Whether the SFRAME received was one sent.
*
*/
static inline bool is_good_frame(const u8 *sframe)
{
const u8 a = sframe[0*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
const u8 b = sframe[1*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
return a != b;
}
static inline void cmd_dequeue_vpmoct(struct wctdm *wc, u8 *eframe)
{
struct vpmoct *vpm = wc->vpmoct;
struct vpmoct_cmd *cmd;
u8 i;
/* Pop a command off pending list */
spin_lock(&vpm->list_lock);
if (list_empty(&vpm->pending_list)) {
spin_unlock(&vpm->list_lock);
return;
}
cmd = list_entry(vpm->pending_list.next, struct vpmoct_cmd, node);
if (is_vpmoct_cmd_read(cmd))
list_move_tail(&cmd->node, &vpm->active_list);
else
list_del_init(&cmd->node);
/* Skip audio (24 bytes) and ignore first 6 timeslots */
eframe += 30;
/* Save ident so we can match the return eframe */
cmd->txident = wc->txident;
/* We have four timeslots to work with for a regular spi packet */
/* TODO: Create debug flag for this in dev */
/* The vpmoct requires a "sync" spi command as the first three bytes
* of an eframe */
eframe[7*0] = 0x12;
eframe[7*1] = 0x34;
eframe[7*2] = 0x56;
eframe[7*3] = cmd->command;
eframe[7*4] = cmd->address;
eframe[7*5] = cmd->data[0];
for (i = 1; i < cmd->chunksize; i++)
eframe[(7*5)+7*i] = cmd->data[i];
/* Clean up fire-and-forget messages from memory */
if (list_empty(&cmd->node))
kfree(cmd);
spin_unlock(&vpm->list_lock);
}
static inline void cmd_dequeue_vpmadt032(struct wctdm *wc, u8 *eframe)
{
struct vpmadt032_cmd *curcmd = NULL;
struct vpmadt032 *vpmadt032 = wc->vpmadt032;
int x;
unsigned char leds = ~((wc->framecount / 1000) % 8) & 0x7;
/* Skip audio */
eframe += 24;
if (test_bit(VPM150M_HPIRESET, &vpmadt032->control)) {
if (debug & DEBUG_ECHOCAN)
dev_info(&wc->vb.pdev->dev, "HW Resetting VPMADT032...\n");
for (x = 24; x < 28; x++) {
if (x == 24) {
if (test_and_clear_bit(VPM150M_HPIRESET,
&vpmadt032->control)) {
eframe[VPM_CMD_BYTE(x, 0)] = 0x0b;
} else {
eframe[VPM_CMD_BYTE(x, 0)] = leds;
}
} else {
eframe[VPM_CMD_BYTE(x, 0)] = leds;
}
eframe[VPM_CMD_BYTE(x, 1)] = 0;
eframe[VPM_CMD_BYTE(x, 2)] = 0x00;
}
return;
}
if ((curcmd = vpmadt032_get_ready_cmd(vpmadt032))) {
curcmd->txident = wc->txident;
#if 0
// if (printk_ratelimit())
dev_info(&wc->vb.pdev->dev, "Transmitting txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", curcmd->txident, curcmd->desc, curcmd->address, curcmd->data);
#endif
if (curcmd->desc & __VPM150M_RWPAGE) {
/* Set CTRL access to page*/
eframe[VPM_CMD_BYTE(24, 0)] = (0x8 << 4);
eframe[VPM_CMD_BYTE(24, 1)] = 0;
eframe[VPM_CMD_BYTE(24, 2)] = 0x20;
/* Do a page write */
if (curcmd->desc & __VPM150M_WR)
eframe[VPM_CMD_BYTE(25, 0)] = ((0x8 | 0x4) << 4);
else
eframe[VPM_CMD_BYTE(25, 0)] = ((0x8 | 0x4 | 0x1) << 4);
eframe[VPM_CMD_BYTE(25, 1)] = 0;
if (curcmd->desc & __VPM150M_WR)
eframe[VPM_CMD_BYTE(25, 2)] = curcmd->data & 0xf;
else
eframe[VPM_CMD_BYTE(25, 2)] = 0;
/* Clear XADD */
eframe[VPM_CMD_BYTE(26, 0)] = (0x8 << 4);
eframe[VPM_CMD_BYTE(26, 1)] = 0;
eframe[VPM_CMD_BYTE(26, 2)] = 0;
/* Fill in to buffer to size */
eframe[VPM_CMD_BYTE(27, 0)] = 0;
eframe[VPM_CMD_BYTE(27, 1)] = 0;
eframe[VPM_CMD_BYTE(27, 2)] = 0;
} else {
/* Set address */
eframe[VPM_CMD_BYTE(24, 0)] = ((0x8 | 0x4) << 4);
eframe[VPM_CMD_BYTE(24, 1)] = (curcmd->address >> 8) & 0xff;
eframe[VPM_CMD_BYTE(24, 2)] = curcmd->address & 0xff;
/* Send/Get our data */
eframe[VPM_CMD_BYTE(25, 0)] = (curcmd->desc & __VPM150M_WR) ?
((0x8 | (0x3 << 1)) << 4) : ((0x8 | (0x3 << 1) | 0x1) << 4);
eframe[VPM_CMD_BYTE(25, 1)] = (curcmd->data >> 8) & 0xff;
eframe[VPM_CMD_BYTE(25, 2)] = curcmd->data & 0xff;
eframe[VPM_CMD_BYTE(26, 0)] = 0;
eframe[VPM_CMD_BYTE(26, 1)] = 0;
eframe[VPM_CMD_BYTE(26, 2)] = 0;
/* Fill in the rest */
eframe[VPM_CMD_BYTE(27, 0)] = 0;
eframe[VPM_CMD_BYTE(27, 1)] = 0;
eframe[VPM_CMD_BYTE(27, 2)] = 0;
}
} else if (test_and_clear_bit(VPM150M_SWRESET, &vpmadt032->control)) {
for (x = 24; x < 28; x++) {
if (x == 24)
eframe[VPM_CMD_BYTE(x, 0)] = (0x8 << 4);
else
eframe[VPM_CMD_BYTE(x, 0)] = 0x00;
eframe[VPM_CMD_BYTE(x, 1)] = 0;
if (x == 24)
eframe[VPM_CMD_BYTE(x, 2)] = 0x01;
else
eframe[VPM_CMD_BYTE(x, 2)] = 0x00;
}
} else {
for (x = 24; x < 28; x++) {
eframe[VPM_CMD_BYTE(x, 0)] = 0x00;
eframe[VPM_CMD_BYTE(x, 1)] = 0x00;
eframe[VPM_CMD_BYTE(x, 2)] = 0x00;
}
}
/* Add our leds in */
for (x = 24; x < 28; x++) {
eframe[VPM_CMD_BYTE(x, 0)] |= leds;
}
}
/* Call with wc->reglock held and local interrupts disabled */
static void _cmd_dequeue(struct wctdm *wc, u8 *eframe, int card, int pos)
{
struct wctdm_module *const mod = &wc->mods[card];
unsigned int curcmd=0;
/* QRV only use commands relating to the first channel */
if ((card & 0x03) && (mod->type == QRV))
return;
/* Skip audio */
eframe += 24;
/* Search for something waiting to transmit */
if (pos) {
if (!list_empty(&mod->pending_cmds)) {
struct wctdm_cmd *const cmd =
list_entry(mod->pending_cmds.next,
struct wctdm_cmd, node);
curcmd = cmd->cmd;
cmd->ident = wc->txident;
list_move_tail(&cmd->node, &mod->active_cmds);
}
}
if (!curcmd) {
/* If nothing else, use filler */
switch (mod->type) {
case FXS:
curcmd = CMD_RD(LINE_STATE);
break;
case FXO:
curcmd = CMD_RD(12);
break;
case BRI:
curcmd = 0x101010;
break;
case QRV:
curcmd = CMD_RD(3);
break;
default:
break;
}
}
switch (mod->type) {
case FXS:
eframe[CMD_BYTE(mod, 0)] = (1 << (mod->subaddr));
if (curcmd & __CMD_WR)
eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0x7f;
else
eframe[CMD_BYTE(mod, 1)] = 0x80 | ((curcmd >> 8) & 0x7f);
eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff;
break;
case FXO:
{
static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c};
if (curcmd & __CMD_WR)
eframe[CMD_BYTE(mod, 0)] = 0x20 | ADDRS[mod->subaddr];
else
eframe[CMD_BYTE(mod, 0)] = 0x60 | ADDRS[mod->subaddr];
eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0xff;
eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff;
break;
}
case FXSINIT:
/* Special case, we initialize the FXS's into the three-byte command mode then
switch to the regular mode. To send it into thee byte mode, treat the path as
6 two-byte commands and in the last one we initialize register 0 to 0x80. All modules
read this as the command to switch to daisy chain mode and we're done. */
eframe[CMD_BYTE(mod, 0)] = 0x00;
eframe[CMD_BYTE(mod, 1)] = 0x00;
if ((card & 0x1) == 0x1)
eframe[CMD_BYTE(mod, 2)] = 0x80;
else
eframe[CMD_BYTE(mod, 2)] = 0x00;
break;
case BRI:
if (unlikely((curcmd != 0x101010) && (curcmd & 0x1010) == 0x1010)) /* b400m CPLD */
eframe[CMD_BYTE(mod, 0)] = 0x55;
else /* xhfc */
eframe[CMD_BYTE(mod, 0)] = 0x10;
eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0xff;
eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff;
break;
case QRV:
eframe[CMD_BYTE(mod, 0)] = 0x00;
if (!curcmd) {
eframe[CMD_BYTE(mod, 1)] = 0x00;
eframe[CMD_BYTE(mod, 2)] = 0x00;
} else {
if (curcmd & __CMD_WR)
eframe[CMD_BYTE(mod, 1)] = 0x40 | ((curcmd >> 8) & 0x3f);
else
eframe[CMD_BYTE(mod, 1)] = 0xc0 | ((curcmd >> 8) & 0x3f);
eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff;
}
break;
case NONE:
eframe[CMD_BYTE(mod, 0)] = 0x10;
eframe[CMD_BYTE(mod, 1)] = 0x10;
eframe[CMD_BYTE(mod, 2)] = 0x10;
break;
}
}
static inline void cmd_decipher_vpmoct(struct wctdm *wc, const u8 *eframe)
{
struct vpmoct *vpm = wc->vpmoct;
struct vpmoct_cmd *cmd;
int i;
/* Skip audio and first 6 timeslots */
eframe += 30;
spin_lock(&vpm->list_lock);
/* No command to handle, just exit */
if (list_empty(&vpm->active_list)) {
spin_unlock(&vpm->list_lock);
return;
}
cmd = list_entry(vpm->active_list.next, struct vpmoct_cmd, node);
if (wc->rxident == cmd->txident)
list_del_init(&cmd->node);
else
cmd = NULL;
spin_unlock(&vpm->list_lock);
if (!cmd)
return;
/* Store result, Ignoring the first "sync spi command" bytes */
cmd->command = eframe[7*3];
cmd->address = eframe[7*4];
for (i = 0; i < cmd->chunksize; ++i)
cmd->data[i] = eframe[7*(5+i)];
complete(&cmd->complete);
}
static inline void cmd_decipher_vpmadt032(struct wctdm *wc, const u8 *eframe)
{
struct vpmadt032 *const vpm = wc->vpmadt032;
struct vpmadt032_cmd *cmd;
BUG_ON(!vpm);
/* If the hardware is not processing any commands currently, then
* there is nothing for us to do here. */
if (list_empty(&vpm->active_cmds)) {
return;
}
spin_lock(&vpm->list_lock);
cmd = list_entry(vpm->active_cmds.next, struct vpmadt032_cmd, node);
if (wc->rxident == cmd->txident) {
list_del_init(&cmd->node);
} else {
cmd = NULL;
}
spin_unlock(&vpm->list_lock);
if (!cmd)
return;
/* Skip audio */
eframe += 24;
/* Store result */
cmd->data = (0xff & eframe[VPM_CMD_BYTE(25, 1)]) << 8;
cmd->data |= eframe[VPM_CMD_BYTE(25, 2)];
if (cmd->desc & __VPM150M_WR) {
kfree(cmd);
} else {
cmd->desc |= __VPM150M_FIN;
complete(&cmd->complete);
}
}
/**
* Call with the reglock held and local interrupts disabled
*/
static void _cmd_decipher(struct wctdm *wc, const u8 *eframe, int card)
{
enum { TDM_BYTES = 24, };
struct wctdm_module *const mod = &wc->mods[card];
struct wctdm_cmd *cmd;
u8 address;
u8 value;
if (list_empty(&mod->active_cmds))
return;
cmd = list_entry(mod->active_cmds.next, struct wctdm_cmd, node);
if (cmd->ident != wc->rxident)
return;
list_del(&cmd->node);
if (cmd->cmd & __CMD_WR) {
kfree(cmd);
return;
}
address = (cmd->cmd >> 8) & 0xff;
cmd->cmd = eframe[TDM_BYTES + CMD_BYTE(mod, 2)];
value = (cmd->cmd & 0xff);
if (cmd->complete) {
complete(cmd->complete);
return;
}
list_add(&cmd->node, &wc->free_isr_commands);
switch (mod->type) {
case FXS:
if (68 == address)
mod->mod.fxs.hook_state_shadow = value;
else
mod->mod.fxs.linefeed_control_shadow = value;
break;
case FXO:
if (5 == address)
mod->mod.fxo.hook_ring_shadow = value;
else
mod->mod.fxo.line_voltage_status = value;
break;
case QRV:
/* wctdm_isr_getreg(wc, mod, 3); */ /* COR/CTCSS state */
/* TODO: This looks broken to me, but I have no way to
* resolved it. */
/* wc->mods[card & 0xfc].cmds[USER_COMMANDS + 1] = CMD_RD(3); */
break;
default:
break;
}
}
/* Call with wc.reglock held and local interrupts disabled. */
static void
wctdm_isr_getreg(struct wctdm *wc, struct wctdm_module *const mod, u8 address)
{
struct wctdm_cmd *cmd;
if (!list_empty(&wc->free_isr_commands)) {
cmd = list_entry(wc->free_isr_commands.next,
struct wctdm_cmd, node);
list_del(&cmd->node);
} else {
cmd = kmalloc(sizeof(*cmd), GFP_ATOMIC);
if (unlikely(!cmd))
return;
}
cmd->cmd = CMD_RD(address);
cmd->complete = NULL;
list_add(&cmd->node, &mod->pending_cmds);
}
/* Must be called with wc.reglock held and local interrupts disabled */
static inline void
wctdm_setreg_intr(struct wctdm *wc, struct wctdm_module *mod, int addr, int val)
{
struct wctdm_cmd *cmd;
cmd = kmalloc(sizeof(*cmd), GFP_ATOMIC);
if (unlikely(!cmd))
return;
cmd->complete = NULL;
cmd->cmd = CMD_WR(addr, val);
list_add_tail(&cmd->node, &mod->pending_cmds);
}
static void cmd_checkisr(struct wctdm *wc, struct wctdm_module *const mod)
{
if (mod->sethook) {
wctdm_setreg_intr(wc, mod, ((mod->sethook >> 8) & 0xff),
mod->sethook & 0xff);
mod->sethook = 0;
return;
}
switch (mod->type) {
case FXS:
wctdm_isr_getreg(wc, mod, 68); /* Hook state */
#ifdef PAQ_DEBUG
wctdm_isr_getreg(wc, mod, 19); /* Transistor interrupts */
#else
wctdm_isr_getreg(wc, mod, LINE_STATE);
#endif
break;
case FXO:
wctdm_isr_getreg(wc, mod, 5); /* Hook/Ring state */
wctdm_isr_getreg(wc, mod, 29); /* Battery */
break;
case QRV:
wctdm_isr_getreg(wc, mod, 3); /* COR/CTCSS state */
/* TODO: This looks broken to me, but I have no way to
* resolved it. */
/* wc->mods[card & 0xfc].cmds[USER_COMMANDS + 1] = CMD_RD(3); */
break;
case BRI:
/* TODO: Two calls needed here? */
wctdm_bri_checkisr(wc, mod, 0);
wctdm_bri_checkisr(wc, mod, 1);
break;
default:
break;
}
}
/**
* insert_tdm_data() - Move TDM data from channels to sframe.
*
*/
static void insert_tdm_data(const struct wctdm *wc, u8 *sframe)
{
int i;
register u8 *chanchunk;
for (i = 0; i < wc->avchannels; i += 4) {
chanchunk = &wc->chans[0 + i]->chan.writechunk[0];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
chanchunk = &wc->chans[1 + i]->chan.writechunk[0];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
chanchunk = &wc->chans[2 + i]->chan.writechunk[0];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
chanchunk = &wc->chans[3 + i]->chan.writechunk[0];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
}
}
static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char *sframe)
{
int x, y;
struct dahdi_span *s;
unsigned char *eframe = sframe;
/* Calculate Transmission */
if (likely(is_initialized(wc))) {
for (x = 0; x < MAX_SPANS; x++) {
if (wc->spans[x]) {
s = &wc->spans[x]->span;
_dahdi_transmit(s);
}
}
insert_tdm_data(wc, sframe);
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (x = 0; x < wc->avchannels; ++x) {
__dahdi_fifo_put(wc->ec_reference[x],
wc->chans[x]->chan.writechunk,
DAHDI_CHUNKSIZE);
}
#endif
}
spin_lock(&wc->reglock);
for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
/* Send a sample, as a 32-bit word */
/* TODO: ABK: hmm, this was originally mods_per_board, but we
* need to worry about all the active "voice" timeslots, since
* BRI modules have a different number of TDM channels than
* installed modules. */
for (y = 0; y < wc->avchannels; y++) {
if (y < wc->mods_per_board)
_cmd_dequeue(wc, eframe, y, x);
}
if (wc->vpmadt032)
cmd_dequeue_vpmadt032(wc, eframe);
else if (wc->vpmoct)
cmd_dequeue_vpmoct(wc, eframe);
if (x < DAHDI_CHUNKSIZE - 1) {
eframe[EFRAME_SIZE] = wc->ctlreg;
eframe[EFRAME_SIZE + 1] = wc->txident++;
if (4 == wc->desc->ports)
eframe[EFRAME_SIZE + 2] = wc->tdm410leds;
}
eframe += (EFRAME_SIZE + EFRAME_GAP);
}
spin_unlock(&wc->reglock);
}
int wctdm_setreg(struct wctdm *wc, struct wctdm_module *mod, int addr, int val)
{
struct wctdm_cmd *cmd;
unsigned long flags;
#if 0 /* TODO */
/* QRV and BRI cards are only addressed at their first "port" */
if ((card & 0x03) && ((wc->mods[card].type == QRV) ||
(wc->mods[card].type == BRI)))
return 0;
#endif
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (unlikely(!cmd))
return -ENOMEM;
cmd->complete = NULL;
cmd->cmd = CMD_WR(addr, val);
spin_lock_irqsave(&wc->reglock, flags);
list_add_tail(&cmd->node, &mod->pending_cmds);
spin_unlock_irqrestore(&wc->reglock, flags);
return 0;
}
int wctdm_getreg(struct wctdm *wc, struct wctdm_module *const mod, int addr)
{
unsigned long flags;
struct wctdm_cmd *cmd;
int val;
#if 0 /* TODO */
/* if a QRV card, use only its first channel */
if (wc->mods[card].type == QRV) {
if (card & 3)
return 0;
}
#endif
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->complete = kmalloc(sizeof(*cmd->complete), GFP_KERNEL);
if (!cmd->complete) {
kfree(cmd);
return -ENOMEM;
}
init_completion(cmd->complete);
cmd->cmd = CMD_RD(addr);
spin_lock_irqsave(&wc->reglock, flags);
list_add_tail(&cmd->node, &mod->pending_cmds);
spin_unlock_irqrestore(&wc->reglock, flags);
wait_for_completion(cmd->complete);
val = cmd->cmd & 0xff;
kfree(cmd->complete);
kfree(cmd);
return val;
}
static int wctdm_getregs(struct wctdm *wc, struct wctdm_module *const mod,
int *const addresses, const size_t count)
{
int x;
unsigned long flags;
struct wctdm_cmd *cmd;
struct wctdm_cmd **cmds = kmalloc(sizeof(cmd) * count, GFP_KERNEL);
if (!cmds)
return -ENOMEM;
for (x = 0; x < count; ++x) {
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
kfree(cmds);
return -ENOMEM;
}
cmd->complete = kmalloc(sizeof(*cmd->complete), GFP_KERNEL);
if (!cmd->complete) {
kfree(cmd);
kfree(cmds);
return -ENOMEM;
}
init_completion(cmd->complete);
cmd->cmd = CMD_RD(addresses[x]);
spin_lock_irqsave(&wc->reglock, flags);
list_add_tail(&cmd->node, &mod->pending_cmds);
spin_unlock_irqrestore(&wc->reglock, flags);
cmds[x] = cmd;
}
for (x = count - 1; x >= 0; --x) {
cmd = cmds[x];
wait_for_completion(cmd->complete);
addresses[x] = cmd->cmd & 0xff;
kfree(cmd->complete);
kfree(cmd);
}
kfree(cmds);
return 0;
}
/**
* call with wc->reglock held and interrupts disabled.
