dahdi-linux/drivers/dahdi/wcte12xp/base.c
Shaun Ruffell 25a8bb1abe "struct pci_device_id[]" -> "DEFINE_PCI_DEVICE_TABLE"
2.6.25 added the DEFINE_PCI_DEVICE_TABLE macro to make sure that the
pci_device_id tables are put into the correct section in the binary.
Convert all the places where the tables were defined to use them.

This is linux-2.6 commit where the change went in along with the
rationale:  90a1ba0c5e39eeea278f263c28ae02166c5911c8

Signed-off-by: Shaun Ruffell <sruffell@digium.com>
Acked-by: Kinsey Moore <kmoore@digium.com>

git-svn-id: http://svn.asterisk.org/svn/dahdi/linux/trunk@9584 a0bf4364-ded3-4de4-8d8a-66a801d63aff
2011-01-03 18:26:24 +00:00

2466 lines
65 KiB
C

/*
* Digium, Inc. Wildcard TE12xP T1/E1 card Driver
*
* Written by Michael Spiceland <mspiceland@digium.com>
*
* Adapted from the wctdm24xxp and wcte11xp drivers originally
* written by Mark Spencer <markster@digium.com>
* Matthew Fredrickson <creslin@digium.com>
* William Meadows <wmeadows@digium.com>
*
* Copyright (C) 2007-2010, Digium, Inc.
*
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/moduleparam.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <stdbool.h>
#include <dahdi/kernel.h>
#include "wct4xxp/wct4xxp.h" /* For certain definitions */
#include "voicebus/voicebus.h"
#include "wcte12xp.h"
#include "voicebus/GpakCust.h"
#include "voicebus/GpakApi.h"
#if VOICEBUS_SFRAME_SIZE != SFRAME_SIZE
#error VOICEBUS_SFRAME_SIZE != SFRAME_SIZE
#endif
static int debug;
static int j1mode = 0;
static int alarmdebounce = 2500; /* LOF/LFA def to 2.5s AT&T TR54016*/
static int losalarmdebounce = 2500; /* LOS def to 2.5s AT&T TR54016*/
static int aisalarmdebounce = 2500; /* AIS(blue) def to 2.5s AT&T TR54016*/
static int yelalarmdebounce = 500; /* RAI(yellow) def to 0.5s AT&T devguide */
static int t1e1override = -1;
static int latency = VOICEBUS_DEFAULT_LATENCY;
static unsigned int max_latency = VOICEBUS_DEFAULT_MAXLATENCY;
static int vpmsupport = 1;
static int vpmtsisupport = 0;
static int vpmnlptype = DEFAULT_NLPTYPE;
static int vpmnlpthresh = DEFAULT_NLPTHRESH;
static int vpmnlpmaxsupp = DEFAULT_NLPMAXSUPP;
static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec);
static int t1xxp_clear_maint(struct dahdi_span *span);
static int check_and_load_vpm(struct t1 *wc);
static const struct dahdi_echocan_features vpm150m_ec_features = {
.NLP_automatic = 1,
.CED_tx_detect = 1,
.CED_rx_detect = 1,
};
static const struct dahdi_echocan_ops vpm150m_ec_ops = {
.echocan_free = echocan_free,
};
static struct t1 *ifaces[WC_MAX_IFACES];
struct t1_desc {
const char *name;
};
static const struct t1_desc te120p = {"Wildcard TE120P"};
static const struct t1_desc te122 = {"Wildcard TE122"};
static const struct t1_desc te121 = {"Wildcard TE121"};
/* names of HWEC modules */
static const char *vpmadt032_name = "VPMADT032";
static const char *noec_name = "NONE";
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static kmem_cache_t *cmd_cache;
#else
static struct kmem_cache *cmd_cache;
#endif
static struct command *get_free_cmd(struct t1 *wc)
{
struct command *cmd;
cmd = kmem_cache_alloc(cmd_cache, GFP_ATOMIC);
if (cmd) {
memset(cmd, 0, sizeof(*cmd));
init_completion(&cmd->complete);
INIT_LIST_HEAD(&cmd->node);
}
return cmd;
}
static void free_cmd(struct t1 *wc, struct command *cmd)
{
kmem_cache_free(cmd_cache, cmd);
}
static struct command *get_pending_cmd(struct t1 *wc)
{
struct command *cmd = NULL;
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
if (!list_empty(&wc->pending_cmds)) {
cmd = list_entry(wc->pending_cmds.next, struct command, node);
list_move_tail(&cmd->node, &wc->active_cmds);
}
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
return cmd;
}
static void submit_cmd(struct t1 *wc, struct command *cmd)
{
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_add_tail(&cmd->node, &wc->pending_cmds);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
}
static void resend_cmds(struct t1 *wc)
{
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_splice_init(&wc->active_cmds, &wc->pending_cmds);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
spin_lock_irqsave(&wc->reglock, flags);
if (wc->vpmadt032)
vpmadt032_resend(wc->vpmadt032);
spin_unlock_irqrestore(&wc->reglock, flags);
}
static void cmd_dequeue(struct t1 *wc, unsigned char *writechunk, int eframe, int slot)
{
struct command *curcmd=NULL;
u16 address;
u8 data;
u32 flags;
/* Skip audio */
writechunk += 66;
/* Search for something waiting to transmit */
if ((slot < 6) && (eframe) && (eframe < DAHDI_CHUNKSIZE - 1)) {
/* only 6 useable cs slots per */
/* framer */
curcmd = get_pending_cmd(wc);
if (curcmd) {
curcmd->cs_slot = slot;
curcmd->ident = wc->txident;
address = curcmd->address;
data = curcmd->data;
flags = curcmd->flags;
} else {
/* If nothing else, use filler */
address = 0x4a;
data = 0;
flags = __CMD_RD;
}
if (flags & __CMD_WR)
writechunk[CMD_BYTE(slot, 0, 0)] = 0x0c; /* 0c write command */
else if (flags & __CMD_LEDS)
writechunk[CMD_BYTE(slot, 0, 0)] = 0x10 | ((address) & 0x0E); /* led set command */
else if (flags & __CMD_PINS)
writechunk[CMD_BYTE(slot, 0, 0)] = 0x30; /* CPLD2 pin state */
else
writechunk[CMD_BYTE(slot, 0, 0)] = 0x0a; /* read command */
writechunk[CMD_BYTE(slot, 1, 0)] = address;
writechunk[CMD_BYTE(slot, 2, 0)] = data;
}
}
static inline void cmd_decipher(struct t1 *wc, const u8 *readchunk)
{
struct command *cmd = NULL;
unsigned long flags;
const int IS_VPM = 0;
/* Skip audio */
readchunk += 66;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
while (!list_empty(&wc->active_cmds)) {
cmd = list_entry(wc->active_cmds.next, struct command, node);
if (cmd->ident != wc->rxident)
break;
if (cmd->flags & (__CMD_WR | __CMD_LEDS)) {
/* Nobody is waiting on writes...so let's just
* free them here. */
list_del_init(&cmd->node);
free_cmd(wc, cmd);
} else {
cmd->data |= readchunk[CMD_BYTE(cmd->cs_slot, 2, IS_VPM)];
list_del_init(&cmd->node);
complete(&cmd->complete);
}
}
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
}
inline void cmd_decipher_vpmadt032(struct t1 *wc, const u8 *readchunk)
{
unsigned long flags;
struct vpmadt032 *vpm = wc->vpmadt032;
struct vpmadt032_cmd *cmd;
BUG_ON(!vpm);