*/
static void cmd_retransmit(struct wctdm *wc)
{
int x;
for (x = 0; x < wc->mods_per_board; x++) {
struct wctdm_module *const mod = &wc->mods[x];
if (mod->type == BRI)
continue;
list_splice_init(&mod->active_cmds, &mod->pending_cmds);
}
#ifdef VPM_SUPPORT
if (wc->vpmadt032)
vpmadt032_resend(wc->vpmadt032);
#endif
}
/**
* extract_tdm_data() - Move TDM data from sframe to channels.
*
*/
static void extract_tdm_data(struct wctdm *wc, const u8 *sframe)
{
int i;
register u8 *chanchunk;
for (i = 0; i < wc->avchannels; i += 4) {
chanchunk = &wc->chans[0 + i]->chan.readchunk[0];
chanchunk[0] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*7];
chanchunk = &wc->chans[1 + i]->chan.readchunk[0];
chanchunk[0] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*7];
chanchunk = &wc->chans[2 + i]->chan.readchunk[0];
chanchunk[0] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*7];
chanchunk = &wc->chans[3 + i]->chan.readchunk[0];
chanchunk[0] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*7];
}
/* Pre-echo with the vpmoct overwrites the 24th timeslot with the
* specified channel's pre-echo audio stream. This data is ignored
* on all but the 24xx card, so we store it in a temporary buffer.
*/
if (wc->vpmoct && wc->vpmoct->preecho_enabled) {
chanchunk = &wc->vpmoct->preecho_buf[0];
chanchunk[0] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*7];
}
}
static inline void wctdm_receiveprep(struct wctdm *wc, const u8 *sframe)
{
int x, y;
bool irqmiss = false;
unsigned char expected;
const u8 *eframe = sframe;
if (unlikely(!is_good_frame(sframe)))
return;
spin_lock(&wc->reglock);
if (likely(is_initialized(wc)))
extract_tdm_data(wc, sframe);
for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
if (x < DAHDI_CHUNKSIZE - 1) {
expected = wc->rxident + 1;
wc->rxident = eframe[EFRAME_SIZE + 1];
if (wc->rxident != expected) {
irqmiss = true;
cmd_retransmit(wc);
}
}
for (y = 0; y < wc->avchannels; y++)
_cmd_decipher(wc, eframe, y);
if (wc->vpmadt032)
cmd_decipher_vpmadt032(wc, eframe);
else if (wc->vpmoct)
cmd_decipher_vpmoct(wc, eframe);
eframe += (EFRAME_SIZE + EFRAME_GAP);
}
spin_unlock(&wc->reglock);
/* XXX We're wasting 8 taps. We should get closer :( */
if (likely(is_initialized(wc))) {
for (x = 0; x < wc->avchannels; x++) {
struct wctdm_chan *const wchan = wc->chans[x];
struct dahdi_chan *const c = &wchan->chan;
#ifdef CONFIG_VOICEBUS_ECREFERENCE
unsigned char buffer[DAHDI_CHUNKSIZE];
__dahdi_fifo_get(wc->ec_reference[x], buffer,
ARRAY_SIZE(buffer));
_dahdi_ec_chunk(c, c->readchunk, buffer);
#else
if ((wc->vpmoct) &&
(wchan->timeslot == wc->vpmoct->preecho_timeslot) &&
(wc->vpmoct->preecho_enabled)) {
__dahdi_ec_chunk(c, c->readchunk,
wc->vpmoct->preecho_buf,
c->writechunk);
} else {
__dahdi_ec_chunk(c, c->readchunk, c->readchunk,
c->writechunk);
}
#endif
}
for (x = 0; x < MAX_SPANS; x++) {
if (wc->spans[x]) {
struct dahdi_span *s = &wc->spans[x]->span;
#if 1
/* Check for digital spans */
if (s->ops->chanconfig == b400m_chanconfig) {
BUG_ON(!is_hx8(wc));
if (s->flags & DAHDI_FLAG_RUNNING)
b400m_dchan(s);
}
#endif
_dahdi_receive(s);
if (unlikely(irqmiss))
wc->ddev->irqmisses++;
}
}
}
}
static int wait_access(struct wctdm *wc, struct wctdm_module *const mod)
{
unsigned char data = 0;
int count = 0;
#define MAX 10 /* attempts */
/* Wait for indirect access */
while (count++ < MAX) {
data = wctdm_getreg(wc, mod, I_STATUS);
if (!data)
return 0;
}
if (count > (MAX-1)) {
dev_notice(&wc->vb.pdev->dev,
" ##### Loop error (%02x) #####\n", data);
}
return 0;
}
static unsigned char translate_3215(unsigned char address)
{
int x;
for (x = 0; x < ARRAY_SIZE(indirect_regs); x++) {
if (indirect_regs[x].address == address) {
address = indirect_regs[x].altaddr;
break;
}
}
return address;
}
static int
wctdm_proslic_setreg_indirect(struct wctdm *wc, struct wctdm_module *const mod,
unsigned char address, unsigned short data)
{
int res = -1;
address = translate_3215(address);
if (address == 255)
return 0;
if (!wait_access(wc, mod)) {
wctdm_setreg(wc, mod, IDA_LO, (u8)(data & 0xFF));
wctdm_setreg(wc, mod, IDA_HI, (u8)((data & 0xFF00)>>8));
wctdm_setreg(wc, mod, IAA, address);
res = 0;
};
return res;
}
static int
wctdm_proslic_getreg_indirect(struct wctdm *wc, struct wctdm_module *const mod,
unsigned char address)
{
int res = -1;
char *p=NULL;
address = translate_3215(address);
if (address == 255)
return 0;
if (!wait_access(wc, mod)) {
wctdm_setreg(wc, mod, IAA, address);
if (!wait_access(wc, mod)) {
int addresses[2] = {IDA_LO, IDA_HI};
wctdm_getregs(wc, mod, addresses,
ARRAY_SIZE(addresses));
res = addresses[0] | (addresses[1] << 8);
} else
p = "Failed to wait inside\n";
} else
p = "failed to wait\n";
if (p)
dev_notice(&wc->vb.pdev->dev, "%s", p);
return res;
}
static int
wctdm_proslic_init_indirect_regs(struct wctdm *wc, struct wctdm_module *mod)
{
unsigned char i;
for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) {
if (wctdm_proslic_setreg_indirect(wc, mod,
indirect_regs[i].address,
indirect_regs[i].initial))
return -1;
}
return 0;
}
static int
wctdm_proslic_verify_indirect_regs(struct wctdm *wc, struct wctdm_module *mod)
{
int passed = 1;
unsigned short i, initial;
int j;
for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) {
j = wctdm_proslic_getreg_indirect(wc, mod,
(u8)indirect_regs[i].address);
if (j < 0) {
dev_notice(&wc->vb.pdev->dev, "Failed to read indirect register %d\n", i);
return -1;
}
initial = indirect_regs[i].initial;
if ((j != initial) && (indirect_regs[i].altaddr != 255)) {
dev_notice(&wc->vb.pdev->dev,
"!!!!!!! %s iREG %X = %X should be %X\n",
indirect_regs[i].name,
indirect_regs[i].address, j, initial);
passed = 0;
}
}
if (passed) {
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Init Indirect Registers completed successfully.\n");
}
} else {
dev_notice(&wc->vb.pdev->dev,
" !!!!! Init Indirect Registers UNSUCCESSFULLY.\n");
return -1;
}
return 0;
}
/**
* wctdm_proslic_check_oppending -
*
* Ensures that a write to the line feed register on the SLIC has been
* processed. If it hasn't after the timeout value, then it will resend the
* command and wait for another timeout period.
*
*/
static void
wctdm_proslic_check_oppending(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
if (!(fxs->lasttxhook & SLIC_LF_OPPENDING))
return;
/* Monitor the Pending LF state change, for the next 100ms */
spin_lock(&wc->reglock);
if (!(fxs->lasttxhook & SLIC_LF_OPPENDING)) {
spin_unlock(&wc->reglock);
return;
}
if ((fxs->linefeed_control_shadow & SLIC_LF_SETMASK) ==
(fxs->lasttxhook & SLIC_LF_SETMASK)) {
fxs->lasttxhook &= SLIC_LF_SETMASK;
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"SLIC_LF OK: card=%d shadow=%02x "
"lasttxhook=%02x framecount=%ld\n", mod->card,
fxs->linefeed_control_shadow,
fxs->lasttxhook, wc->framecount);
}
} else if (time_after(wc->framecount, fxs->oppending_timeout)) {
/* Check again in 100 ms */
fxs->oppending_timeout = wc->framecount + 100;
wctdm_setreg_intr(wc, mod, LINE_STATE, fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"SLIC_LF RETRY: card=%d shadow=%02x "
"lasttxhook=%02x framecount=%ld\n", mod->card,
fxs->linefeed_control_shadow,
fxs->lasttxhook, wc->framecount);
}
}
spin_unlock(&wc->reglock);
}
/* 256ms interrupt */
static void
wctdm_proslic_recheck_sanity(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
int res;
#ifdef PAQ_DEBUG
res = mod->isrshadow[1];
res &= ~0x3;
if (res) {
mod->isrshadow[1] = 0;
fxs->palarms++;
if (fxs->palarms < MAX_ALARMS) {
dev_notice(&wc->vb.pdev->dev, "Power alarm (%02x) on module %d, resetting!\n", res, card + 1);
mod->sethook = CMD_WR(19, res);
/* Update shadow register to avoid extra power alarms until next read */
mod->isrshadow[1] = 0;
} else {
if (fxs->palarms == MAX_ALARMS)
dev_notice(&wc->vb.pdev->dev, "Too many power alarms on card %d, NOT resetting!\n", card + 1);
}
}
#else
spin_lock(&wc->reglock);
/* reg 64 has to be zero at last isr read */
res = !fxs->linefeed_control_shadow &&
!(fxs->lasttxhook & SLIC_LF_OPPENDING) && /* not a transition */
fxs->lasttxhook; /* not an intended zero */
if (res) {
fxs->palarms++;
if (fxs->palarms < MAX_ALARMS) {
dev_notice(&wc->vb.pdev->dev,
"Power alarm on module %d, resetting!\n",
mod->card + 1);
if (fxs->lasttxhook == SLIC_LF_RINGING) {
fxs->lasttxhook = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;;
}
fxs->lasttxhook |= SLIC_LF_OPPENDING;
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
fxs->oppending_timeout = wc->framecount + 100;
/* Update shadow register to avoid extra power alarms
* until next read */
fxs->linefeed_control_shadow = fxs->lasttxhook;
} else {
if (fxs->palarms == MAX_ALARMS) {
dev_notice(&wc->vb.pdev->dev,
"Too many power alarms on card %d, "
"NOT resetting!\n", mod->card + 1);
}
}
}
spin_unlock(&wc->reglock);
#endif
}
static void wctdm_qrvdri_check_hook(struct wctdm *wc, int card)
{
signed char b,b1;
int qrvcard = card & 0xfc;
if (wc->mods[card].mod.qrv.debtime >= 2)
wc->mods[card].mod.qrv.debtime--;
b = wc->mods[qrvcard].mod.qrv.isrshadow[0]; /* Hook/Ring state */
b &= 0xcc; /* use bits 3-4 and 6-7 only */
if (wc->mods[qrvcard].mod.qrv.radmode & RADMODE_IGNORECOR)
b &= ~4;
else if (!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_INVERTCOR))
b ^= 4;
if (wc->mods[qrvcard + 1].mod.qrv.radmode | RADMODE_IGNORECOR)
b &= ~0x40;
else if (!(wc->mods[qrvcard + 1].mod.qrv.radmode | RADMODE_INVERTCOR))
b ^= 0x40;
if ((wc->mods[qrvcard].mod.qrv.radmode & RADMODE_IGNORECT) ||
(!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_EXTTONE)))
b &= ~8;
else if (!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_EXTINVERT))
b ^= 8;
if ((wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_IGNORECT) ||
(!(wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_EXTTONE)))
b &= ~0x80;
else if (!(wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_EXTINVERT))
b ^= 0x80;
/* now b & MASK should be zero, if its active */
/* check for change in chan 0 */
if ((!(b & 0xc)) != wc->mods[qrvcard + 2].mod.qrv.hook)
{
wc->mods[qrvcard].mod.qrv.debtime = wc->mods[qrvcard].mod.qrv.debouncetime;
wc->mods[qrvcard + 2].mod.qrv.hook = !(b & 0xc);
}
/* if timed-out and ready */
if (wc->mods[qrvcard].mod.qrv.debtime == 1) {
b1 = wc->mods[qrvcard + 2].mod.qrv.hook;
if (debug) {
dev_info(&wc->vb.pdev->dev,
"QRV channel %d rx state changed to %d\n",
qrvcard, wc->mods[qrvcard + 2].mod.qrv.hook);
}
dahdi_hooksig(wc->aspan->span.chans[qrvcard],
(b1) ? DAHDI_RXSIG_OFFHOOK : DAHDI_RXSIG_ONHOOK);
wc->mods[card].mod.qrv.debtime = 0;
}
/* check for change in chan 1 */
if ((!(b & 0xc0)) != wc->mods[qrvcard + 3].mod.qrv.hook)
{
wc->mods[qrvcard + 1].mod.qrv.debtime = QRV_DEBOUNCETIME;
wc->mods[qrvcard + 3].mod.qrv.hook = !(b & 0xc0);
}
if (wc->mods[qrvcard + 1].mod.qrv.debtime == 1) {
b1 = wc->mods[qrvcard + 3].mod.qrv.hook;
if (debug) {
dev_info(&wc->vb.pdev->dev,
"QRV channel %d rx state changed to %d\n",
qrvcard + 1, wc->mods[qrvcard + 3].mod.qrv.hook);
}
dahdi_hooksig(wc->aspan->span.chans[qrvcard + 1],
(b1) ? DAHDI_RXSIG_OFFHOOK : DAHDI_RXSIG_ONHOOK);
wc->mods[card].mod.qrv.debtime = 0;
}
return;
}
static inline bool is_fxo_ringing(const struct fxo *const fxo)
{
return ((fxo->hook_ring_shadow & 0x60) &&
((fxo->battery_state == BATTERY_PRESENT) ||
(fxo->battery_state == BATTERY_DEBOUNCING_LOST)));
}
static inline bool is_fxo_ringing_positive(const struct fxo *const fxo)
{
return (((fxo->hook_ring_shadow & 0x60) == 0x20) &&
((fxo->battery_state == BATTERY_PRESENT) ||
(fxo->battery_state == BATTERY_DEBOUNCING_LOST)));
}
static inline bool is_fxo_ringing_negative(const struct fxo *const fxo)
{
return (((fxo->hook_ring_shadow & 0x60) == 0x40) &&
((fxo->battery_state == BATTERY_PRESENT) ||
(fxo->battery_state == BATTERY_DEBOUNCING_LOST)));
}
static inline void set_ring(struct fxo *fxo, enum ring_detector_state new)
{
fxo->ring_state = new;
}
static void wctdm_fxo_ring_detect(struct wctdm *wc, struct wctdm_module *mod)
{
struct fxo *const fxo = &mod->mod.fxo;
static const unsigned int POLARITY_CHANGES_NEEDED = 2;
/* Look for ring status bits (Ring Detect Signal Negative and Ring
* Detect Signal Positive) to transition back and forth
* POLARITY_CHANGES_NEEDED times to indicate that a ring is occurring.
* Provide some number of samples to allow for the transitions to occur
* before giving up. NOTE: neon mwi voltages will trigger one of these
* bits to go active but not to have transitions between the two bits
* (i.e. no negative to positive or positive to negative traversals) */
switch (fxo->ring_state) {
case DEBOUNCING_RINGING_POSITIVE:
if (is_fxo_ringing_negative(fxo)) {
if (++fxo->ring_polarity_change_count >
POLARITY_CHANGES_NEEDED) {
mod_hooksig(wc, mod, DAHDI_RXSIG_RING);
set_ring(fxo, RINGING);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
} else {
set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE);
}
} else if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
set_ring(fxo, RINGOFF);
}
break;
case DEBOUNCING_RINGING_NEGATIVE:
if (is_fxo_ringing_positive(fxo)) {
if (++fxo->ring_polarity_change_count >
POLARITY_CHANGES_NEEDED) {
mod_hooksig(wc, mod, DAHDI_RXSIG_RING);
set_ring(fxo, RINGING);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
} else {
set_ring(fxo, DEBOUNCING_RINGING_POSITIVE);
}
} else if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
set_ring(fxo, RINGOFF);
}
break;
case RINGING:
if (!is_fxo_ringing(fxo)) {
set_ring(fxo, DEBOUNCING_RINGOFF);
fxo->ringdebounce_timer =
wc->framecount + ringdebounce / 8;
}
break;
case DEBOUNCING_RINGOFF:
if (!is_fxo_ringing(fxo)) {
if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
if (debug) {
dev_info(&wc->vb.pdev->dev,
"NO RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
set_ring(fxo, RINGOFF);
}
} else {
set_ring(fxo, RINGING);
}
break;
case RINGOFF:
if (is_fxo_ringing(fxo)) {
/* Look for positive/negative crossings in ring status
* reg */
if (is_fxo_ringing_positive(fxo))
set_ring(fxo, DEBOUNCING_RINGING_POSITIVE);
else
set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE);
fxo->ringdebounce_timer =
wc->framecount + ringdebounce / 8;
fxo->ring_polarity_change_count = 0;
}
break;
}
}
#define MS_PER_CHECK_HOOK 1
static void
wctdm_check_battery_lost(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
/* possible existing states:
battery lost, no debounce timer
battery lost, debounce timer (going to battery present)
battery present or unknown, no debounce timer
battery present or unknown, debounce timer (going to battery lost)
*/
switch (fxo->battery_state) {
case BATTERY_DEBOUNCING_PRESENT_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
case BATTERY_DEBOUNCING_PRESENT:
fxo->battery_state = BATTERY_LOST;
break;
case BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
break;
case BATTERY_UNKNOWN:
mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK);
case BATTERY_PRESENT:
fxo->battery_state = BATTERY_DEBOUNCING_LOST;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
case BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM:
case BATTERY_DEBOUNCING_LOST: /* Intentional drop through */
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
if (debug) {
dev_info(&wc->vb.pdev->dev,
"NO BATTERY on %d/%d!\n",
wc->aspan->span.spanno,
mod->card + 1);
}
#ifdef JAPAN
if (!wc->ohdebounce && wc->offhook) {
dahdi_hooksig(wc->aspan->chans[card],
DAHDI_RXSIG_ONHOOK);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"Signalled On Hook\n");
}
#ifdef ZERO_BATT_RING
wc->onhook++;
#endif
}
#else
mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK);
#endif
/* set the alarm timer, taking into account that part
* of its time period has already passed while
* debouncing occurred */
fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
}
break;
case BATTERY_DEBOUNCING_LOST_ALARM:
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
fxo->battery_state = BATTERY_LOST;
dahdi_alarm_channel(get_dahdi_chan(wc, mod),
DAHDI_ALARM_RED);
}
break;
case BATTERY_LOST:
break;
}
}
static void
wctdm_check_battery_present(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->battery_state) {
case BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM:
case BATTERY_DEBOUNCING_PRESENT: /* intentional drop through */
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
if (debug) {
dev_info(&wc->vb.pdev->dev,
"BATTERY on %d/%d (%s)!\n",
wc->aspan->span.spanno, mod->card + 1,
(fxo->line_voltage_status < 0) ?