/* If the hardware is not processing any commands currently, then
* there is nothing for us to do here. */
if (list_empty(&vpm->active_cmds)) {
return;
}
spin_lock_irqsave(&vpm->list_lock, flags);
cmd = list_entry(vpm->active_cmds.next, struct vpmadt032_cmd, node);
if (wc->rxident == cmd->txident) {
list_del_init(&cmd->node);
} else {
cmd = NULL;
}
spin_unlock_irqrestore(&vpm->list_lock, flags);
if (!cmd) {
return;
}
/* Skip audio */
readchunk += 66;
/* Store result */
cmd->data = (0xff & readchunk[CMD_BYTE(2, 1, 1)]) << 8;
cmd->data |= readchunk[CMD_BYTE(2, 2, 1)];
if (cmd->desc & __VPM150M_WR) {
kfree(cmd);
} else {
cmd->desc |= __VPM150M_FIN;
complete(&cmd->complete);
}
}
static int config_vpmadt032(struct vpmadt032 *vpm, struct t1 *wc)
{
int res, channel;
GpakPortConfig_t portconfig = {0};
gpakConfigPortStatus_t configportstatus;
GPAK_PortConfigStat_t pstatus;
GpakChannelConfig_t chanconfig;
GPAK_ChannelConfigStat_t cstatus;
GPAK_AlgControlStat_t algstatus;
/* First Serial Port config */
portconfig.SlotsSelect1 = SlotCfgNone;
portconfig.FirstBlockNum1 = 0;
portconfig.FirstSlotMask1 = 0x0000;
portconfig.SecBlockNum1 = 1;
portconfig.SecSlotMask1 = 0x0000;
portconfig.SerialWordSize1 = SerWordSize8;
portconfig.CompandingMode1 = cmpNone;
portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh;
portconfig.TxClockPolarity1 = SerClockActHigh;
portconfig.RxClockPolarity1 = SerClockActHigh;
portconfig.TxDataDelay1 = DataDelay0;
portconfig.RxDataDelay1 = DataDelay0;
portconfig.DxDelay1 = Disabled;
portconfig.ThirdSlotMask1 = 0x0000;
portconfig.FouthSlotMask1 = 0x0000;
portconfig.FifthSlotMask1 = 0x0000;
portconfig.SixthSlotMask1 = 0x0000;
portconfig.SevenSlotMask1 = 0x0000;
portconfig.EightSlotMask1 = 0x0000;
/* Second Serial Port config */
portconfig.SlotsSelect2 = SlotCfg8Groups;
portconfig.FirstBlockNum2 = 0;
portconfig.FirstSlotMask2 = 0x5554;
portconfig.SecBlockNum2 = 1;
portconfig.SecSlotMask2 = 0x5555;
portconfig.ThirdSlotMask2 = 0x5555;
portconfig.FouthSlotMask2 = 0x5555;
portconfig.SerialWordSize2 = SerWordSize8;
portconfig.CompandingMode2 = cmpNone;
portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh;
portconfig.TxClockPolarity2 = SerClockActHigh;
portconfig.RxClockPolarity2 = SerClockActHigh;
portconfig.TxDataDelay2 = DataDelay0;
portconfig.RxDataDelay2 = DataDelay0;
portconfig.DxDelay2 = Disabled;
portconfig.FifthSlotMask2 = 0x0001;
portconfig.SixthSlotMask2 = 0x0000;
portconfig.SevenSlotMask2 = 0x0000;
portconfig.EightSlotMask2 = 0x0000;
/* Third Serial Port Config */
portconfig.SlotsSelect3 = SlotCfg8Groups;
portconfig.FirstBlockNum3 = 0;
portconfig.FirstSlotMask3 = 0x5554;
portconfig.SecBlockNum3 = 1;
portconfig.SecSlotMask3 = 0x5555;
portconfig.SerialWordSize3 = SerWordSize8;
portconfig.CompandingMode3 = cmpNone;
portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh;
portconfig.TxClockPolarity3 = SerClockActHigh;
portconfig.RxClockPolarity3 = SerClockActLow;
portconfig.TxDataDelay3 = DataDelay0;
portconfig.RxDataDelay3 = DataDelay0;
portconfig.DxDelay3 = Disabled;
portconfig.ThirdSlotMask3 = 0x5555;
portconfig.FouthSlotMask3 = 0x5555;