"-" : "+");
}
#ifdef ZERO_BATT_RING
if (wc->onhook) {
wc->onhook = 0;
dahdi_hooksig(wc->aspan->chans[card],
DAHDI_RXSIG_OFFHOOK);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"Signalled Off Hook\n");
}
}
#else
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
#endif
/* set the alarm timer, taking into account that part
* of its time period has already passed while
* debouncing occurred */
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
}
break;
case BATTERY_DEBOUNCING_PRESENT_ALARM:
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
fxo->battery_state = BATTERY_PRESENT;
dahdi_alarm_channel(get_dahdi_chan(wc, mod),
DAHDI_ALARM_NONE);
}
break;
case BATTERY_PRESENT:
break;
case BATTERY_DEBOUNCING_LOST_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
case BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
break;
case BATTERY_DEBOUNCING_LOST:
fxo->battery_state = BATTERY_PRESENT;
break;
case BATTERY_UNKNOWN:
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
case BATTERY_LOST: /* intentional drop through */
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
}
}
static void
wctdm_fxo_stop_debouncing_polarity(struct wctdm *wc,
struct wctdm_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->polarity_state) {
case UNKNOWN_POLARITY:
break;
case POLARITY_DEBOUNCE_POSITIVE:
fxo->polarity_state = POLARITY_NEGATIVE;
break;
case POLARITY_POSITIVE:
break;
case POLARITY_DEBOUNCE_NEGATIVE:
fxo->polarity_state = POLARITY_POSITIVE;
break;
case POLARITY_NEGATIVE:
break;
};
}
static void
wctdm_fxo_check_polarity(struct wctdm *wc, struct wctdm_module *const mod,
const bool positive_polarity)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->polarity_state) {
case UNKNOWN_POLARITY:
fxo->polarity_state = (positive_polarity) ? POLARITY_POSITIVE :
POLARITY_NEGATIVE;
break;
case POLARITY_DEBOUNCE_POSITIVE:
if (!positive_polarity) {
fxo->polarity_state = POLARITY_NEGATIVE;
} else if (time_after(wc->framecount, fxo->poldebounce_timer)) {
fxo->polarity_state = POLARITY_POSITIVE;
dahdi_qevent_lock(get_dahdi_chan(wc, mod),
DAHDI_EVENT_POLARITY);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"%s: Polarity NEGATIVE -> POSITIVE\n",
get_dahdi_chan(wc, mod)->name);
}
}
break;
case POLARITY_POSITIVE:
if (!positive_polarity) {
fxo->polarity_state = POLARITY_DEBOUNCE_NEGATIVE;
fxo->poldebounce_timer = wc->framecount +
POLARITY_DEBOUNCE;
}
break;
case POLARITY_DEBOUNCE_NEGATIVE:
if (positive_polarity) {
fxo->polarity_state = POLARITY_POSITIVE;
} else if (time_after(wc->framecount, fxo->poldebounce_timer)) {
dahdi_qevent_lock(get_dahdi_chan(wc, mod),
DAHDI_EVENT_POLARITY);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"%s: Polarity POSITIVE -> NEGATIVE\n",
get_dahdi_chan(wc, mod)->name);
}
fxo->polarity_state = POLARITY_NEGATIVE;
}
break;
case POLARITY_NEGATIVE:
if (positive_polarity) {
fxo->polarity_state = POLARITY_DEBOUNCE_POSITIVE;
fxo->poldebounce_timer = wc->framecount +
POLARITY_DEBOUNCE;
}
break;
};
}
static void
wctdm_voicedaa_check_hook(struct wctdm *wc, struct wctdm_module *const mod)
{
signed char b;
u8 abs_voltage;
struct fxo *const fxo = &mod->mod.fxo;
/* Try to track issues that plague slot one FXO's */
b = fxo->hook_ring_shadow & 0x9b;
if (fxo->offhook) {
if (b != 0x9)
wctdm_setreg_intr(wc, mod, 5, 0x9);
} else {
if (b != 0x8)
wctdm_setreg_intr(wc, mod, 5, 0x8);
wctdm_fxo_ring_detect(wc, mod);
}
abs_voltage = abs(fxo->line_voltage_status);
if (fxovoltage && time_after(wc->framecount, fxo->display_fxovoltage)) {
/* Every 100 ms */
fxo->display_fxovoltage = wc->framecount + 100;
dev_info(&wc->vb.pdev->dev,
"Port %d: Voltage: %d\n",
mod->card + 1, fxo->line_voltage_status);
}
if (unlikely(DAHDI_RXSIG_INITIAL == get_dahdi_chan(wc, mod)->rxhooksig)) {
/*
* dahdi-base will set DAHDI_RXSIG_INITIAL after a
* DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events
* will be queued on the channel with the current received
* hook state. Channels that use robbed-bit signalling always
* report the current received state via the dahdi_rbsbits
* call. Since we only call dahdi_hooksig when we've detected
* a change to report, let's forget our current state in order
* to force us to report it again via dahdi_hooksig.
*
*/
fxo->battery_state = BATTERY_UNKNOWN;
}
if (abs_voltage < battthresh) {
wctdm_fxo_stop_debouncing_polarity(wc, mod);
wctdm_check_battery_lost(wc, mod);
} else {
wctdm_check_battery_present(wc, mod);
wctdm_fxo_check_polarity(wc, mod,
(fxo->line_voltage_status > 0));
}
/* Look for neon mwi pulse */
if (neonmwi_monitor && !fxo->offhook) {
/* Look for 4 consecutive voltage readings
* where the voltage is over the neon limit but
* does not vary greatly from the last reading
*/
if (fxo->battery_state == BATTERY_PRESENT &&
abs_voltage > neonmwi_level &&
(0 == fxo->neonmwi_last_voltage ||
(fxo->line_voltage_status >= fxo->neonmwi_last_voltage - neonmwi_envelope &&
fxo->line_voltage_status <= fxo->neonmwi_last_voltage + neonmwi_envelope))) {
fxo->neonmwi_last_voltage = fxo->line_voltage_status;
if (NEONMWI_ON_DEBOUNCE == fxo->neonmwi_debounce) {
fxo->neonmwi_offcounter = neonmwi_offlimit_cycles;
if (0 == fxo->neonmwi_state) {
dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_NEONMWI_ACTIVE);
fxo->neonmwi_state = 1;
if (debug)
dev_info(&wc->vb.pdev->dev, "NEON MWI active for card %d\n", mod->card+1);
}
fxo->neonmwi_debounce++; /* terminate the processing */
} else if (NEONMWI_ON_DEBOUNCE > fxo->neonmwi_debounce) {
fxo->neonmwi_debounce++;
} else { /* Insure the count gets reset */
fxo->neonmwi_offcounter = neonmwi_offlimit_cycles;
}
} else {
fxo->neonmwi_debounce = 0;
fxo->neonmwi_last_voltage = 0;
}
/* If no neon mwi pulse for given period of time, indicte no neon mwi state */
if (fxo->neonmwi_state && 0 < fxo->neonmwi_offcounter ) {
fxo->neonmwi_offcounter--;
if (0 == fxo->neonmwi_offcounter) {
dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_NEONMWI_INACTIVE);
fxo->neonmwi_state = 0;
if (debug)
dev_info(&wc->vb.pdev->dev, "NEON MWI cleared for card %d\n", mod->card+1);
}
}
}
#undef MS_PER_CHECK_HOOK
}
static void
wctdm_fxs_hooksig(struct wctdm *wc, struct wctdm_module *const mod,
enum dahdi_txsig txsig)
{
int x = 0;
unsigned long flags;
struct fxs *const fxs = &mod->mod.fxs;
spin_lock_irqsave(&wc->reglock, flags);
switch (txsig) {
case DAHDI_TXSIG_ONHOOK:
switch (get_dahdi_chan(wc, mod)->sig) {
case DAHDI_SIG_FXOGS:
x = (POLARITY_XOR(fxs)) ?
SLIC_LF_RING_OPEN :
SLIC_LF_TIP_OPEN;
break;
case DAHDI_SIG_EM:
case DAHDI_SIG_FXOKS:
case DAHDI_SIG_FXOLS:
default:
x = fxs->idletxhookstate;
break;
}
break;
case DAHDI_TXSIG_OFFHOOK:
switch (get_dahdi_chan(wc, mod)->sig) {
case DAHDI_SIG_EM:
x = (POLARITY_XOR(fxs)) ?
SLIC_LF_ACTIVE_FWD :
SLIC_LF_ACTIVE_REV;
break;
default:
x = fxs->idletxhookstate;
break;
}
break;
case DAHDI_TXSIG_START:
x = SLIC_LF_RINGING;
break;
case DAHDI_TXSIG_KEWL:
x = SLIC_LF_OPEN;
break;
default:
spin_unlock_irqrestore(&wc->reglock, flags);
dev_notice(&wc->vb.pdev->dev,
"wctdm24xxp: Can't set tx state to %d\n", txsig);
return;
}
if (x != fxs->lasttxhook) {
fxs->lasttxhook = x | SLIC_LF_OPPENDING;
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
fxs->oppending_timeout = wc->framecount + 100;
spin_unlock_irqrestore(&wc->reglock, flags);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev, "Setting FXS hook state "
"to %d (%02x) framecount=%ld\n", txsig, x,
wc->framecount);
}
} else {
spin_unlock_irqrestore(&wc->reglock, flags);
}
}
static void wctdm_fxs_off_hook(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
if (debug & DEBUG_CARD)
dev_info(&wc->vb.pdev->dev,
"fxs_off_hook: Card %d Going off hook\n", mod->card);
switch (fxs->lasttxhook) {
case SLIC_LF_RINGING: /* Ringing */
case SLIC_LF_OHTRAN_FWD: /* Forward On Hook Transfer */
case SLIC_LF_OHTRAN_REV: /* Reverse On Hook Transfer */
/* just detected OffHook, during Ringing or OnHookTransfer */
fxs->idletxhookstate = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
break;
}
if ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)
wctdm_fxs_hooksig(wc, mod, DAHDI_TXSIG_OFFHOOK);
dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_OFFHOOK);
#ifdef DEBUG
if (robust)
wctdm_init_proslic(wc, mod, 1, 0, 1);
#endif
}
/**
* wctdm_fxs_on_hook - Report on hook to DAHDI.
* @wc: Board hosting the module.
* @card: Index of the module / port to place on hook.
*
* If we are intentionally dropping battery to signal a forward
* disconnect we do not want to place the line "On-Hook". In this
* case, the core of DAHDI will place us on hook when one of the RBS
* timers expires.
*
*/
static void wctdm_fxs_on_hook(struct wctdm *wc, struct wctdm_module *const mod)
{
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"fxs_on_hook: Card %d Going on hook\n", mod->card);
}
if ((mod->mod.fxs.lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)
wctdm_fxs_hooksig(wc, mod, DAHDI_TXSIG_ONHOOK);
dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_ONHOOK);
}
static const char *wctdm_echocan_name(const struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
if (wc->vpmadt032)
return vpmadt032_name;
else if (wc->vpmoct)
return vpmoct_name;
return NULL;
}
static int wctdm_echocan_create(struct dahdi_chan *chan,
struct dahdi_echocanparams *ecp,
struct dahdi_echocanparam *p,
struct dahdi_echocan_state **ec)
{
struct wctdm *wc = chan->pvt;
struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan);
const struct dahdi_echocan_ops *ops;
const struct dahdi_echocan_features *features;
enum adt_companding comp;
#ifdef VPM_SUPPORT
if (!vpmsupport)
return -ENODEV;
#endif
if (wc->vpmadt032) {
ops = &vpm_ec_ops;
features = &vpm_ec_features;
*ec = &wchan->ec;
(*ec)->ops = ops;
(*ec)->features = *features;
comp = (DAHDI_LAW_ALAW == chan->span->deflaw) ?
ADT_COMP_ALAW : ADT_COMP_ULAW;
return vpmadt032_echocan_create(wc->vpmadt032, wchan->timeslot,
comp, ecp, p);
} else if (wc->vpmoct) {
ops = &vpm_ec_ops;
features = &vpm_ec_features;
*ec = &wchan->ec;
(*ec)->ops = ops;
(*ec)->features = *features;
return vpmoct_echocan_create(wc->vpmoct, wchan->timeslot,
chan->span->deflaw);
} else {
return -ENODEV;
}
}
static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec)
{
struct wctdm *wc = chan->pvt;
struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan);
if (wc->vpmadt032) {
memset(ec, 0, sizeof(*ec));
vpmadt032_echocan_free(wc->vpmadt032, wchan->timeslot, ec);
} else if (wc->vpmoct) {
memset(ec, 0, sizeof(*ec));
vpmoct_echocan_free(wc->vpmoct, wchan->timeslot);
}
}
/* 1ms interrupt */
static void wctdm_isr_misc_fxs(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
if (time_after(wc->framecount, fxs->check_alarm)) {
/* Accept an alarm once per 10 seconds */
fxs->check_alarm = wc->framecount + (1000*10);
if (fxs->palarms)
fxs->palarms--;
}
if (fxs->off_hook && !(fxs->hook_state_shadow & 1)) {
wctdm_fxs_on_hook(wc, mod);
fxs->off_hook = 0;
} else if (!fxs->off_hook && (fxs->hook_state_shadow & 1)) {
wctdm_fxs_off_hook(wc, mod);
fxs->off_hook = 1;
}
wctdm_proslic_check_oppending(wc, mod);
if (time_after(wc->framecount, fxs->check_proslic)) {
fxs->check_proslic = wc->framecount + 250; /* every 250ms */
wctdm_proslic_recheck_sanity(wc, mod);
}
if (SLIC_LF_RINGING == fxs->lasttxhook) {
/* RINGing, prepare for OHT */
fxs->ohttimer = wc->framecount + OHT_TIMER;
/* OHT mode when idle */
fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_OHTRAN_REV :
SLIC_LF_OHTRAN_FWD;
} else if (fxs->oht_active) {
/* check if still OnHook */
if (!fxs->off_hook) {
if (time_before(wc->framecount, fxs->ohttimer))
return;
/* Switch to active */
fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
spin_lock(&wc->reglock);
if (SLIC_LF_OHTRAN_FWD == fxs->lasttxhook) {
/* Apply the change if appropriate */
fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_FWD;
/* Data enqueued here */
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d OnHookTransfer "
"stop\n", mod->card);
}
} else if (SLIC_LF_OHTRAN_REV == fxs->lasttxhook) {
/* Apply the change if appropriate */
fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_REV;
/* Data enqueued here */
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d OnHookTransfer "
"stop\n", mod->card);
}
}
spin_unlock(&wc->reglock);
} else {
fxs->oht_active = 0;
/* Switch to active */
fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d OnHookTransfer abort\n",
mod->card);
}
}
}
}
/* 1ms interrupt */
static inline void wctdm_isr_misc(struct wctdm *wc)
{
int x;
if (unlikely(!is_initialized(wc)))
return;
for (x = 0; x < wc->mods_per_board; x++) {
struct wctdm_module *const mod = &wc->mods[x];
spin_lock(&wc->reglock);
cmd_checkisr(wc, mod);
spin_unlock(&wc->reglock);
switch (mod->type) {
case FXS:
wctdm_isr_misc_fxs(wc, mod);
break;
case FXO:
wctdm_voicedaa_check_hook(wc, mod);
break;
case QRV:
wctdm_qrvdri_check_hook(wc, x);
break;
default:
break;
}
}
}
static void handle_receive(struct voicebus *vb, struct list_head *buffers)
{
struct wctdm *wc = container_of(vb, struct wctdm, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry)
wctdm_receiveprep(wc, vbb->data);
}
static void handle_transmit(struct voicebus *vb, struct list_head *buffers)
{
struct wctdm *wc = container_of(vb, struct wctdm, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry) {
memset(vbb->data, 0, sizeof(vbb->data));
wctdm_transmitprep(wc, vbb->data);
wctdm_isr_misc(wc);
wc->framecount++;
}
}
struct sframe_packet {
struct list_head node;
u8 sframe[SFRAME_SIZE];
};
/**
* handle_hx8_bootmode_receive() - queue up the receive packet for later...
*
* This function is called from interrupt context and isn't optimal, but it's
* not the main code path.
*/
static void handle_hx8_bootmode_receive(struct wctdm *wc, const void *vbb)
{
struct sframe_packet *frame;
frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
if (unlikely(!frame)) {
WARN_ON(1);
return;
}
memcpy(frame->sframe, vbb, sizeof(frame->sframe));
spin_lock(&wc->frame_list_lock);
list_add_tail(&frame->node, &wc->frame_list);
spin_unlock(&wc->frame_list_lock);
/* Wake up anyone waiting for a new packet. */
wake_up(&wc->regq);
return;
}
static void handle_hx8_receive(struct voicebus *vb, struct list_head *buffers)
{
struct wctdm *wc = container_of(vb, struct wctdm, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry)
handle_hx8_bootmode_receive(wc, vbb->data);
}
static void handle_hx8_transmit(struct voicebus *vb, struct list_head *buffers)
{
struct vbb *vbb, *n;
list_for_each_entry_safe(vbb, n, buffers, entry) {
list_del(&vbb->entry);
dma_pool_free(vb->pool, vbb, vbb->dma_addr);
}
}
static int wctdm_voicedaa_insane(struct wctdm *wc, struct wctdm_module *mod)
{
int blah;
blah = wctdm_getreg(wc, mod, 2);
if (blah != 0x3)
return -2;
blah = wctdm_getreg(wc, mod, 11);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"VoiceDAA System: %02x\n", blah & 0xf);
}
return 0;
}
static int
wctdm_proslic_insane(struct wctdm *wc, struct wctdm_module *const mod)
{
int blah, reg1, insane_report;
insane_report=0;
blah = wctdm_getreg(wc, mod, 0);
if (blah != 0xff && (debug & DEBUG_CARD)) {
dev_info(&wc->vb.pdev->dev,
"ProSLIC on module %d, product %d, "
"version %d\n", mod->card, (blah & 0x30) >> 4,
(blah & 0xf));
}
#if 0
if ((blah & 0x30) >> 4) {
dev_info(&wc->vb.pdev->dev,
"ProSLIC on module %d is not a 3210.\n", mod->card);
return -1;
}
#endif
if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) {
/* SLIC not loaded */
return -1;
}
/* let's be really sure this is an FXS before we continue */
reg1 = wctdm_getreg(wc, mod, 1);
if ((0x80 != (blah & 0xf0)) || (0x88 != reg1)) {
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"DEBUG: not FXS b/c reg0=%x or "
"reg1 != 0x88 (%x).\n", blah, reg1);
}
return -1;
}
blah = wctdm_getreg(wc, mod, 8);
if (blah != 0x2) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d insane (1) %d should be 2\n",
mod->card, blah);
return -1;
} else if (insane_report) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d Reg 8 Reads %d Expected "
"is 0x2\n", mod->card, blah);
}
blah = wctdm_getreg(wc, mod, 64);
if (blah != 0x0) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d insane (2)\n",
mod->card);
return -1;
} else if (insane_report) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d Reg 64 Reads %d Expected "
"is 0x0\n", mod->card, blah);
}
blah = wctdm_getreg(wc, mod, 11);
if (blah != 0x33) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d insane (3)\n", mod->card);
return -1;
} else if (insane_report) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d Reg 11 Reads %d "
"Expected is 0x33\n", mod->card, blah);
}
/* Just be sure it's setup right. */
wctdm_setreg(wc, mod, 30, 0);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"ProSLIC on module %d seems sane.\n", mod->card);
}
return 0;
}
static int
wctdm_proslic_powerleak_test(struct wctdm *wc, struct wctdm_module *const mod)
{
unsigned long start;
unsigned char vbat;
/* Turn off linefeed */
wctdm_setreg(wc, mod, LINE_STATE, 0);
/* Power down */
wctdm_setreg(wc, mod, 14, 0x10);
start = jiffies;
/* TODO: Why is this sleep necessary. Without it, the first read
* comes back with a 0 value. */
msleep(20);
while ((vbat = wctdm_getreg(wc, mod, 82)) > 0x6) {
if (time_after(jiffies, start + HZ/4))
break;
}
if (vbat < 0x06) {
dev_notice(&wc->vb.pdev->dev,
"Excessive leakage detected on module %d: %d "
"volts (%02x) after %d ms\n", mod->card,
376 * vbat / 1000, vbat,
(int)((jiffies - start) * 1000 / HZ));
return -1;
} else if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Post-leakage voltage: %d volts\n", 376 * vbat / 1000);
}
return 0;
}
static int wctdm_powerup_proslic(struct wctdm *wc,
struct wctdm_module *mod, int fast)
{
unsigned char vbat;
unsigned long origjiffies;
int lim;
/* Set period of DC-DC converter to 1/64 khz */
wctdm_setreg(wc, mod, 92, 0xc0 /* was 0xff */);
/* Wait for VBat to powerup */
origjiffies = jiffies;
/* Disable powerdown */
wctdm_setreg(wc, mod, 14, 0);
/* If fast, don't bother checking anymore */
if (fast)
return 0;
while ((vbat = wctdm_getreg(wc, mod, 82)) < 0xc0) {
/* Wait no more than 500ms */
if ((jiffies - origjiffies) > HZ/2) {
break;
}
}
if (vbat < 0xc0) {
dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM CARD??\n",
mod->card, (int)(((jiffies - origjiffies) * 1000 / HZ)),
vbat * 375);
return -1;
} else if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"ProSLIC on module %d powered up to -%d volts (%02x) "
"in %d ms\n", mod->card, vbat * 376 / 1000, vbat,
(int)(((jiffies - origjiffies) * 1000 / HZ)));
}
/* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */
/* If out of range, just set it to the default value */
lim = (loopcurrent - 20) / 3;
if ( loopcurrent > 41 ) {
lim = 0;
if (debug & DEBUG_CARD)
dev_info(&wc->vb.pdev->dev, "Loop current out of range! Setting to default 20mA!\n");
}
else if (debug & DEBUG_CARD)
dev_info(&wc->vb.pdev->dev, "Loop current set to %dmA!\n",(lim*3)+20);
wctdm_setreg(wc, mod, LOOP_I_LIMIT, lim);
/* Engage DC-DC converter */
wctdm_setreg(wc, mod, 93, 0x19 /* was 0x19 */);
return 0;
}
static int
wctdm_proslic_manual_calibrate(struct wctdm *wc, struct wctdm_module *const mod)
{
unsigned long origjiffies;
unsigned char i;
/* Disable all interupts in DR21-23 */
wctdm_setreg(wc, mod, 21, 0);
wctdm_setreg(wc, mod, 22, 0);
wctdm_setreg(wc, mod, 23, 0);
wctdm_setreg(wc, mod, 64, 0);
/* (0x18) Calibrations without the ADC and DAC offset and without
* common mode calibration. */
wctdm_setreg(wc, mod, 97, 0x18);
/* (0x47) Calibrate common mode and differential DAC mode DAC + ILIM */
wctdm_setreg(wc, mod, 96, 0x47);
origjiffies=jiffies;
while (wctdm_getreg(wc, mod, 96) != 0) {
if ((jiffies-origjiffies) > 80)
return -1;
}
//Initialized DR 98 and 99 to get consistant results.
// 98 and 99 are the results registers and the search should have same intial conditions.
/*******************************The following is the manual gain mismatch calibration****************************/
/*******************************This is also available as a function *******************************************/
msleep(10);
wctdm_proslic_setreg_indirect(wc, mod, 88, 0);
wctdm_proslic_setreg_indirect(wc, mod, 89, 0);
wctdm_proslic_setreg_indirect(wc, mod, 90, 0);
wctdm_proslic_setreg_indirect(wc, mod, 91, 0);
wctdm_proslic_setreg_indirect(wc, mod, 92, 0);
wctdm_proslic_setreg_indirect(wc, mod, 93, 0);
/* This is necessary if the calibration occurs other than at reset */
wctdm_setreg(wc, mod, 98, 0x10);
wctdm_setreg(wc, mod, 99, 0x10);
for ( i=0x1f; i>0; i--)
{
wctdm_setreg(wc, mod, 98, i);
msleep(40);
if ((wctdm_getreg(wc, mod, 88)) == 0)
break;
} // for
for ( i=0x1f; i>0; i--)
{
wctdm_setreg(wc, mod, 99, i);
msleep(40);
if ((wctdm_getreg(wc, mod, 89)) == 0)
break;
}//for
/*******************************The preceding is the manual gain mismatch calibration****************************/
/**********************************The following is the longitudinal Balance Cal***********************************/
wctdm_setreg(wc, mod, 64, 1);
msleep(100);
wctdm_setreg(wc, mod, 64, 0);
/* enable interrupt for the balance Cal */
wctdm_setreg(wc, mod, 23, 0x4);
/* this is a singular calibration bit for longitudinal calibration */
wctdm_setreg(wc, mod, 97, 0x1);
wctdm_setreg(wc, mod, 96, 0x40);
wctdm_getreg(wc, mod, 96); /* Read Reg 96 just cause */
wctdm_setreg(wc, mod, 21, 0xFF);
wctdm_setreg(wc, mod, 22, 0xFF);
wctdm_setreg(wc, mod, 23, 0xFF);
/**The preceding is the longitudinal Balance Cal***/
return(0);
}
static int
wctdm_proslic_calibrate(struct wctdm *wc, struct wctdm_module *mod)
{
unsigned long origjiffies;
int x;
/* Perform all calibrations */
wctdm_setreg(wc, mod, 97, 0x1f);
/* Begin, no speedup */
wctdm_setreg(wc, mod, 96, 0x5f);
/* Wait for it to finish */
origjiffies = jiffies;
while (wctdm_getreg(wc, mod, 96)) {
if (time_after(jiffies, (origjiffies + (2*HZ)))) {
dev_notice(&wc->vb.pdev->dev,
"Timeout waiting for calibration of "
"module %d\n", mod->card);
return -1;
}
}
if (debug & DEBUG_CARD) {
/* Print calibration parameters */
dev_info(&wc->vb.pdev->dev,
"Calibration Vector Regs 98 - 107:\n");
for (x=98;x<108;x++) {
dev_info(&wc->vb.pdev->dev,
"%d: %02x\n", x, wctdm_getreg(wc, mod, x));
}
}
return 0;
}
/*********************************************************************
* Set the hwgain on the analog modules
*
* card = the card position for this module (0-23)
* gain = gain in dB x10 (e.g. -3.5dB would be gain=-35)
* tx = (0 for rx; 1 for tx)
*
*******************************************************************/
static int
wctdm_set_hwgain(struct wctdm *wc, struct wctdm_module *mod,
__s32 gain, __u32 tx)
{
if (mod->type != FXO) {
dev_notice(&wc->vb.pdev->dev,
"Cannot adjust gain. Unsupported module type!\n");
return -1;
}
if (tx) {
if (debug) {
dev_info(&wc->vb.pdev->dev,
"setting FXO tx gain for card=%d to %d\n",
mod->card, gain);
}
if (gain >= -150 && gain <= 0) {
wctdm_setreg(wc, mod, 38, 16 + (gain / -10));
wctdm_setreg(wc, mod, 40, 16 + (-gain % 10));
} else if (gain <= 120 && gain > 0) {
wctdm_setreg(wc, mod, 38, gain/10);
wctdm_setreg(wc, mod, 40, (gain%10));
} else {
dev_notice(&wc->vb.pdev->dev,
"FXO tx gain is out of range (%d)\n", gain);
return -1;
}
} else { /* rx */
if (debug) {
dev_info(&wc->vb.pdev->dev,
"setting FXO rx gain for card=%d to %d\n",
mod->card, gain);
}
if (gain >= -150 && gain <= 0) {
wctdm_setreg(wc, mod, 39, 16 + (gain / -10));
wctdm_setreg(wc, mod, 41, 16 + (-gain % 10));
} else if (gain <= 120 && gain > 0) {
wctdm_setreg(wc, mod, 39, gain/10);
wctdm_setreg(wc, mod, 41, (gain%10));
} else {
dev_notice(&wc->vb.pdev->dev,
"FXO rx gain is out of range (%d)\n", gain);
return -1;
}
}
return 0;
}
static int set_lasttxhook_interruptible(struct wctdm *wc, struct fxs *fxs,
unsigned newval, int *psethook)
{
int res = 0;
unsigned long flags;
int timeout = 0;
do {
spin_lock_irqsave(&wc->reglock, flags);
if (SLIC_LF_OPPENDING & fxs->lasttxhook) {
spin_unlock_irqrestore(&wc->reglock, flags);
if (timeout++ > 100)
return -1;
msleep(1);
} else {
fxs->lasttxhook = (newval & SLIC_LF_SETMASK) | SLIC_LF_OPPENDING;
*psethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
spin_unlock_irqrestore(&wc->reglock, flags);
break;
}
} while (1);
return res;
}
/* Must be called from within an interruptible context */
static int set_vmwi(struct wctdm *wc, struct wctdm_module *const mod)
{
int x;
struct fxs *const fxs = &mod->mod.fxs;
/* Presently only supports line reversal MWI */
if ((fxs->vmwi_active_messages) &&
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV))
fxs->vmwi_linereverse = 1;
else
fxs->vmwi_linereverse = 0;
/* Set line polarity for new VMWI state */
if (POLARITY_XOR(fxs)) {
fxs->idletxhookstate |= SLIC_LF_REVMASK;
/* Do not set while currently ringing or open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) &&
((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) {
x = fxs->lasttxhook;
x |= SLIC_LF_REVMASK;
set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook);
}
} else {
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
/* Do not set while currently ringing or open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) &&
((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) {
x = fxs->lasttxhook;
x &= ~SLIC_LF_REVMASK;
set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook);
}
}
if (debug) {
dev_info(&wc->vb.pdev->dev,
"Setting VMWI on channel %d, messages=%d, lrev=%d\n",
mod->card, fxs->vmwi_active_messages,
fxs->vmwi_linereverse);
}
return 0;
}
static void
wctdm_voicedaa_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts)
{
wctdm_setreg(wc, mod, 34, (ts * 8) & 0xff);
wctdm_setreg(wc, mod, 35, (ts * 8) >> 8);
wctdm_setreg(wc, mod, 36, (ts * 8) & 0xff);
wctdm_setreg(wc, mod, 37, (ts * 8) >> 8);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"voicedaa: card %d new timeslot: %d\n",
mod->card + 1, ts);
}
}
static int
wctdm_init_voicedaa(struct wctdm *wc, struct wctdm_module *mod,
int fast, int manual, int sane)
{
unsigned char reg16=0, reg26=0, reg30=0, reg31=0;
unsigned long flags;
long newjiffies;
#if 0 /* TODO */
if ((wc->mods[card & 0xfc].type == QRV) ||
(wc->mods[card & 0xfc].type == BRI))
return -2;
#endif
spin_lock_irqsave(&wc->reglock, flags);
mod->type = NONE;
spin_unlock_irqrestore(&wc->reglock, flags);
msleep(20);
spin_lock_irqsave(&wc->reglock, flags);
mod->type = FXO;
spin_unlock_irqrestore(&wc->reglock, flags);
msleep(20);
memset(&mod->mod.fxo, 0, sizeof(mod->mod.fxo));
if (!sane && wctdm_voicedaa_insane(wc, mod))
return -2;
/* Software reset */
wctdm_setreg(wc, mod, 1, 0x80);
msleep(100);
/* Set On-hook speed, Ringer impedence, and ringer threshold */
reg16 |= (fxo_modes[_opermode].ohs << 6);
reg16 |= (fxo_modes[_opermode].rz << 1);
reg16 |= (fxo_modes[_opermode].rt);
wctdm_setreg(wc, mod, 16, reg16);
/* Enable ring detector full-wave rectifier mode */
wctdm_setreg(wc, mod, 18, 2);
wctdm_setreg(wc, mod, 24, 0);
/* Set DC Termination:
Tip/Ring voltage adjust, minimum operational current, current limitation */
reg26 |= (fxo_modes[_opermode].dcv << 6);
reg26 |= (fxo_modes[_opermode].mini << 4);
reg26 |= (fxo_modes[_opermode].ilim << 1);
wctdm_setreg(wc, mod, 26, reg26);
/* Set AC Impedence */
reg30 = (fxo_modes[_opermode].acim);
wctdm_setreg(wc, mod, 30, reg30);
/* Misc. DAA parameters */
/* If fast pickup is set, then the off hook counter will be set to 8
* ms, otherwise 128 ms. */
reg31 = (fastpickup) ? 0xe3 : 0xa3;
reg31 |= (fxo_modes[_opermode].ohs2 << 3);
wctdm_setreg(wc, mod, 31, reg31);
wctdm_voicedaa_set_ts(wc, mod, mod->card);
/* Enable ISO-Cap */
wctdm_setreg(wc, mod, 6, 0x00);
/* Turn off the calibration delay when fastpickup is enabled. */
if (fastpickup)
wctdm_setreg(wc, mod, 17, wctdm_getreg(wc, mod, 17) | 0x20);
/* Wait 1000ms for ISO-cap to come up */
newjiffies = jiffies;
newjiffies += 2 * HZ;
while ((jiffies < newjiffies) && !(wctdm_getreg(wc, mod, 11) & 0xf0))
msleep(100);
if (!(wctdm_getreg(wc, mod, 11) & 0xf0)) {
dev_notice(&wc->vb.pdev->dev, "VoiceDAA did not bring up ISO link properly!\n");
return -1;
}
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev, "ISO-Cap is now up, line side: %02x rev %02x\n",
wctdm_getreg(wc, mod, 11) >> 4,
(wctdm_getreg(wc, mod, 13) >> 2) & 0xf);
}
/* Enable on-hook line monitor */
wctdm_setreg(wc, mod, 5, 0x08);
/* Take values for fxotxgain and fxorxgain and apply them to module */
wctdm_set_hwgain(wc, mod, fxotxgain, 1);
wctdm_set_hwgain(wc, mod, fxorxgain, 0);
#ifdef DEBUG
if (digitalloopback) {
dev_info(&wc->vb.pdev->dev,
"Turning on digital loopback for port %d.\n",
mod->card + 1);
wctdm_setreg(wc, mod, 10, 0x01);
}
#endif
if (debug) {
dev_info(&wc->vb.pdev->dev,
"DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n",
(wctdm_getreg(wc, mod, 38)/16) ?
-(wctdm_getreg(wc, mod, 38) - 16) :
wctdm_getreg(wc, mod, 38),
(wctdm_getreg(wc, mod, 40)/16) ?
-(wctdm_getreg(wc, mod, 40) - 16) :
wctdm_getreg(wc, mod, 40),
(wctdm_getreg(wc, mod, 39)/16) ?
-(wctdm_getreg(wc, mod, 39) - 16) :
wctdm_getreg(wc, mod, 39),
(wctdm_getreg(wc, mod, 41)/16) ?
-(wctdm_getreg(wc, mod, 41) - 16) :
wctdm_getreg(wc, mod, 41));
}
return 0;
}
static void
wctdm_proslic_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts)
{
wctdm_setreg(wc, mod, 2, (ts * 8) & 0xff); /* Tx Start low byte 0 */
wctdm_setreg(wc, mod, 3, (ts * 8) >> 8); /* Tx Start high byte 0 */
wctdm_setreg(wc, mod, 4, (ts * 8) & 0xff); /* Rx Start low byte 0 */
wctdm_setreg(wc, mod, 5, (ts * 8) >> 8); /* Rx Start high byte 0 */
if (debug) {
dev_info(&wc->vb.pdev->dev,
"proslic: card %d new timeslot: %d\n",
mod->card + 1, ts);
}
}
static int
wctdm_init_proslic(struct wctdm *wc, struct wctdm_module *const mod,
int fast, int manual, int sane)
{
struct fxs *const fxs = &mod->mod.fxs;
unsigned short tmp[5];
unsigned long flags;
unsigned char r19,r9;
int x;
int fxsmode=0;
int addresses[NUM_CAL_REGS];
#if 0 /* TODO */
if (wc->mods[mod->card & 0xfc].type == QRV)
return -2;
#endif
spin_lock_irqsave(&wc->reglock, flags);
mod->type = FXS;
spin_unlock_irqrestore(&wc->reglock, flags);
/* msleep(100); */
/* Sanity check the ProSLIC */
if (!sane && wctdm_proslic_insane(wc, mod))
return -2;
/* Initialize VMWI settings */
memset(fxs, 0, sizeof(*fxs));
/* By default, don't send on hook */
if (!reversepolarity != !fxs->reversepolarity)
fxs->idletxhookstate = SLIC_LF_ACTIVE_REV;
else
fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD;
if (sane) {
/* Make sure we turn off the DC->DC converter to prevent anything from blowing up */
wctdm_setreg(wc, mod, 14, 0x10);
}
if (wctdm_proslic_init_indirect_regs(wc, mod)) {
dev_info(&wc->vb.pdev->dev,
"Indirect Registers failed to initialize on "
"module %d.\n", mod->card);
return -1;
}
/* Clear scratch pad area */
wctdm_proslic_setreg_indirect(wc, mod, 97, 0);
/* Clear digital loopback */
wctdm_setreg(wc, mod, 8, 0);
/* Revision C optimization */
wctdm_setreg(wc, mod, 108, 0xeb);
/* Disable automatic VBat switching for safety to prevent
* Q7 from accidently turning on and burning out.
* If pulse dialing has trouble at high REN loads change this to 0x17 */
wctdm_setreg(wc, mod, 67, 0x07);
/* Turn off Q7 */
wctdm_setreg(wc, mod, 66, 1);
/* Flush ProSLIC digital filters by setting to clear, while
saving old values */
for (x=0;x<5;x++) {
tmp[x] = wctdm_proslic_getreg_indirect(wc, mod, x + 35);
wctdm_proslic_setreg_indirect(wc, mod, x + 35, 0x8000);
}
/* Power up the DC-DC converter */
if (wctdm_powerup_proslic(wc, mod, fast)) {
dev_notice(&wc->vb.pdev->dev,
"Unable to do INITIAL ProSLIC powerup on "
"module %d\n", mod->card);
return -1;
}
if (!fast) {
/* Check for power leaks */
if (wctdm_proslic_powerleak_test(wc, mod)) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC module %d failed leakage test. "
"Check for short circuit\n", mod->card);
}
/* Power up again */
if (wctdm_powerup_proslic(wc, mod, fast)) {
dev_notice(&wc->vb.pdev->dev,
"Unable to do FINAL ProSLIC powerup on "
"module %d\n", mod->card);
return -1;
}
#ifndef NO_CALIBRATION
/* Perform calibration */
if (manual) {
if (wctdm_proslic_manual_calibrate(wc, mod)) {
//dev_notice(&wc->vb.pdev->dev, "Proslic failed on Manual Calibration\n");
if (wctdm_proslic_manual_calibrate(wc, mod)) {
dev_notice(&wc->vb.pdev->dev, "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n");
return -1;
}
dev_info(&wc->vb.pdev->dev, "Proslic Passed Manual Calibration on Second Attempt\n");
}
}
else {
if (wctdm_proslic_calibrate(wc, mod)) {
//dev_notice(&wc->vb.pdev->dev, "ProSlic died on Auto Calibration.\n");
if (wctdm_proslic_calibrate(wc, mod)) {
dev_notice(&wc->vb.pdev->dev, "Proslic Failed on Second Attempt to Auto Calibrate\n");
return -1;
}
dev_info(&wc->vb.pdev->dev, "Proslic Passed Auto Calibration on Second Attempt\n");
}
}
/* Perform DC-DC calibration */
wctdm_setreg(wc, mod, 93, 0x99);
r19 = wctdm_getreg(wc, mod, 107);
if ((r19 < 0x2) || (r19 > 0xd)) {
dev_notice(&wc->vb.pdev->dev, "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19);
wctdm_setreg(wc, mod, 107, 0x8);
}
/* Save calibration vectors */
for (x = 0; x < NUM_CAL_REGS; x++)
addresses[x] = 96 + x;
wctdm_getregs(wc, mod, addresses, ARRAY_SIZE(addresses));
for (x = 0; x < NUM_CAL_REGS; x++)
fxs->calregs.vals[x] = addresses[x];
#endif
} else {
/* Restore calibration registers */
for (x = 0; x < NUM_CAL_REGS; x++)
wctdm_setreg(wc, mod, 96 + x, fxs->calregs.vals[x]);
}
/* Calibration complete, restore original values */
for (x=0;x<5;x++) {
wctdm_proslic_setreg_indirect(wc, mod, x + 35, tmp[x]);
}
if (wctdm_proslic_verify_indirect_regs(wc, mod)) {
dev_info(&wc->vb.pdev->dev, "Indirect Registers failed verification.\n");
return -1;
}
#if 0
/* Disable Auto Power Alarm Detect and other "features" */
wctdm_setreg(wc, card, 67, 0x0e);
blah = wctdm_getreg(wc, card, 67);
#endif
#if 0
if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix
dev_info(&wc->vb.pdev->dev, "ProSlic IndirectReg Died.\n");
return -1;
}
#endif
/* U-Law 8-bit interface */
wctdm_proslic_set_ts(wc, mod, mod->card);
wctdm_setreg(wc, mod, 18, 0xff); /* clear all interrupt */
wctdm_setreg(wc, mod, 19, 0xff);
wctdm_setreg(wc, mod, 20, 0xff);
wctdm_setreg(wc, mod, 22, 0xff);
wctdm_setreg(wc, mod, 73, 0x04);
wctdm_setreg(wc, mod, 69, 0x4);
if (fxshonormode) {
static const int ACIM2TISS[16] = { 0x0, 0x1, 0x4, 0x5, 0x7,
0x0, 0x0, 0x6, 0x0, 0x0,
0x0, 0x2, 0x0, 0x3 };
fxsmode = ACIM2TISS[fxo_modes[_opermode].acim];
wctdm_setreg(wc, mod, 10, 0x08 | fxsmode);
if (fxo_modes[_opermode].ring_osc) {
wctdm_proslic_setreg_indirect(wc, mod, 20,
fxo_modes[_opermode].ring_osc);
}
if (fxo_modes[_opermode].ring_x) {
wctdm_proslic_setreg_indirect(wc, mod, 21,
fxo_modes[_opermode].ring_x);
}
}
if (lowpower)
wctdm_setreg(wc, mod, 72, 0x10);
#if 0
wctdm_setreg(wc, card, 21, 0x00); // enable interrupt
wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt
wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt
#endif
#if 0
/* Enable loopback */
wctdm_setreg(wc, card, 8, 0x2);
wctdm_setreg(wc, card, 14, 0x0);
wctdm_setreg(wc, card, 64, 0x0);
wctdm_setreg(wc, card, 1, 0x08);
#endif
if (fastringer) {
/* Speed up Ringer */
wctdm_proslic_setreg_indirect(wc, mod, 20, 0x7e6d);
wctdm_proslic_setreg_indirect(wc, mod, 21, 0x01b9);
/* Beef up Ringing voltage to 89V */
if (boostringer) {
wctdm_setreg(wc, mod, 74, 0x3f);
if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x247))
return -1;
dev_info(&wc->vb.pdev->dev,
"Boosting fast ringer on slot %d (89V peak)\n",
mod->card + 1);
} else if (lowpower) {
if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x14b))
return -1;
dev_info(&wc->vb.pdev->dev,
"Reducing fast ring power on slot %d "
"(50V peak)\n", mod->card + 1);
} else
dev_info(&wc->vb.pdev->dev,
"Speeding up ringer on slot %d (25Hz)\n",
mod->card + 1);
} else {
/* Beef up Ringing voltage to 89V */
if (boostringer) {
wctdm_setreg(wc, mod, 74, 0x3f);
if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x1d1))
return -1;
dev_info(&wc->vb.pdev->dev,
"Boosting ringer on slot %d (89V peak)\n",
mod->card + 1);
} else if (lowpower) {
if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x108))
return -1;
dev_info(&wc->vb.pdev->dev,
"Reducing ring power on slot %d "
"(50V peak)\n", mod->card + 1);
}
}
if (fxstxgain || fxsrxgain) {
r9 = wctdm_getreg(wc, mod, 9);
switch (fxstxgain) {
case 35:
r9+=8;
break;
case -35:
r9+=4;
break;
case 0:
break;
}
switch (fxsrxgain) {
case 35:
r9+=2;
break;
case -35:
r9+=1;
break;
case 0:
break;
}
wctdm_setreg(wc, mod, 9, r9);
}
if (debug) {
dev_info(&wc->vb.pdev->dev,
"DEBUG: fxstxgain:%s fxsrxgain:%s\n",
((wctdm_getreg(wc, mod, 9) / 8) == 1) ?
"3.5" : (((wctdm_getreg(wc, mod, 9) / 4) == 1) ?
"-3.5" : "0.0"),
((wctdm_getreg(wc, mod, 9) / 2) == 1) ?
"3.5" : ((wctdm_getreg(wc, mod, 9) % 2) ?
"-3.5" : "0.0"));
}
fxs->lasttxhook = fxs->idletxhookstate;
wctdm_setreg(wc, mod, LINE_STATE, fxs->lasttxhook);
/* Preset the shadow register so that we won't get a power alarm when
* we finish initialization, otherwise the line state register may not
* have been read yet. */
fxs->linefeed_control_shadow = fxs->lasttxhook;
return 0;
}
static void
wctdm_qrvdri_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts)
{
wctdm_setreg(wc, mod, 0x13, ts + 0x80); /* codec 2 tx, ts0 */
wctdm_setreg(wc, mod, 0x17, ts + 0x80); /* codec 0 rx, ts0 */
wctdm_setreg(wc, mod, 0x14, ts + 0x81); /* codec 1 tx, ts1 */
wctdm_setreg(wc, mod, 0x18, ts + 0x81); /* codec 1 rx, ts1 */
if (debug) {
dev_info(&wc->vb.pdev->dev,
"qrvdri: card %d new timeslot: %d\n",
mod->card + 1, ts);
}
}
static int wctdm_init_qrvdri(struct wctdm *wc, int card)
{
struct wctdm_module *const mod = &wc->mods[card];
unsigned char x,y;
if (BRI == wc->mods[card & 0xfc].type)
return -2;
/* have to set this, at least for now */
mod->type = QRV;
if (!(card & 3)) { /* if at base of card, reset and write it */
struct qrv *const qrv = &mod->mod.qrv;
struct qrv *const qrv1 = &wc->mods[card + 1].mod.qrv;
struct qrv *const qrv2 = &wc->mods[card + 2].mod.qrv;
struct qrv *const qrv3 = &wc->mods[card + 3].mod.qrv;
wctdm_setreg(wc, mod, 0, 0x80);
wctdm_setreg(wc, mod, 0, 0x55);
wctdm_setreg(wc, mod, 1, 0x69);
qrv->hook = qrv1->hook = 0;
qrv2->hook = qrv3->hook = 0xff;
qrv->debouncetime = qrv1->debouncetime = QRV_DEBOUNCETIME;
qrv->debtime = qrv1->debtime = 0;
qrv->radmode = qrv1->radmode = 0;
qrv->txgain = qrv1->txgain = 3599;
qrv->rxgain = qrv1->rxgain = 1199;
} else { /* channel is on same card as base, no need to test */
if (wc->mods[card & 0x7c].type == QRV) {
/* only lower 2 are valid */
if (!(card & 2))
return 0;
}
mod->type = NONE;
return 1;
}
x = wctdm_getreg(wc, mod, 0);
y = wctdm_getreg(wc, mod, 1);
/* if not a QRV card, return as such */
if ((x != 0x55) || (y != 0x69))
{
mod->type = NONE;
return 1;
}
for (x = 0; x < 0x30; x++) {
if ((x >= 0x1c) && (x <= 0x1e))
wctdm_setreg(wc, mod, x, 0xff);
else
wctdm_setreg(wc, mod, x, 0);
}
wctdm_setreg(wc, mod, 0, 0x80);
msleep(100);
wctdm_setreg(wc, mod, 0, 0x10);
wctdm_setreg(wc, mod, 0, 0x10);
msleep(100);
/* set up modes */
wctdm_setreg(wc, mod, 0, 0x1c);
/* set up I/O directions */
wctdm_setreg(wc, mod, 1, 0x33);
wctdm_setreg(wc, mod, 2, 0x0f);
wctdm_setreg(wc, mod, 5, 0x0f);
/* set up I/O to quiescent state */
wctdm_setreg(wc, mod, 3, 0x11); /* D0-7 */
wctdm_setreg(wc, mod, 4, 0xa); /* D8-11 */
wctdm_setreg(wc, mod, 7, 0); /* CS outputs */
wctdm_qrvdri_set_ts(wc, mod, card);
/* set up for max gains */
wctdm_setreg(wc, mod, 0x26, 0x24);
wctdm_setreg(wc, mod, 0x27, 0x24);
wctdm_setreg(wc, mod, 0x0b, 0x01); /* "Transmit" gain codec 0 */
wctdm_setreg(wc, mod, 0x0c, 0x01); /* "Transmit" gain codec 1 */
wctdm_setreg(wc, mod, 0x0f, 0xff); /* "Receive" gain codec 0 */
wctdm_setreg(wc, mod, 0x10, 0xff); /* "Receive" gain codec 1 */
return 0;
}
static void qrv_dosetup(struct dahdi_chan *chan, struct wctdm *wc)
{
struct wctdm_module *qrvmod;
struct wctdm_module *nextqrvmod;
int qrvcard;
unsigned char r;
long l;
/* actually do something with the values */
qrvcard = (chan->chanpos - 1) & 0xfc;
qrvmod = &wc->mods[qrvcard];
nextqrvmod = &wc->mods[qrvcard + 1];
if (debug) {
dev_info(&wc->vb.pdev->dev,
"@@@@@ radmodes: %d,%d rxgains: %d,%d "
"txgains: %d,%d\n", wc->mods[qrvcard].mod.qrv.radmode,
nextqrvmod->mod.qrv.radmode,
wc->mods[qrvcard].mod.qrv.rxgain,
nextqrvmod->mod.qrv.rxgain,
wc->mods[qrvcard].mod.qrv.txgain,
nextqrvmod->mod.qrv.txgain);
}
r = 0;
if (qrvmod->mod.qrv.radmode & RADMODE_DEEMP)
r |= 4;
if (nextqrvmod->mod.qrv.radmode & RADMODE_DEEMP)
r |= 8;
if (qrvmod->mod.qrv.rxgain < 1200)
r |= 1;
if (nextqrvmod->mod.qrv.rxgain < 1200)
r |= 2;
wctdm_setreg(wc, qrvmod, 7, r);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 7 to %02x hex\n",r);
r = 0;
if (qrvmod->mod.qrv.radmode & RADMODE_PREEMP)
r |= 3;
else if (qrvmod->mod.qrv.txgain >= 3600)
r |= 1;
else if (qrvmod->mod.qrv.txgain >= 1200)
r |= 2;
if (nextqrvmod->mod.qrv.radmode & RADMODE_PREEMP)
r |= 0xc;
else if (nextqrvmod->mod.qrv.txgain >= 3600)
r |= 4;
else if (nextqrvmod->mod.qrv.txgain >= 1200)
r |= 8;
wctdm_setreg(wc, qrvmod, 4, r);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 4 to %02x hex\n",r);
r = 0;
if (qrvmod->mod.qrv.rxgain >= 2400)
r |= 1;
if (nextqrvmod->mod.qrv.rxgain >= 2400)
r |= 2;
wctdm_setreg(wc, qrvmod, 0x25, r);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x25 to %02x hex\n",r);
r = 0;
if (qrvmod->mod.qrv.txgain < 2400)
r |= 1;
else
r |= 4;
if (nextqrvmod->mod.qrv.txgain < 2400)
r |= 8;
else
r |= 0x20;
wctdm_setreg(wc, qrvmod, 0x26, r);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x26 to %02x hex\n",r);
l = ((long)(qrvmod->mod.qrv.rxgain % 1200) * 10000) / 46875;
if (l == 0) l = 1;
if (qrvmod->mod.qrv.rxgain >= 2400)
l += 181;
wctdm_setreg(wc, qrvmod, 0x0b, (unsigned char)l);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0b to %02x hex\n",(unsigned char)l);
l = ((long)(nextqrvmod->mod.qrv.rxgain % 1200) * 10000) / 46875;
if (l == 0) l = 1;
if (nextqrvmod->mod.qrv.rxgain >= 2400)
l += 181;
wctdm_setreg(wc, qrvmod, 0x0c, (unsigned char)l);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0c to %02x hex\n",(unsigned char)l);
l = ((long)(qrvmod->mod.qrv.txgain % 1200) * 10000) / 46875;
if (l == 0) l = 1;
wctdm_setreg(wc, qrvmod, 0x0f, (unsigned char)l);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0f to %02x hex\n", (unsigned char)l);
l = ((long)(nextqrvmod->mod.qrv.txgain % 1200) * 10000) / 46875;
if (l == 0) l = 1;
wctdm_setreg(wc, qrvmod, 0x10, (unsigned char)l);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x10 to %02x hex\n",(unsigned char)l);
return;
}
static void wctdm24xxp_get_fxs_regs(struct wctdm *wc, struct wctdm_module *mod,
struct wctdm_regs *regs)
{
int x;
for (x = 0; x < NUM_INDIRECT_REGS; x++)
regs->indirect[x] = wctdm_proslic_getreg_indirect(wc, mod, x);
for (x = 0; x < NUM_REGS; x++)
regs->direct[x] = wctdm_getreg(wc, mod, x);
}
static void wctdm24xxp_get_fxo_regs(struct wctdm *wc, struct wctdm_module *mod,
struct wctdm_regs *regs)
{
int x;
for (x = 0; x < NUM_FXO_REGS; x++)
regs->direct[x] = wctdm_getreg(wc, mod, x);
}
static void wctdm24xxp_get_qrv_regs(struct wctdm *wc, struct wctdm_module *mod,
struct wctdm_regs *regs)
{
int x;
for (x = 0; x < 0x32; x++)
regs->direct[x] = wctdm_getreg(wc, mod, x);
}
static int wctdm_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
struct wctdm_stats stats;
struct wctdm_regop regop;
struct wctdm_echo_coefs echoregs;
struct dahdi_hwgain hwgain;
struct wctdm *wc = chan->pvt;
int x;
union {
struct dahdi_radio_stat s;
struct dahdi_radio_param p;
} stack;
struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1];
struct fxs *const fxs = &mod->mod.fxs;
switch (cmd) {
case DAHDI_ONHOOKTRANSFER:
if (mod->type != FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
/* Active mode when idle */
fxs->idletxhookstate = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_ACTIVE_FWD) ||
((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_ACTIVE_REV)) {
int res;
res = set_lasttxhook_interruptible(wc, fxs,
(POLARITY_XOR(fxs) ?
SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD),
&mod->sethook);
if (debug & DEBUG_CARD) {
if (res) {
dev_info(&wc->vb.pdev->dev,
"Channel %d TIMEOUT: "
"OnHookTransfer start\n",
chan->chanpos - 1);
} else {
dev_info(&wc->vb.pdev->dev,
"Channel %d OnHookTransfer "
"start\n", chan->chanpos - 1);
}
}
}
fxs->ohttimer = wc->framecount + x;
fxs->oht_active = 1;
break;
case DAHDI_VMWI_CONFIG:
if (mod->type != FXS)
return -EINVAL;
if (copy_from_user(&(fxs->vmwisetting),
(__user void *)data,
sizeof(fxs->vmwisetting)))
return -EFAULT;
set_vmwi(wc, mod);
break;
case DAHDI_VMWI:
if (mod->type != FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
if (0 > x)
return -EFAULT;
fxs->vmwi_active_messages = x;
set_vmwi(wc, mod);
break;
case WCTDM_GET_STATS:
if (mod->type == FXS) {
stats.tipvolt = wctdm_getreg(wc, mod, 80) * -376;
stats.ringvolt = wctdm_getreg(wc, mod, 81) * -376;
stats.batvolt = wctdm_getreg(wc, mod, 82) * -376;
} else if (mod->type == FXO) {
stats.tipvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000;
stats.ringvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000;
stats.batvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000;
} else
return -EINVAL;
if (copy_to_user((__user void *) data, &stats, sizeof(stats)))
return -EFAULT;
break;
case WCTDM_GET_REGS:
{
struct wctdm_regs *regs = kzalloc(sizeof(*regs), GFP_KERNEL);
if (!regs)
return -ENOMEM;
if (mod->type == FXS)
wctdm24xxp_get_fxs_regs(wc, mod, regs);
else if (mod->type == QRV)
wctdm24xxp_get_qrv_regs(wc, mod, regs);
else
wctdm24xxp_get_fxo_regs(wc, mod, regs);
if (copy_to_user((__user void *)data, regs, sizeof(*regs))) {
kfree(regs);
return -EFAULT;
}
kfree(regs);
break;
}
case WCTDM_SET_REG:
if (copy_from_user(&regop, (__user void *) data, sizeof(regop)))
return -EFAULT;
if (regop.indirect) {
if (mod->type != FXS)
return -EINVAL;
dev_info(&wc->vb.pdev->dev, "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos);
wctdm_proslic_setreg_indirect(wc, mod, regop.reg,
regop.val);
} else {
regop.val &= 0xff;
if (regop.reg == LINE_STATE) {
/* Set feedback register to indicate the new state that is being set */
fxs->lasttxhook = (regop.val & 0x0f) | SLIC_LF_OPPENDING;
}
dev_info(&wc->vb.pdev->dev, "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos);
wctdm_setreg(wc, mod, regop.reg, regop.val);
}
break;
case WCTDM_SET_ECHOTUNE:
dev_info(&wc->vb.pdev->dev, "-- Setting echo registers: \n");
if (copy_from_user(&echoregs, (__user void *) data, sizeof(echoregs)))
return -EFAULT;
if (mod->type == FXO) {
/* Set the ACIM register */
wctdm_setreg(wc, mod, 30, echoregs.acim);
/* Set the digital echo canceller registers */
wctdm_setreg(wc, mod, 45, echoregs.coef1);
wctdm_setreg(wc, mod, 46, echoregs.coef2);
wctdm_setreg(wc, mod, 47, echoregs.coef3);
wctdm_setreg(wc, mod, 48, echoregs.coef4);
wctdm_setreg(wc, mod, 49, echoregs.coef5);
wctdm_setreg(wc, mod, 50, echoregs.coef6);
wctdm_setreg(wc, mod, 51, echoregs.coef7);
wctdm_setreg(wc, mod, 52, echoregs.coef8);
dev_info(&wc->vb.pdev->dev, "-- Set echo registers successfully\n");
break;
} else {
return -EINVAL;
}
break;
case DAHDI_SET_HWGAIN:
if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain)))
return -EFAULT;
wctdm_set_hwgain(wc, mod, hwgain.newgain, hwgain.tx);
if (debug)
dev_info(&wc->vb.pdev->dev, "Setting hwgain on channel %d to %d for %s direction\n",
chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx");
break;
#ifdef VPM_SUPPORT
case DAHDI_TONEDETECT:
/* Hardware DTMF detection is not supported. */
return -ENOSYS;
#endif
case DAHDI_SETPOLARITY:
if (get_user(x, (__user int *) data))
return -EFAULT;
if (mod->type != FXS)
return -EINVAL;
/* Can't change polarity while ringing or when open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_RINGING) ||
((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_OPEN)) {
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d Unable to Set Polarity\n", chan->chanpos - 1);
}
return -EINVAL;
}
fxs->reversepolarity = (x) ? 1 : 0;
if (POLARITY_XOR(fxs)) {
fxs->idletxhookstate |= SLIC_LF_REVMASK;
x = fxs->lasttxhook & SLIC_LF_SETMASK;
x |= SLIC_LF_REVMASK;
if (x != fxs->lasttxhook) {
x = set_lasttxhook_interruptible(wc, fxs, x,
&mod->sethook);
if ((debug & DEBUG_CARD) && x) {
dev_info(&wc->vb.pdev->dev,
"Channel %d TIMEOUT: Set Reverse "
"Polarity\n", chan->chanpos - 1);
} else if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d Set Reverse Polarity\n",
chan->chanpos - 1);
}
}
} else {
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
x = fxs->lasttxhook & SLIC_LF_SETMASK;
x &= ~SLIC_LF_REVMASK;
if (x != fxs->lasttxhook) {
x = set_lasttxhook_interruptible(wc, fxs, x,
&mod->sethook);
if ((debug & DEBUG_CARD) & x) {
dev_info(&wc->vb.pdev->dev,
"Channel %d TIMEOUT: Set Normal "
"Polarity\n", chan->chanpos - 1);
} else if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d Set Normal Polarity\n",
chan->chanpos - 1);
}
}
}
break;
case DAHDI_RADIO_GETPARAM:
if (mod->type != QRV)
return -ENOTTY;
if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p)))
return -EFAULT;
stack.p.data = 0; /* start with 0 value in output */
switch(stack.p.radpar) {
case DAHDI_RADPAR_INVERTCOR:
if (mod->mod.qrv.radmode & RADMODE_INVERTCOR)
stack.p.data = 1;
break;
case DAHDI_RADPAR_IGNORECOR:
if (mod->mod.qrv.radmode & RADMODE_IGNORECOR)
stack.p.data = 1;
break;
case DAHDI_RADPAR_IGNORECT:
if (mod->mod.qrv.radmode & RADMODE_IGNORECT)
stack.p.data = 1;
break;
case DAHDI_RADPAR_EXTRXTONE:
stack.p.data = 0;
if (mod->mod.qrv.radmode & RADMODE_EXTTONE) {
stack.p.data = 1;
if (mod->mod.qrv.radmode & RADMODE_EXTINVERT)
stack.p.data = 2;
}
break;
case DAHDI_RADPAR_DEBOUNCETIME:
stack.p.data = mod->mod.qrv.debouncetime;
break;
case DAHDI_RADPAR_RXGAIN:
stack.p.data = mod->mod.qrv.rxgain - 1199;
break;
case DAHDI_RADPAR_TXGAIN:
stack.p.data = mod->mod.qrv.txgain - 3599;
break;
case DAHDI_RADPAR_DEEMP:
stack.p.data = 0;
if (mod->mod.qrv.radmode & RADMODE_DEEMP)
stack.p.data = 1;
break;
case DAHDI_RADPAR_PREEMP:
stack.p.data = 0;
if (mod->mod.qrv.radmode & RADMODE_PREEMP)
stack.p.data = 1;
break;
default:
return -EINVAL;
}
if (copy_to_user((__user void *) data, &stack.p, sizeof(stack.p)))
return -EFAULT;
break;
case DAHDI_RADIO_SETPARAM:
if (mod->type != QRV)
return -ENOTTY;
if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p)))
return -EFAULT;
switch(stack.p.radpar) {
case DAHDI_RADPAR_INVERTCOR:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_INVERTCOR;
else
mod->mod.qrv.radmode &= ~RADMODE_INVERTCOR;
return 0;
case DAHDI_RADPAR_IGNORECOR:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_IGNORECOR;
else
mod->mod.qrv.radmode &= ~RADMODE_IGNORECOR;
return 0;
case DAHDI_RADPAR_IGNORECT:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_IGNORECT;
else
mod->mod.qrv.radmode &= ~RADMODE_IGNORECT;
return 0;
case DAHDI_RADPAR_EXTRXTONE:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_EXTTONE;
else
mod->mod.qrv.radmode &= ~RADMODE_EXTTONE;
if (stack.p.data > 1)
mod->mod.qrv.radmode |= RADMODE_EXTINVERT;
else
mod->mod.qrv.radmode &= ~RADMODE_EXTINVERT;
return 0;
case DAHDI_RADPAR_DEBOUNCETIME:
mod->mod.qrv.debouncetime = stack.p.data;
return 0;
case DAHDI_RADPAR_RXGAIN:
/* if out of range */
if ((stack.p.data <= -1200) || (stack.p.data > 1552))
{
return -EINVAL;
}
mod->mod.qrv.rxgain = stack.p.data + 1199;
break;
case DAHDI_RADPAR_TXGAIN:
/* if out of range */
if (mod->mod.qrv.radmode & RADMODE_PREEMP) {
if ((stack.p.data <= -2400) ||
(stack.p.data > 0))
return -EINVAL;
} else {
if ((stack.p.data <= -3600) ||
(stack.p.data > 1200))
return -EINVAL;
}
mod->mod.qrv.txgain = stack.p.data + 3599;
break;
case DAHDI_RADPAR_DEEMP:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_DEEMP;
else
mod->mod.qrv.radmode &= ~RADMODE_DEEMP;
mod->mod.qrv.rxgain = 1199;
break;
case DAHDI_RADPAR_PREEMP:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_PREEMP;
else
mod->mod.qrv.radmode &= ~RADMODE_PREEMP;
mod->mod.qrv.txgain = 3599;
break;
default:
return -EINVAL;
}
qrv_dosetup(chan,wc);
return 0;
default:
return -ENOTTY;
}
return 0;
}
static int wctdm_open(struct dahdi_chan *chan)
{
struct wctdm *const wc = chan->pvt;
unsigned long flags;
struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1];
#if 0
if (wc->dead)
return -ENODEV;
#endif
if (mod->type == FXO) {
/* Reset the mwi indicators */
spin_lock_irqsave(&wc->reglock, flags);
mod->mod.fxo.neonmwi_debounce = 0;
mod->mod.fxo.neonmwi_offcounter = 0;
mod->mod.fxo.neonmwi_state = 0;
spin_unlock_irqrestore(&wc->reglock, flags);
}
return 0;
}
static inline struct wctdm *span_to_wctdm(struct dahdi_span *span)
{
struct wctdm_span *s = container_of(span, struct wctdm_span, span);
return s->wc;
}
static int wctdm_watchdog(struct dahdi_span *span, int event)
{
struct wctdm *wc = span_to_wctdm(span);
dev_info(&wc->vb.pdev->dev, "TDM: Called watchdog\n");
return 0;
}
static int wctdm_close(struct dahdi_chan *chan)
{
struct wctdm *wc;
int x;
signed char reg;
wc = chan->pvt;
for (x = 0; x < wc->mods_per_board; x++) {
struct wctdm_module *const mod = &wc->mods[x];
if (FXS == mod->type) {
mod->mod.fxs.idletxhookstate =
POLARITY_XOR(&mod->mod.fxs) ? SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
} else if (QRV == mod->type) {
int qrvcard = x & 0xfc;
mod->mod.qrv.hook = 0;
wc->mods[x + 2].mod.qrv.hook = 0xff;
mod->mod.qrv.debouncetime = QRV_DEBOUNCETIME;
mod->mod.qrv.debtime = 0;
mod->mod.qrv.radmode = 0;
mod->mod.qrv.txgain = 3599;
mod->mod.qrv.rxgain = 1199;
reg = 0;
if (!wc->mods[qrvcard].mod.qrv.hook)
reg |= 1;
if (!wc->mods[qrvcard + 1].mod.qrv.hook)
reg |= 0x10;
wc->mods[qrvcard].sethook = CMD_WR(3, reg);
qrv_dosetup(chan,wc);
}
}
return 0;
}
static int wctdm_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig)
{
struct wctdm *wc = chan->pvt;
int reg = 0;
struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1];
if (mod->type == QRV) {
const int qrvcard = (chan->chanpos - 1) & 0xfc;
switch(txsig) {
case DAHDI_TXSIG_START:
case DAHDI_TXSIG_OFFHOOK:
mod->mod.qrv.hook = 1;
break;
case DAHDI_TXSIG_ONHOOK:
mod->mod.qrv.hook = 0;
break;
default:
dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig);
}
reg = 0;
if (!wc->mods[qrvcard].mod.qrv.hook)
reg |= 1;
if (!wc->mods[qrvcard + 1].mod.qrv.hook)
reg |= 0x10;
wc->mods[qrvcard].sethook = CMD_WR(3, reg);
/* wctdm_setreg(wc, qrvcard, 3, reg); */
} else if (mod->type == FXO) {
switch(txsig) {
case DAHDI_TXSIG_START:
case DAHDI_TXSIG_OFFHOOK:
mod->mod.fxo.offhook = 1;
mod->sethook = CMD_WR(5, 0x9);
/* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x9); */
break;
case DAHDI_TXSIG_ONHOOK:
mod->mod.fxo.offhook = 0;
mod->sethook = CMD_WR(5, 0x8);
/* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x8); */
break;
default:
dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig);
}
} else if (mod->type == FXS) {
wctdm_fxs_hooksig(wc, mod, txsig);
}
return 0;
}
static void wctdm_dacs_connect(struct wctdm *wc, int srccard, int dstcard)
{
struct wctdm_module *const srcmod = &wc->mods[srccard];
struct wctdm_module *const dstmod = &wc->mods[dstcard];
unsigned int type;
if (wc->mods[dstcard].dacssrc > -1) {
dev_notice(&wc->vb.pdev->dev, "wctdm_dacs_connect: Can't have double sourcing yet!\n");
return;
}
type = wc->mods[srccard].type;
if ((type == FXS) || (type == FXO)) {
dev_notice(&wc->vb.pdev->dev,
"wctdm_dacs_connect: Unsupported modtype for "
"card %d\n", srccard);
return;
}
type = wc->mods[dstcard].type;
if ((type != FXS) && (type != FXO)) {
dev_notice(&wc->vb.pdev->dev,
"wctdm_dacs_connect: Unsupported modtype "
"for card %d\n", dstcard);
return;
}
if (debug) {
dev_info(&wc->vb.pdev->dev,
"connect %d => %d\n", srccard, dstcard);
}
dstmod->dacssrc = srccard;
/* make srccard transmit to srccard+24 on the TDM bus */
if (srcmod->type == FXS) {
/* proslic */
wctdm_setreg(wc, srcmod, PCM_XMIT_START_COUNT_LSB,
((srccard+24) * 8) & 0xff);
wctdm_setreg(wc, srcmod, PCM_XMIT_START_COUNT_MSB,
((srccard+24) * 8) >> 8);
} else if (srcmod->type == FXO) {
/* daa TX */
wctdm_setreg(wc, srcmod, 34, ((srccard+24) * 8) & 0xff);
wctdm_setreg(wc, srcmod, 35, ((srccard+24) * 8) >> 8);
}
/* have dstcard receive from srccard+24 on the TDM bus */
if (dstmod->type == FXS) {
/* proslic */
wctdm_setreg(wc, dstmod, PCM_RCV_START_COUNT_LSB,
((srccard+24) * 8) & 0xff);
wctdm_setreg(wc, dstmod, PCM_RCV_START_COUNT_MSB,
((srccard+24) * 8) >> 8);
} else if (dstmod->type == FXO) {
/* daa RX */
wctdm_setreg(wc, dstmod, 36, ((srccard+24) * 8) & 0xff);
wctdm_setreg(wc, dstmod, 37, ((srccard+24) * 8) >> 8);
}
}
static void wctdm_dacs_disconnect(struct wctdm *wc, int card)
{
struct wctdm_module *const mod = &wc->mods[card];
struct wctdm_module *dacssrc;
if (mod->dacssrc <= -1)
return;
dacssrc = &wc->mods[mod->dacssrc];
if (debug) {
dev_info(&wc->vb.pdev->dev, "wctdm_dacs_disconnect: "
"restoring TX for %d and RX for %d\n",
mod->dacssrc, card);
}
/* restore TX (source card) */
if (dacssrc->type == FXS) {
wctdm_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_LSB,
(mod->dacssrc * 8) & 0xff);
wctdm_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_MSB,
(mod->dacssrc * 8) >> 8);
} else if (dacssrc->type == FXO) {
wctdm_setreg(wc, mod, 34, (card * 8) & 0xff);
wctdm_setreg(wc, mod, 35, (card * 8) >> 8);
} else {
dev_warn(&wc->vb.pdev->dev,
"WARNING: wctdm_dacs_disconnect() called "
"on unsupported modtype\n");
}
/* restore RX (this card) */
if (FXS == mod->type) {
wctdm_setreg(wc, mod, PCM_RCV_START_COUNT_LSB,
(card * 8) & 0xff);
wctdm_setreg(wc, mod, PCM_RCV_START_COUNT_MSB,
(card * 8) >> 8);
} else if (FXO == mod->type) {
wctdm_setreg(wc, mod, 36, (card * 8) & 0xff);
wctdm_setreg(wc, mod, 37, (card * 8) >> 8);
} else {
dev_warn(&wc->vb.pdev->dev,
"WARNING: wctdm_dacs_disconnect() called "
"on unsupported modtype\n");
}
mod->dacssrc = -1;
}
static int wctdm_dacs(struct dahdi_chan *dst, struct dahdi_chan *src)
{
struct wctdm *wc;
if (!nativebridge)
return 0; /* should this return -1 since unsuccessful? */
wc = dst->pvt;
if (src) {
wctdm_dacs_connect(wc, src->chanpos - 1, dst->chanpos - 1);
if (debug)
dev_info(&wc->vb.pdev->dev, "dacs connecct: %d -> %d!\n\n", src->chanpos, dst->chanpos);
} else {
wctdm_dacs_disconnect(wc, dst->chanpos - 1);
if (debug)
dev_info(&wc->vb.pdev->dev, "dacs disconnect: %d!\n", dst->chanpos);
}
return 0;
}
/**
* wctdm_wait_for_ready
*
* Check if the board has finished any setup and is ready to start processing
* calls.
*/
int wctdm_wait_for_ready(struct wctdm *wc)
{
while (!is_initialized(wc)) {
if (fatal_signal_pending(current))
return -EIO;
msleep_interruptible(250);
}
return 0;
}
static int wctdm_enable_hw_preechocan(struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan);
if (!wc->vpmoct)
return 0;
return vpmoct_preecho_enable(wc->vpmoct, wchan->timeslot);
}
static void wctdm_disable_hw_preechocan(struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan);
if (!wc->vpmoct)
return;
vpmoct_preecho_disable(wc->vpmoct, wchan->timeslot);
}
/**
* wctdm_chanconfig - Called when the channels are being configured.
*
* Ensure that the card is completely ready to go before we allow the channels
* to be completely configured. This is to allow lengthy initialization
* actions to take place in background on driver load and ensure we're synced
* up by the time dahdi_cfg is run.
*
*/
static int
wctdm_chanconfig(struct file *file, struct dahdi_chan *chan, int sigtype)
{
struct wctdm *wc = chan->pvt;
if ((file->f_flags & O_NONBLOCK) && !is_initialized(wc))
return -EAGAIN;
return wctdm_wait_for_ready(wc);
}
static const struct dahdi_span_ops wctdm24xxp_analog_span_ops = {
.owner = THIS_MODULE,
.hooksig = wctdm_hooksig,
.open = wctdm_open,
.close = wctdm_close,
.ioctl = wctdm_ioctl,
.watchdog = wctdm_watchdog,
.chanconfig = wctdm_chanconfig,
.dacs = wctdm_dacs,
#ifdef VPM_SUPPORT
.enable_hw_preechocan = wctdm_enable_hw_preechocan,
.disable_hw_preechocan = wctdm_disable_hw_preechocan,
.echocan_create = wctdm_echocan_create,
.echocan_name = wctdm_echocan_name,
#endif
};
static const struct dahdi_span_ops wctdm24xxp_digital_span_ops = {
.owner = THIS_MODULE,
.open = wctdm_open,
.close = wctdm_close,
.ioctl = wctdm_ioctl,
.watchdog = wctdm_watchdog,
.hdlc_hard_xmit = wctdm_hdlc_hard_xmit,
.spanconfig = b400m_spanconfig,
.chanconfig = b400m_chanconfig,
.dacs = wctdm_dacs,
#ifdef VPM_SUPPORT
.enable_hw_preechocan = wctdm_enable_hw_preechocan,
.disable_hw_preechocan = wctdm_disable_hw_preechocan,
.echocan_create = wctdm_echocan_create,
.echocan_name = wctdm_echocan_name,
#endif
};
static struct wctdm_chan *
wctdm_init_chan(struct wctdm *wc, struct wctdm_span *s, int chanoffset,
int channo, unsigned int card_position)
{
struct wctdm_chan *c;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return NULL;
/* Do not change the procfs representation for non-hx8 cards. */
if (dahdi_is_digital_span(&s->span)) {
sprintf(c->chan.name, "WCBRI/%d/%d/%d", card_position,
s->spanno, channo);
} else {
sprintf(c->chan.name, "WCTDM/%d/%d", card_position, channo);
}
c->chan.chanpos = channo+1;
c->chan.span = &s->span;
c->chan.pvt = wc;
c->timeslot = chanoffset + channo;
return c;
}
#if 0
/**
* wctdm_span_count() - Return the number of spans exported by this board.
*
* This is only called during initialization so let's just count the spans each
* time we need this information as opposed to storing another variable in the
* wctdm structure.
*/
static int wctdm_span_count(const struct wctdm *wc)
{
int i;
int count = 0;
for (i = 0; i < MAX_SPANS; ++i) {
if (wc->spans[i])
++count;
}
return count;
}
#endif
static struct wctdm_span *
wctdm_init_span(struct wctdm *wc, int spanno, int chanoffset, int chancount,
int digital_span, unsigned int card_position)
{
int x;
struct wctdm_chan *c;
struct wctdm_span *s;
static int spancount;
s = kzalloc(sizeof(*s), GFP_KERNEL);
if (!s)
return NULL;
/* DAHDI stuff */
s->span.offset = spanno;
s->spanno = spancount++;
s->wc = wc;
/* Do not change the procfs representation for non-hx8 cards. */
if (digital_span)
sprintf(s->span.name, "WCBRI/%d/%d", card_position, s->spanno);
else
sprintf(s->span.name, "WCTDM/%d", card_position);
snprintf(s->span.desc, sizeof(s->span.desc) - 1, "%s", wc->desc->name);
if (wc->companding == DAHDI_LAW_DEFAULT) {
if (wc->digi_mods || digital_span)
/* If we have a BRI module, Auto set to alaw */
s->span.deflaw = DAHDI_LAW_ALAW;
else
/* Auto set to ulaw */
s->span.deflaw = DAHDI_LAW_MULAW;
} else if (wc->companding == DAHDI_LAW_ALAW) {
/* Force everything to alaw */
s->span.deflaw = DAHDI_LAW_ALAW;
} else {
/* Auto set to ulaw */
s->span.deflaw = DAHDI_LAW_MULAW;
}
if (digital_span) {
s->span.ops = &wctdm24xxp_digital_span_ops;
s->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS | DAHDI_CONFIG_D4;
s->span.linecompat |= DAHDI_CONFIG_ESF | DAHDI_CONFIG_HDB3 | DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4;
s->span.linecompat |= DAHDI_CONFIG_NTTE | DAHDI_CONFIG_TERM;
s->span.spantype = SPANTYPE_DIGITAL_BRI_TE;
} else {
s->span.ops = &wctdm24xxp_analog_span_ops;
s->span.flags = DAHDI_FLAG_RBS;
s->span.spantype = SPANTYPE_ANALOG_MIXED;
/* analog sigcap handled in fixup_analog_span() */
}
s->span.chans = kmalloc(sizeof(struct dahdi_chan *) * chancount, GFP_KERNEL);
if (!s->span.chans)
return NULL;
/* allocate channels for the span */
for (x = 0; x < chancount; x++) {
c = wctdm_init_chan(wc, s, chanoffset, x, card_position);
if (!c)
return NULL;
wc->chans[chanoffset + x] = c;
s->span.chans[x] = &c->chan;
}
s->span.channels = chancount;
if (digital_span) {
wc->chans[chanoffset + 0]->chan.sigcap = DAHDI_SIG_CLEAR;
wc->chans[chanoffset + 1]->chan.sigcap = DAHDI_SIG_CLEAR;
wc->chans[chanoffset + 2]->chan.sigcap = DAHDI_SIG_HARDHDLC;
}
wc->spans[spanno] = s;
return s;
}
/**
* should_set_alaw() - Should be called after all the spans are initialized.
*
* Returns true if the module companding should be set to alaw, otherwise
* false.
*/
static bool should_set_alaw(const struct wctdm *wc)
{
if (DAHDI_LAW_DEFAULT == wc->companding)
return (wc->digi_mods > 0);
else if (DAHDI_LAW_ALAW == wc->companding)
return true;
else
return false;
}
static void wctdm_fixup_analog_span(struct wctdm *wc, int spanno)
{
struct dahdi_span *s;
int x, y;
/* Finalize signalling */
y = 0;
s = &wc->spans[spanno]->span;
for (x = 0; x < wc->desc->ports; x++) {
struct wctdm_module *const mod = &wc->mods[x];
if (debug) {
dev_info(&wc->vb.pdev->dev,
"fixup_analog: x=%d, y=%d modtype=%d, "
"s->chans[%d]=%p\n", x, y, mod->type,
y, s->chans[y]);
}
if (mod->type == FXO) {
int val;
s->chans[y++]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR;
val = should_set_alaw(wc) ? 0x20 : 0x28;
#ifdef DEBUG
val = (digitalloopback) ? 0x30 : val;
#endif
wctdm_setreg(wc, mod, 33, val);
} else if (mod->type == FXS) {
s->chans[y++]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
wctdm_setreg(wc, mod, 1,
(should_set_alaw(wc) ? 0x20 : 0x28));
} else if (mod->type == QRV) {
s->chans[y++]->sigcap = DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
} else {
s->chans[y++]->sigcap = 0;
}
}
}
static int wctdm_initialize_vpmadt032(struct wctdm *wc)
{
int res;
struct vpmadt032_options options;
struct vpmadt032 *vpm;
unsigned long flags;
options.debug = debug;
options.vpmnlptype = vpmnlptype;
options.vpmnlpthresh = vpmnlpthresh;
options.vpmnlpmaxsupp = vpmnlpmaxsupp;
if (is_hx8(wc)) {
/* Hybrid cards potentially have 3 channels of EC on their
* ports since they may be BRI spans. */
options.channels = 3 * wc->desc->ports;
} else {
options.channels = wc->desc->ports;
}
BUG_ON(options.channels > 24);
wc->vpmadt032 = vpmadt032_alloc(&options);
if (!wc->vpmadt032)
return -ENOMEM;
wc->vpmadt032->setchanconfig_from_state = setchanconfig_from_state;
/* Pull the configuration information from the span holding
* the analog channels. */
res = vpmadt032_test(wc->vpmadt032, &wc->vb);
if (!res)
res = vpmadt032_init(wc->vpmadt032);
if (res) {
vpm = wc->vpmadt032;
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpm);
return res;
}
/* Now we need to configure the VPMADT032 module for this
* particular board. */
res = config_vpmadt032(wc->vpmadt032, wc);
if (res) {
vpm = wc->vpmadt032;
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpm);
return res;
}
return 0;
}
static void wctdm_vpm_load_complete(struct device *dev, bool operational)
{
unsigned long flags;
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
struct wctdm *wc = pci_get_drvdata(pdev);
struct vpmoct *vpm = NULL;
WARN_ON(!wc || !wc->not_ready);
if (!wc || !wc->not_ready)
return;
spin_lock_irqsave(&wc->reglock, flags);
wc->not_ready--;
if (operational) {
wc->ctlreg |= 0x10;
} else {
vpm = wc->vpmoct;
wc->vpmoct = NULL;
}
spin_unlock_irqrestore(&wc->reglock, flags);
if (vpm)
vpmoct_free(vpm);
}
static int wctdm_initialize_vpm(struct wctdm *wc, unsigned long unused)
{
int res = 0;
if (!vpmsupport) {
dev_notice(&wc->vb.pdev->dev, "VPM: Support Disabled\n");
return 0;
}
res = wctdm_initialize_vpmadt032(wc);
if (!res) {
wc->ctlreg |= 0x10;
return 0;
} else {
struct vpmoct *vpm;
unsigned long flags;
vpm = vpmoct_alloc();
if (!vpm) {
dev_info(&wc->vb.pdev->dev,
"Unable to allocate memory for struct vpmoct\n");
return -ENOMEM;
}
vpm->dev = &wc->vb.pdev->dev;
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmoct = vpm;
wc->not_ready++;
spin_unlock_irqrestore(&wc->reglock, flags);
res = vpmoct_init(vpm, wctdm_vpm_load_complete);
if (-EINVAL == res) {
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmoct = NULL;
wc->not_ready--;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmoct_free(vpm);
}
}
return 0;
}
static int __wctdm_identify_module_group(struct wctdm *wc, unsigned long base)
{
int x;
unsigned long flags;
for (x = base; x < base + 4; ++x) {
struct wctdm_module *const mod = &wc->mods[x];
enum {SANE = 1, UNKNOWN = 0};
int ret = 0, readi = 0;
bool altcs = false;
if (fatal_signal_pending(current))
break;
retry:
ret = wctdm_init_proslic(wc, mod, 0, 0, UNKNOWN);
if (!ret) {
if (debug & DEBUG_CARD) {
readi = wctdm_getreg(wc, mod, LOOP_I_LIMIT);
dev_info(&wc->vb.pdev->dev,
"Proslic module %d loop current "
"is %dmA\n", x, ((readi*3) + 20));
}
continue;
}
if (ret != -2) {
/* Init with Manual Calibration */
if (!wctdm_init_proslic(wc, mod, 0, 1, SANE)) {
if (debug & DEBUG_CARD) {
readi = wctdm_getreg(wc, mod,
LOOP_I_LIMIT);
dev_info(&wc->vb.pdev->dev,
"Proslic module %d loop "
"current is %dmA\n", x,
((readi*3)+20));
}
} else {
dev_notice(&wc->vb.pdev->dev,
"Port %d: FAILED FXS (%s)\n",
x + 1, fxshonormode ?
fxo_modes[_opermode].name : "FCC");
}
continue;
}
ret = wctdm_init_voicedaa(wc, mod, 0, 0, UNKNOWN);
if (!ret)
continue;
if (!wctdm_init_qrvdri(wc, x))
continue;
if (is_hx8(wc) && !wctdm_init_b400m(wc, x))
continue;
if ((wc->desc->ports != 24) && ((x&0x3) == 1) && !altcs) {
spin_lock_irqsave(&wc->reglock, flags);
set_offsets(mod, 2);
altcs = true;
if (wc->desc->ports == 4) {
set_offsets(&wc->mods[x+1], 3);
set_offsets(&wc->mods[x+2], 3);
}
mod->type = FXSINIT;
spin_unlock_irqrestore(&wc->reglock, flags);
udelay(1000);
udelay(1000);
spin_lock_irqsave(&wc->reglock, flags);
mod->type = FXS;
spin_unlock_irqrestore(&wc->reglock, flags);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Trying port %d with alternate chip "
"select\n", x + 1);
}
goto retry;
}
mod->type = NONE;
}
return 0;
}
/**
* wctdm_print_moule_configuration - Print the configuration to the kernel log
* @wc: The card we're interested in.
*
* This is to ensure that the module configuration from each card shows up
* sequentially in the kernel log, as opposed to interleaved with one another.
*
*/
static void wctdm_print_module_configuration(const struct wctdm *const wc)
{
int i;
static DEFINE_MUTEX(print);
mutex_lock(&print);
for (i = 0; i < wc->mods_per_board; ++i) {
const struct wctdm_module *const mod = &wc->mods[i];
switch (mod->type) {
case FXO:
dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- "
"AUTO FXO (%s mode)\n", i + 1,
fxo_modes[_opermode].name);
break;
case FXS:
dev_info(&wc->vb.pdev->dev,
"Port %d: Installed -- AUTO FXS/DPO\n", i + 1);
break;
case BRI:
dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- BRI "
"quad-span module\n", i + 1);
break;
case QRV:
dev_info(&wc->vb.pdev->dev,
"Port %d: Installed -- QRV DRI card\n", i + 1);
break;
case NONE:
dev_info(&wc->vb.pdev->dev,
"Port %d: Not installed\n", i + 1);
break;
case FXSINIT:
break;
}
}
mutex_unlock(&print);
}
static void wctdm_identify_modules(struct wctdm *wc)
{
int x;
unsigned long flags;
struct bg *bg_work[ARRAY_SIZE(wc->mods)/4 + 1] = {NULL, };
wc->ctlreg = 0x00;
/*
* This looks a little weird.
*
* There are only 8 physical ports on the TDM/AEX800, but the code
* immediately below sets 24 modules up. This has to do with the
* altcs magic that allows us to have single-port and quad-port
* modules on these products. The variable "mods_per_board" is set to
* the appropriate value just below the next code block.
*
* Now why this is important: The FXS modules come out of reset in a
* two-byte, non-chainable SPI mode. This is currently incompatible
* with how we do things, so we need to set them to a chained, 3-byte
* command mode. This is done by setting the module type to FXSINIT
* for a little while so that cmd_dequeue will initialize the SLIC
* into the appropriate mode.
*
* This "go to 3-byte chained mode" command, however, wreaks havoc
* with HybridBRI.
*
* The solution: Since HybridBRI is only designed to work in an 8-port
* card, and since the single-port modules "show up" in SPI slots >= 8
* in these cards, we only set SPI slots 8-23 to FXSINIT. The
* HybridBRI will never see the command that causes it to freak out
* and the single-port FXS cards get what they need so that when we
* probe with altcs we see them.
*/
/* Make sure all units go into daisy chain mode */
spin_lock_irqsave(&wc->reglock, flags);
for (x = 0; x < ARRAY_SIZE(wc->mods); x++)
wc->mods[x].type = FXSINIT;
spin_unlock_irqrestore(&wc->reglock, flags);
/* Wait just a bit; this makes sure that cmd_dequeue is emitting SPI
* commands in the appropriate mode(s). */
msleep(20);
/* Now that all the cards have been reset, we can stop checking them
* all if there aren't as many */
spin_lock_irqsave(&wc->reglock, flags);
wc->mods_per_board = wc->desc->ports;
spin_unlock_irqrestore(&wc->reglock, flags);
BUG_ON(wc->desc->ports % 4);
/* Detecting and configuring the modules over voicebus takes a
* significant amount of time. We can speed things up by performing
* this in parallel for each group of four modules. */
for (x = 0; x < wc->desc->ports/4; x++)
bg_work[x] = bg_create(wc, __wctdm_identify_module_group, x*4);
for (x = 0; bg_work[x]; ++x)
bg_join(bg_work[x]);
wctdm_print_module_configuration(wc);
}
static struct pci_driver wctdm_driver;
static void wctdm_back_out_gracefully(struct wctdm *wc)
{
int i;
unsigned long flags;
struct vpmadt032 *vpm;
LIST_HEAD(local_list);
spin_lock_irqsave(&wc->reglock, flags);
if (wc->not_ready) {
wc->not_ready--;
spin_unlock_irqrestore(&wc->reglock, flags);
while (wctdm_wait_for_ready(wc))
schedule();
spin_lock_irqsave(&wc->reglock, flags);
}
spin_unlock_irqrestore(&wc->reglock, flags);
if (wc->vpmadt032) {
flush_workqueue(wc->vpmadt032->wq);
clear_bit(VPM150M_ACTIVE, &wc->vpmadt032->control);
flush_workqueue(wc->vpmadt032->wq);
spin_lock_irqsave(&wc->reglock, flags);
vpm = wc->vpmadt032;
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpm);
}
voicebus_release(&wc->vb);
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (i = 0; i < ARRAY_SIZE(wc->ec_reference); ++i) {
if (wc->ec_reference[i])
dahdi_fifo_free(wc->ec_reference[i]);
}
#endif
for (i = 0; i < ARRAY_SIZE(wc->spans); ++i) {
if (wc->spans[i] && wc->spans[i]->span.chans)
kfree(wc->spans[i]->span.chans);
kfree(wc->spans[i]);
wc->spans[i] = NULL;
}
spin_lock_irqsave(&wc->reglock, flags);
for (i = 0; i < ARRAY_SIZE(wc->mods); ++i) {
struct wctdm_module *const mod = &wc->mods[i];
kfree(wc->chans[i]);
wc->chans[i] = NULL;
list_splice_init(&mod->pending_cmds, &local_list);
list_splice_init(&mod->active_cmds, &local_list);
}
list_splice_init(&wc->free_isr_commands, &local_list);
spin_unlock_irqrestore(&wc->reglock, flags);
while (!list_empty(&local_list)) {
struct wctdm_cmd *cmd;
cmd = list_entry(local_list.next,
struct wctdm_cmd, node);
list_del(&cmd->node);
kfree(cmd->complete);
kfree(cmd);
}
spin_lock_irqsave(&wc->frame_list_lock, flags);
list_splice(&wc->frame_list, &local_list);
spin_unlock_irqrestore(&wc->frame_list_lock, flags);
while (!list_empty(&local_list)) {
struct sframe_packet *frame;
frame = list_entry(local_list.next,
struct sframe_packet, node);
list_del(&frame->node);
kfree(frame);
}
kfree(wc->board_name);
kfree(wc->ddev->devicetype);
kfree(wc->ddev->location);
dahdi_free_device(wc->ddev);
kfree(wc);
}
static const struct voicebus_operations voicebus_operations = {
.handle_receive = handle_receive,
.handle_transmit = handle_transmit,
};
static const struct voicebus_operations hx8_voicebus_operations = {
.handle_receive = handle_hx8_receive,
.handle_transmit = handle_hx8_transmit,
};
struct cmd_results {
u8 results[8];
};
static int hx8_send_command(struct wctdm *wc, const u8 *command,
size_t count, int checksum,
int application, int bootloader,
struct cmd_results *results)
{
int ret = 0;
struct vbb *vbb;
struct sframe_packet *frame;
const int MAX_COMMAND_LENGTH = 264 + 4;
unsigned long flags;
dma_addr_t dma_addr;
might_sleep();
/* can't boot both into the application and the bootloader at once. */
WARN_ON((application > 0) && (bootloader > 0));
if ((application > 0) && (bootloader > 0))
return -EINVAL;
WARN_ON(count > MAX_COMMAND_LENGTH);
if (count > MAX_COMMAND_LENGTH)
return -EINVAL;
vbb = dma_pool_alloc(wc->vb.pool, GFP_KERNEL, &dma_addr);
WARN_ON(!vbb);
if (!vbb)
return -ENOMEM;
vbb->dma_addr = dma_addr;
memset(vbb->data, 0, SFRAME_SIZE);
memcpy(&vbb->data[EFRAME_SIZE + EFRAME_GAP], command, count);
vbb->data[EFRAME_SIZE] = 0x80 | ((application) ? 0 : 0x40) |
((checksum) ? 0x20 : 0) | ((count & 0x100) >> 4);
vbb->data[EFRAME_SIZE + 1] = count & 0xff;
if (bootloader)
vbb->data[EFRAME_SIZE + 3] = 0xAA;
spin_lock_irqsave(&wc->vb.lock, flags);
voicebus_transmit(&wc->vb, vbb);
spin_unlock_irqrestore(&wc->vb.lock, flags);
/* Do not wait for the response if the caller doesn't care about the
* results. */
if (NULL == results)
return 0;
if (!wait_event_timeout(wc->regq, !list_empty(&wc->frame_list), 2*HZ)) {
dev_err(&wc->vb.pdev->dev, "Timeout waiting "
"for receive frame.\n");
ret = -EIO;
}
/* We only want the last packet received. Throw away anything else on
* the list */
frame = NULL;
spin_lock_irqsave(&wc->frame_list_lock, flags);
while (!list_empty(&wc->frame_list)) {
frame = list_entry(wc->frame_list.next,
struct sframe_packet, node);
list_del(&frame->node);
if (!list_empty(&wc->frame_list)) {
kfree(frame);
frame = NULL;
}
}
spin_unlock_irqrestore(&wc->frame_list_lock, flags);
if (frame) {
memcpy(results->results, &frame->sframe[EFRAME_SIZE],
sizeof(results->results));
} else {
ret = -EIO;
}
return ret;
}
static int hx8_get_fpga_version(struct wctdm *wc, u8 *major, u8 *minor)
{
int ret;
struct cmd_results results;
u8 command[] = {0xD7, 0x00};
ret = hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 0, 0, &results);
if (ret)
return ret;
*major = results.results[0];
*minor = results.results[2];
return 0;
}
static void hx8_cleanup_frame_list(struct wctdm *wc)
{
unsigned long flags;
LIST_HEAD(local_list);
struct sframe_packet *frame;
spin_lock_irqsave(&wc->frame_list_lock, flags);
list_splice_init(&wc->frame_list, &local_list);
spin_unlock_irqrestore(&wc->frame_list_lock, flags);
while (!list_empty(&local_list)) {
frame = list_entry(local_list.next, struct sframe_packet, node);
list_del(&frame->node);
kfree(frame);
}
}
static int hx8_switch_to_application(struct wctdm *wc)
{
int ret;
u8 command[] = {0xD7, 0x00};
ret = hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 1, 0, NULL);
if (ret)
return ret;
msleep(1000);
hx8_cleanup_frame_list(wc);
return 0;
}
/**
* hx8_switch_to_bootloader() - Send packet to switch hx8 into bootloader
*
*/
static int hx8_switch_to_bootloader(struct wctdm *wc)
{
int ret;
u8 command[] = {0xD7, 0x00};
ret = hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 0, 1, NULL);
if (ret)
return ret;
/* It takes some time for the FPGA to reload and switch it's
* configuration. */
msleep(300);
hx8_cleanup_frame_list(wc);
return 0;
}
struct ha80000_firmware {
u8 header[6];
u8 major_ver;
u8 minor_ver;
u8 data[54648];
__le32 chksum;
} __attribute__((packed));
static void hx8_send_dummy(struct wctdm *wc)
{
u8 command[] = {0xD7, 0x00};
hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 0, 0, NULL);
}
static int hx8_read_status_register(struct wctdm *wc, u8 *status)
{
int ret;
struct cmd_results results;
u8 command[] = {0xD7, 0x00};
ret = hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 0, 0, &results);
if (ret)
return ret;
*status = results.results[3];
return 0;
}
static const unsigned int HYBRID_PAGE_SIZE = 264;
static int hx8_write_buffer(struct wctdm *wc, const u8 *buffer, size_t size)
{
int ret = 0;
struct cmd_results results;
int padding_bytes = 0;
u8 *local_data;
u8 command[] = {0x84, 0, 0, 0};
if (size > HYBRID_PAGE_SIZE)
return -EINVAL;
if (size < HYBRID_PAGE_SIZE)
padding_bytes = HYBRID_PAGE_SIZE - size;
local_data = kmalloc(sizeof(command) + size + padding_bytes, GFP_KERNEL);
if (!local_data)
return -ENOMEM;
memcpy(local_data, command, sizeof(command));
memcpy(&local_data[sizeof(command)], buffer, size);
memset(&local_data[sizeof(command) + size], 0xff, padding_bytes);
ret = hx8_send_command(wc, local_data,
sizeof(command) + size + padding_bytes,
1, 0, 0, &results);
if (ret)
goto cleanup;
cleanup:
kfree(local_data);
return ret;
}
static int hx8_buffer_to_page(struct wctdm *wc, const unsigned int page)
{
int ret;
struct cmd_results results;
u8 command[] = {0x83, (page & 0x180) >> 7, (page & 0x7f) << 1, 0x00};
ret = hx8_send_command(wc, command, sizeof(command),
1, 0, 0, &results);
if (ret)
return ret;
return 0;
}
static int hx8_wait_for_ready(struct wctdm *wc, const int timeout)
{
int ret;
u8 status;
unsigned long local_timeout = jiffies + timeout;
do {
ret = hx8_read_status_register(wc, &status);
if (ret)
return ret;
if ((status & 0x80) > 0)
break;
} while (time_after(local_timeout, jiffies));
if (time_after(jiffies, local_timeout))
return -EIO;
return 0;
}
/**
* hx8_reload_application - reload the application firmware
*
* NOTE: The caller should ensure that the board is in bootloader mode before
* calling this function.
*/
static int hx8_reload_application(struct wctdm *wc, const struct ha80000_firmware *ha8_fw)
{
unsigned int cur_page;
const u8 *data;
u8 status;
int ret = 0;
const int HYBRID_PAGE_COUNT = (sizeof(ha8_fw->data)) / HYBRID_PAGE_SIZE;
dev_info(&wc->vb.pdev->dev, "Reloading firmware. Do not power down "
"the system until the process is complete.\n");
BUG_ON(!ha8_fw);
might_sleep();
data = &ha8_fw->data[0];
ret = hx8_read_status_register(wc, &status);
if (ret)
return ret;
for (cur_page = 0; cur_page < HYBRID_PAGE_COUNT; ++cur_page) {
ret = hx8_write_buffer(wc, data, HYBRID_PAGE_SIZE);
if (ret)
return ret;
/* The application starts out at page 0x100 */
ret = hx8_buffer_to_page(wc, 0x100 + cur_page);
if (ret)
return ret;
/* wait no more than a second for the write to the page to
* finish */
ret = hx8_wait_for_ready(wc, HZ);
if (ret)
return ret;
data += HYBRID_PAGE_SIZE;
}
return ret;
}
static void print_hx8_recovery_message(struct device *dev)
{
dev_warn(dev, "The firmware may be corrupted. Please completely "
"power off your system, power on, and then reload the driver "
"with the 'forceload' module parameter set to 1 to attempt "
"recovery.\n");
}
/**
* hx8_check_firmware - Check the firmware version and load a new one possibly.
*
*/
static int hx8_check_firmware(struct wctdm *wc)
{
int ret;
u8 major;
u8 minor;
const struct firmware *fw;
const struct ha80000_firmware *ha8_fw;
struct device *dev = &wc->vb.pdev->dev;
int retries = 10;
BUG_ON(!is_hx8(wc));
might_sleep();
do {
hx8_send_dummy(wc);
ret = hx8_get_fpga_version(wc, &major, &minor);
if (!ret)
break;
if (fatal_signal_pending(current))
return -EINTR;
} while (--retries);
if (ret) {
print_hx8_recovery_message(dev);
return ret;
}
/* If we're in the bootloader, try to jump into the application. */
if ((1 == major) && (0x80 == minor) && !forceload) {
dev_dbg(dev, "Switching to application.\n");
hx8_switch_to_application(wc);
ret = hx8_get_fpga_version(wc, &major, &minor);
if (ret) {
print_hx8_recovery_message(dev);
return ret;
}
}
dev_dbg(dev, "FPGA VERSION: %02x.%02x\n", major, minor);
ret = request_firmware(&fw, "dahdi-fw-hx8.bin", dev);
if (ret) {
dev_warn(dev, "Failed to load firmware from userspace, skipping "
"check. (%d)\n", ret);
return 0;
}
ha8_fw = (const struct ha80000_firmware *)fw->data;
if ((fw->size != sizeof(*ha8_fw)) ||
(0 != memcmp("DIGIUM", ha8_fw->header, sizeof(ha8_fw->header))) ||
((crc32(~0, (void *)ha8_fw, sizeof(*ha8_fw) - sizeof(u32)) ^ ~0) !=
le32_to_cpu(ha8_fw->chksum))) {
dev_warn(dev, "Firmware file is invalid. Skipping load.\n");
ret = 0;
goto cleanup;
}
dev_dbg(dev, "FIRMWARE: %02x.%02x\n", ha8_fw->major_ver, ha8_fw->minor_ver);
if (ha8_fw->major_ver == major &&
ha8_fw->minor_ver == minor) {
dev_dbg(dev, "Firmware versions match, skipping load.\n");
ret = 0;
goto cleanup;
}
if (2 == major) {
hx8_switch_to_bootloader(wc);
ret = hx8_get_fpga_version(wc, &major, &minor);
if (ret)
goto cleanup;
}
/* so now we're in boot loader mode, ready to load the new firmware. */
ret = hx8_reload_application(wc, ha8_fw);
if (ret)
goto cleanup;
dev_dbg(dev, "Firmware reloaded. Booting into application.\n");
hx8_switch_to_application(wc);
ret = hx8_get_fpga_version(wc, &major, &minor);
if (ret)
goto cleanup;
dev_dbg(dev, "FPGA VERSION AFTER LOAD: %02x.%02x\n", major, minor);
if (forceload) {
dev_warn(dev, "Please unset forceload if your card is able to "
"detect the installed modules.\n");
}
cleanup:
release_firmware(fw);
dev_info(dev, "Hx8 firmware version: %d.%02d\n", major, minor);
return ret;
}
#ifdef CONFIG_VOICEBUS_SYSFS
static ssize_t
voicebus_current_latency_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long flags;
struct wctdm *wc = dev_get_drvdata(dev);
unsigned int current_latency;
spin_lock_irqsave(&wc->vb.lock, flags);
current_latency = wc->vb.min_tx_buffer_count;
spin_unlock_irqrestore(&wc->vb.lock, flags);
return sprintf(buf, "%d\n", current_latency);
}
static DEVICE_ATTR(voicebus_current_latency, 0400,
voicebus_current_latency_show, NULL);
static ssize_t vpm_firmware_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int res;
u16 version = 0;
struct wctdm *wc = dev_get_drvdata(dev);
if (wc->vpmadt032) {
res = gpakPingDsp(wc->vpmadt032->dspid, &version);
if (res) {
dev_info(&wc->vb.pdev->dev, "Failed gpakPingDsp %d\n", res);
version = -1;
}
}
return sprintf(buf, "%x.%02x\n", (version & 0xff00) >> 8, (version & 0xff));
}
static DEVICE_ATTR(vpm_firmware_version, 0400,
vpm_firmware_version_show, NULL);
static ssize_t
enable_vpm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long flags;
struct wctdm *wc = dev_get_drvdata(dev);
unsigned int enable_vpm;
spin_lock_irqsave(&wc->reglock, flags);
enable_vpm = (wc->ctlreg & 0x10) != 0;
spin_unlock_irqrestore(&wc->reglock, flags);
return sprintf(buf, "%d\n", enable_vpm);
}
static ssize_t
enable_vpm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long flags;
struct wctdm *wc = dev_get_drvdata(dev);
unsigned int enable_vpm;
if (count < 2)
return -EINVAL;
if (('0' == buf[0]) || (0 == buf[0]))
enable_vpm = 0;
else
enable_vpm = 1;
spin_lock_irqsave(&wc->reglock, flags);
if (enable_vpm)
wc->ctlreg |= 0x10;
else
wc->ctlreg &= ~0x10;
spin_unlock_irqrestore(&wc->reglock, flags);
return count;
}
static DEVICE_ATTR(enable_vpm, 0644,
enable_vpm_show, enable_vpm_store);
static void create_sysfs_files(struct wctdm *wc)
{
int ret;
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_voicebus_current_latency);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_vpm_firmware_version);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_enable_vpm);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
}
static void remove_sysfs_files(struct wctdm *wc)
{
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_enable_vpm);
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_vpm_firmware_version);
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_voicebus_current_latency);
}
#else
static inline void create_sysfs_files(struct wctdm *wc) { return; }
static inline void remove_sysfs_files(struct wctdm *wc) { return; }
#endif /* CONFIG_VOICEBUS_SYSFS */
static void wctdm_set_tdm410_leds(struct wctdm *wc)
{
int i;
if (4 != wc->desc->ports)
return;
wc->tdm410leds = 0; /* all on by default */
for (i = 0; i < wc->desc->ports; ++i) {
/* Turn off the LED for any module that isn't installed. */
if (NONE == wc->mods[i].type)
wc->tdm410leds |= (1 << i);
}
}
/**
* wctdm_allocate_irq_commands - Preallocate some commands for use in interrupt context.
* @wc: The board which we're allocating for.
* @count: The number of IRQ commands to allocate.
*
* We need a minimum of 4 * the current latency worth of commands for each
* analog module. When the latency grows, new commands will be allocated, but
* this just represents are best guess as to the number of commands we'll need
* after probing for modules, and reduces the chance that we'll allocate
* memory in interrupt context when the driver first loads.
*
*/
static void wctdm_allocate_irq_commands(struct wctdm *wc, unsigned int count)
{
unsigned long flags;
LIST_HEAD(local_list);
if (!count)
return;
while (count--) {
struct wctdm_cmd *cmd;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
break;
list_add(&cmd->node, &local_list);
}
spin_lock_irqsave(&wc->reglock, flags);
list_splice(&local_list, &wc->free_isr_commands);
spin_unlock_irqrestore(&wc->reglock, flags);
}
#ifdef USE_ASYNC_INIT
struct async_data {
struct pci_dev *pdev;
const struct pci_device_id *ent;
};
static int __devinit
__wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent,
async_cookie_t cookie)
#else
static int __devinit
__wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
#endif
{
struct wctdm *wc;
unsigned int pos;
int i, ret;
struct bg *vpm_work;
int anamods, digimods, curchan, curspan;
neonmwi_offlimit_cycles = neonmwi_offlimit / MS_PER_HOOKCHECK;
wc = kzalloc(sizeof(*wc), GFP_KERNEL);
if (!wc)
return -ENOMEM;
wc->not_ready = 1;
down(&ifacelock);
/* \todo this is a candidate for removal... */
for (pos = 0; pos < WC_MAX_IFACES; ++pos) {
if (!ifaces[pos]) {
ifaces[pos] = wc;
break;
}
}
up(&ifacelock);
wc->desc = (struct wctdm_desc *)ent->driver_data;
/* This is to insure that the analog span is given lowest priority */
sema_init(&wc->syncsem, 1);
INIT_LIST_HEAD(&wc->frame_list);
spin_lock_init(&wc->frame_list_lock);
init_waitqueue_head(&wc->regq);
spin_lock_init(&wc->reglock);
INIT_LIST_HEAD(&wc->free_isr_commands);
wc->oldsync = -1;
wc->board_name = kasprintf(GFP_KERNEL, "%s%d", wctdm_driver.name, pos);
if (!wc->board_name) {
wctdm_back_out_gracefully(wc);
return -ENOMEM;
}
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (i = 0; i < ARRAY_SIZE(wc->ec_reference); ++i) {
/* 256 is the smallest power of 2 that will contains the
* maximum possible amount of latency. */
wc->ec_reference[i] = dahdi_fifo_alloc(256, GFP_KERNEL);
if (IS_ERR(wc->ec_reference[i])) {
ret = PTR_ERR(wc->ec_reference[i]);
wc->ec_reference[i] = NULL;
wctdm_back_out_gracefully(wc);
return ret;
}
}
#endif
pci_set_drvdata(pdev, wc);
wc->vb.ops = &voicebus_operations;
wc->vb.pdev = pdev;
wc->vb.debug = &debug;
#ifdef CONFIG_VOICEBUS_DISABLE_ASPM
if (is_pcie(wc)) {
pci_disable_link_state(pdev->bus->self, PCIE_LINK_STATE_L0S |
PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
};
#endif
if (is_hx8(wc)) {
wc->vb.ops = &hx8_voicebus_operations;
ret = voicebus_boot_init(&wc->vb, wc->board_name);
} else {
wc->vb.ops = &voicebus_operations;
ret = voicebus_init(&wc->vb, wc->board_name);
voicebus_set_minlatency(&wc->vb, latency);
voicebus_set_maxlatency(&wc->vb, max_latency);
}
if (ret) {
wctdm_back_out_gracefully(wc);
return ret;
}
create_sysfs_files(wc);
voicebus_lock_latency(&wc->vb);
wc->mods_per_board = NUM_MODULES;
wc->txident = 1;
if (alawoverride) {
companding = "alaw";
dev_info(&wc->vb.pdev->dev, "The module parameter alawoverride"\
" has been deprecated. Please use the "\
"parameter companding=alaw instead");
}
if (!strcasecmp(companding, "alaw"))
/* Force this card's companding to alaw */
wc->companding = DAHDI_LAW_ALAW;
else if (!strcasecmp(companding, "ulaw"))
/* Force this card's companding to ulaw */
wc->companding = DAHDI_LAW_MULAW;
else
/* Auto detect this card's companding */
wc->companding = DAHDI_LAW_DEFAULT;
for (i = 0; i < ARRAY_SIZE(wc->mods); i++) {
struct wctdm_module *const mod = &wc->mods[i];
INIT_LIST_HEAD(&mod->pending_cmds);
INIT_LIST_HEAD(&mod->active_cmds);
mod->dacssrc = -1;
mod->card = i;
set_offsets(mod, 0);
}
/* Start the hardware processing. */
if (voicebus_start(&wc->vb)) {
BUG_ON(1);
}
if (is_hx8(wc)) {
ret = hx8_check_firmware(wc);
if (ret) {
wctdm_back_out_gracefully(wc);
return -EIO;
}
/* Switch to the normal operating mode for this card. */
voicebus_stop(&wc->vb);
wc->vb.ops = &voicebus_operations;
voicebus_set_minlatency(&wc->vb, latency);
voicebus_set_maxlatency(&wc->vb, max_latency);
voicebus_set_hx8_mode(&wc->vb);
if (voicebus_start(&wc->vb))
BUG_ON(1);
}
/* first we have to make sure that we process all module data, we'll fine-tune it later in this routine. */
wc->avchannels = NUM_MODULES;
vpm_work = bg_create(wc, wctdm_initialize_vpm, 0);
if (!vpm_work) {
wctdm_back_out_gracefully(wc);
return -ENOMEM;
}
/* Now track down what modules are installed */
wctdm_identify_modules(wc);
wctdm_set_tdm410_leds(wc);
if (fatal_signal_pending(current)) {
wctdm_back_out_gracefully(wc);
bg_join(vpm_work);
return -EINTR;
}
/* We need to wait for the vpm thread to finish before we setup the
* spans in order to ensure they are named properly. */
bg_join(vpm_work);
/*
* Walk the module list and create a 3-channel span for every BRI module found.
* Empty and analog modules get a common span which is allocated outside of this loop.
*/
anamods = digimods = 0;
curchan = curspan = 0;
for (i = 0; i < wc->mods_per_board; i++) {
struct wctdm_module *const mod = &wc->mods[i];
struct b400m *b4;
if (mod->type == NONE) {
++curspan;
continue;
} else if (mod->type == BRI) {
if (!is_hx8(wc)) {
dev_info(&wc->vb.pdev->dev, "Digital modules "
"detected on a non-hybrid card. "
"This is unsupported.\n");
wctdm_back_out_gracefully(wc);
bg_join(vpm_work);
return -EIO;
}
wc->spans[curspan] = wctdm_init_span(wc, curspan,
curchan, 3, 1,
pos);
if (!wc->spans[curspan]) {
wctdm_back_out_gracefully(wc);
bg_join(vpm_work);
return -EIO;
}
b4 = mod->mod.bri;
b400m_set_dahdi_span(b4, i & 0x03, wc->spans[curspan]);
++curspan;
curchan += 3;
if (!(i & 0x03)) {
b400m_post_init(b4);
++digimods;
}
} else {
/*
* FIXME: ABK:
* create a wctdm_chan for every analog module and link them into a span of their own down below.
* then evaluate all of the callbacks and hard-code whether they are receiving a dahdi_chan or wctdm_chan *.
* Finally, move the union from the wctdm structure to the dahdi_chan structure, and we should have something
* resembling a clean dynamic # of channels/dynamic # of spans driver.
*/
++curspan;
++anamods;
}
if (digimods > 2) {
dev_info(&wc->vb.pdev->dev, "More than two digital modules detected. This is unsupported.\n");
wctdm_back_out_gracefully(wc);
return -EIO;
}
}
wc->digi_mods = digimods;
/* create an analog span if there are analog modules, or if there are no digital ones. */
if (anamods || !digimods) {
if (!digimods) {
curspan = 0;
}
wctdm_init_span(wc, curspan, curchan, wc->desc->ports, 0, pos);
wctdm_fixup_analog_span(wc, curspan);
wc->aspan = wc->spans[curspan];
curchan += wc->desc->ports;
++curspan;
}
/* Now fix up the timeslots for the analog modules, since the digital
* modules are always first */
for (i = 0; i < wc->mods_per_board; i++) {
struct wctdm_module *const mod = &wc->mods[i];
switch (mod->type) {
case FXS:
wctdm_proslic_set_ts(wc, mod, (digimods * 12) + i);
break;
case FXO:
wctdm_voicedaa_set_ts(wc, mod, (digimods * 12) + i);
break;
case QRV:
wctdm_qrvdri_set_ts(wc, mod, (digimods * 12) + i);
break;
default:
break;
}
}
/* This shouldn't ever occur, but if we don't try to trap it, the driver
* will be scribbling into memory it doesn't own. */
BUG_ON(curchan > 24);
wc->avchannels = curchan;
#ifdef USE_ASYNC_INIT
async_synchronize_cookie(cookie);
#endif
wc->ddev = dahdi_create_device();
wc->ddev->manufacturer = "Digium";
wc->ddev->location = kasprintf(GFP_KERNEL, "PCI%s Bus %02d Slot %02d",
(wc->desc->flags & FLAG_EXPRESS) ?
" Express" : "",
pdev->bus->number,
PCI_SLOT(pdev->devfn) + 1);
if (!wc->ddev->location) {
wctdm_back_out_gracefully(wc);
return -ENOMEM;
}
if (wc->vpmadt032) {
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s (VPMADT032)",
wc->desc->name);
} else if (wc->vpmoct) {
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s (VPMOCT032)",
wc->desc->name);
} else {
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s",
wc->desc->name);
}
if (!wc->ddev->devicetype) {
wctdm_back_out_gracefully(wc);
return -ENOMEM;
}
/* We should be ready for DAHDI to come in now. */
for (i = 0; i < MAX_SPANS; ++i) {
struct dahdi_span *span;
if (!wc->spans[i])
continue;
span = &wc->spans[i]->span;
list_add_tail(&span->device_node, &wc->ddev->spans);
}
wctdm_allocate_irq_commands(wc, anamods * latency * 4);
if (dahdi_register_device(wc->ddev, &wc->vb.pdev->dev)) {
dev_notice(&wc->vb.pdev->dev, "Unable to register device with DAHDI\n");
wctdm_back_out_gracefully(wc);
return -1;
}
WARN_ON(wc->not_ready <= 0);
--wc->not_ready;
dev_info(&wc->vb.pdev->dev,
"Found a %s: %s (%d BRI spans, %d analog %s)\n",
(is_hx8(wc)) ? "Hybrid card" : "Wildcard TDM",
wc->desc->name, digimods*4, anamods,
(anamods == 1) ? "channel" : "channels");
ret = 0;
voicebus_unlock_latency(&wc->vb);
return 0;
}
#ifdef USE_ASYNC_INIT
static __devinit void
wctdm_init_one_async(void *data, async_cookie_t cookie)
{
struct async_data *dat = data;
__wctdm_init_one(dat->pdev, dat->ent, cookie);
kfree(dat);
}
static int __devinit
wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct async_data *dat;
dat = kmalloc(sizeof(*dat), GFP_KERNEL);
/* If we can't allocate the memory for the async_data, odds are we won't
* be able to initialize the device either, but let's try synchronously
* anyway... */
if (!dat)
return __wctdm_init_one(pdev, ent, 0);
dat->pdev = pdev;
dat->ent = ent;
async_schedule(wctdm_init_one_async, dat);
return 0;
}
#else
static int __devinit
wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
return __wctdm_init_one(pdev, ent);
}
#endif
static void wctdm_release(struct wctdm *wc)
{
int i;
if (is_initialized(wc))
dahdi_unregister_device(wc->ddev);
down(&ifacelock);
for (i = 0; i < WC_MAX_IFACES; i++)
if (ifaces[i] == wc)
break;
ifaces[i] = NULL;
up(&ifacelock);
wctdm_back_out_gracefully(wc);
}
static void __devexit wctdm_remove_one(struct pci_dev *pdev)
{
int i;
unsigned long flags;
struct wctdm *wc = pci_get_drvdata(pdev);
struct vpmadt032 *vpmadt032;
struct vpmoct *vpmoct;
if (!wc)
return;
vpmadt032 = wc->vpmadt032;
vpmoct = wc->vpmoct;
remove_sysfs_files(wc);
if (vpmadt032) {
flush_workqueue(vpmadt032->wq);
clear_bit(VPM150M_ACTIVE, &vpmadt032->control);
flush_workqueue(vpmadt032->wq);
} else if (vpmoct) {
while (wctdm_wait_for_ready(wc))
schedule();
}
flush_scheduled_work();
/* shut down any BRI modules */
for (i = 0; i < wc->mods_per_board; i += 4) {
if (wc->mods[i].type == BRI)
wctdm_unload_b400m(wc, i);
}
voicebus_stop(&wc->vb);
if (vpmadt032) {
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpmadt032);
} else if (vpmoct) {
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmoct = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmoct_free(vpmoct);
}
dev_info(&wc->vb.pdev->dev, "Freed a %s\n",
(is_hx8(wc)) ? "Hybrid card" : "Wildcard");
/* Release span */
wctdm_release(wc);
}
static DEFINE_PCI_DEVICE_TABLE(wctdm_pci_tbl) = {
{ 0xd161, 0x2400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm2400 },
{ 0xd161, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm800 },
{ 0xd161, 0x8002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex800 },
{ 0xd161, 0x8003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex2400 },
{ 0xd161, 0x8005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm410 },
{ 0xd161, 0x8006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex410 },
{ 0xd161, 0x8007, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcha80000 },
{ 0xd161, 0x8008, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wchb80000 },
{ 0 }
};
static void wctdm_shutdown(struct pci_dev *pdev)
{
struct wctdm *wc = pci_get_drvdata(pdev);
voicebus_quiesce(&wc->vb);
}
MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl);
static int wctdm_suspend(struct pci_dev *pdev, pm_message_t state)
{
return -ENOSYS;
}
static struct pci_driver wctdm_driver = {
.name = "wctdm24xxp",
.probe = wctdm_init_one,
.remove = __devexit_p(wctdm_remove_one),
.shutdown = wctdm_shutdown,
.suspend = wctdm_suspend,
.id_table = wctdm_pci_tbl,
};
static int __init wctdm_init(void)
{
int res;
int x;
for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) {
if (!strcmp(fxo_modes[x].name, opermode))
break;
}
if (x < ARRAY_SIZE(fxo_modes)) {
_opermode = x;
} else {
printk(KERN_NOTICE "Invalid/unknown operating mode '%s' "
"specified. Please choose one of:\n", opermode);
for (x = 0; x < ARRAY_SIZE(fxo_modes); x++)
printk(KERN_CONT " %s\n", fxo_modes[x].name);
printk(KERN_NOTICE "Note this option is CASE SENSITIVE!\n");
return -ENODEV;
}
if (!strcmp(opermode, "AUSTRALIA")) {
boostringer = 1;
fxshonormode = 1;
}
if (-1 == fastpickup) {
if (!strcmp(opermode, "JAPAN"))
fastpickup = 1;
else
fastpickup = 0;
}
/* for the voicedaa_check_hook defaults, if the user has not overridden
them by specifying them as module parameters, then get the values
from the selected operating mode
*/
if (battdebounce == 0) {
battdebounce = fxo_modes[_opermode].battdebounce;
}
if (battalarm == 0) {
battalarm = fxo_modes[_opermode].battalarm;
}
if (battthresh == 0) {
battthresh = fxo_modes[_opermode].battthresh;
}
b400m_module_init();
res = dahdi_pci_module(&wctdm_driver);
if (res)
return -ENODEV;
#ifdef USE_ASYNC_INIT
async_synchronize_full();
#endif
return 0;
}
static void __exit wctdm_cleanup(void)
{
pci_unregister_driver(&wctdm_driver);
}
module_param(debug, int, 0600);
module_param(fastpickup, int, 0400);
MODULE_PARM_DESC(fastpickup,
"Set to 1 to shorten the calibration delay when taking " \
"an FXO port off hook. This can be required for Type-II " \
"CID. If -1 the calibration delay will depend on the " \
"current opermode.\n");
module_param(fxovoltage, int, 0600);
module_param(loopcurrent, int, 0600);
module_param(reversepolarity, int, 0600);
#ifdef DEBUG
module_param(robust, int, 0600);
module_param(digitalloopback, int, 0400);
MODULE_PARM_DESC(digitalloopback, "Set to 1 to place FXO modules into " \
"loopback mode for troubleshooting.");
#endif
module_param(opermode, charp, 0600);
module_param(lowpower, int, 0600);
module_param(boostringer, int, 0600);
module_param(fastringer, int, 0600);
module_param(fxshonormode, int, 0600);
module_param(battdebounce, uint, 0600);
module_param(battalarm, uint, 0600);
module_param(battthresh, uint, 0600);
module_param(nativebridge, int, 0600);
module_param(fxotxgain, int, 0600);
module_param(fxorxgain, int, 0600);
module_param(fxstxgain, int, 0600);
module_param(fxsrxgain, int, 0600);
module_param(ringdebounce, int, 0600);
module_param(latency, int, 0400);
module_param(max_latency, int, 0400);
module_param(neonmwi_monitor, int, 0600);
module_param(neonmwi_level, int, 0600);
module_param(neonmwi_envelope, int, 0600);
module_param(neonmwi_offlimit, int, 0600);
#ifdef VPM_SUPPORT
module_param(vpmsupport, int, 0400);
module_param(vpmnlptype, int, 0400);
module_param(vpmnlpthresh, int, 0400);
module_param(vpmnlpmaxsupp, int, 0400);
#endif
/* Module parameters backed by code in xhfc.c */
module_param(bri_debug, int, 0600);
MODULE_PARM_DESC(bri_debug, "bitmap: 1=general 2=dtmf 4=regops 8=fops 16=ec 32=st state 64=hdlc 128=alarm");
module_param(bri_spanfilter, int, 0600);
MODULE_PARM_DESC(bri_spanfilter, "debug filter for spans. bitmap: 1=port 1, 2=port 2, 4=port 3, 8=port 4");
module_param(bri_alarmdebounce, int, 0600);
MODULE_PARM_DESC(bri_alarmdebounce, "msec to wait before set/clear alarm condition");
module_param(bri_teignorered, int, 0600);
MODULE_PARM_DESC(bri_teignorered, "1=ignore (do not inform DAHDI) if a red alarm exists in TE mode");
module_param(bri_persistentlayer1, int, 0600);
MODULE_PARM_DESC(bri_persistentlayer1, "Set to 0 for disabling automatic layer 1 reactivation (when other end deactivates it)");
module_param(timingcable, int, 0600);
MODULE_PARM_DESC(timingcable, "Set to 1 for enabling timing cable. This means that *all* cards in the system are linked together with a single timing cable");
module_param(forceload, int, 0600);
MODULE_PARM_DESC(forceload, "Set to 1 in order to force an FPGA reload after power on (currently only for HA8/HB8 cards).");
module_param(alawoverride, int, 0400);
MODULE_PARM_DESC(alawoverride, "This option has been deprecated. Please use "\
"the parameter \"companding\" instead");
module_param(companding, charp, 0400);
MODULE_PARM_DESC(companding, "Change the companding to \"auto\" or \"alaw\" " \
"or \"ulaw\". Auto (default) will set everything to ulaw " \
"unless a BRI module is installed. It will use alaw in that "
"case.");
MODULE_DESCRIPTION("VoiceBus Driver for Wildcard Analog and Hybrid Cards");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_ALIAS("wctdm8xxp");
MODULE_ALIAS("wctdm4xxp");
MODULE_ALIAS("wcaex24xx");
MODULE_ALIAS("wcaex8xx");
MODULE_ALIAS("wcaex4xx");
MODULE_LICENSE("GPL v2");
module_init(wctdm_init);
module_exit(wctdm_cleanup);