portconfig.FifthSlotMask3 = 0x0001;
portconfig.SixthSlotMask3 = 0x0000;
portconfig.SevenSlotMask3 = 0x0000;
portconfig.EightSlotMask3 = 0x0000;
if ((configportstatus = gpakConfigurePorts(vpm->dspid, &portconfig, &pstatus))) {
t1_info(wc, "Configuration of ports failed (%d)!\n",
configportstatus);
return -1;
} else {
if (vpm->options.debug & DEBUG_VPMADT032_ECHOCAN)
t1_info(wc, "Configured McBSP ports successfully\n");
}
if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) {
t1_info(wc, "Error pinging DSP (%d)\n", res);
return -1;
}
for (channel = 0; channel < ARRAY_SIZE(vpm->curecstate); ++channel) {
vpm->curecstate[channel].tap_length = 0;
vpm->curecstate[channel].nlp_type = vpm->options.vpmnlptype;
vpm->curecstate[channel].nlp_threshold = vpm->options.vpmnlpthresh;
vpm->curecstate[channel].nlp_max_suppress = vpm->options.vpmnlpmaxsupp;
vpm->setchanconfig_from_state(vpm, channel, &chanconfig);
if ((res = gpakConfigureChannel(vpm->dspid, channel, tdmToTdm, &chanconfig, &cstatus))) {
t1_info(wc, "Unable to configure channel #%d (%d)",
channel, res);
if (res == 1) {
printk(KERN_CONT ", reason %d", cstatus);
}
printk(KERN_CONT "\n");
return -1;
}
if ((res = gpakAlgControl(vpm->dspid, channel, BypassEcanA, &algstatus))) {
t1_info(wc, "Unable to disable echo can on channel %d "
"(reason %d:%d)\n", channel + 1, res,
algstatus);
return -1;
}
}
if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) {
t1_info(wc, "Error pinging DSP (%d)\n", res);
return -1;
}
set_bit(VPM150M_ACTIVE, &vpm->control);
return 0;
}
#define debug_printk(wc, lvl, fmt, args...) if (debug >= (lvl)) do { \
t1_info((wc), fmt , ## args); } while (0)
static void cmd_dequeue_vpmadt032(struct t1 *wc, unsigned char *writechunk)
{
struct vpmadt032_cmd *cmd;
struct vpmadt032 *vpm = wc->vpmadt032;
int x;
unsigned char leds = ~((atomic_read(&wc->txints) / 1000) % 8) & 0x7;
/* Skip audio */
writechunk += 66;
if (test_bit(VPM150M_SPIRESET, &vpm->control) || test_bit(VPM150M_HPIRESET, &vpm->control)) {
debug_printk(wc, 1, "HW Resetting VPMADT032 ...\n");
for (x = 0; x < 4; x++) {
if (!x) {
if (test_and_clear_bit(VPM150M_SPIRESET, &vpm->control))
writechunk[CMD_BYTE(x, 0, 1)] = 0x08;
else if (test_and_clear_bit(VPM150M_HPIRESET, &vpm->control))
writechunk[CMD_BYTE(x, 0, 1)] = 0x0b;
} else
writechunk[CMD_BYTE(x, 0, 1)] = 0x00 | leds;
writechunk[CMD_BYTE(x, 1, 1)] = 0;
writechunk[CMD_BYTE(x, 2, 1)] = 0x00;
}
return;
}
if ((cmd = vpmadt032_get_ready_cmd(vpm))) {
cmd->txident = wc->txident;
#if 0
printk(KERN_DEBUG "Found command txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", cmd->txident, cmd->desc, cmd->address, cmd->data);
#endif
if (cmd->desc & __VPM150M_RWPAGE) {
/* Set CTRL access to page*/
writechunk[CMD_BYTE(0, 0, 1)] = (0x8 << 4);
writechunk[CMD_BYTE(0, 1, 1)] = 0;
writechunk[CMD_BYTE(0, 2, 1)] = 0x20;
/* Do a page write */
if (cmd->desc & __VPM150M_WR) {
writechunk[CMD_BYTE(1, 0, 1)] = ((0x8 | 0x4) << 4);
} else {
writechunk[CMD_BYTE(1, 0, 1)] = ((0x8 | 0x4 | 0x1) << 4);
}
writechunk[CMD_BYTE(1, 1, 1)] = 0;
if (cmd->desc & __VPM150M_WR) {
writechunk[CMD_BYTE(1, 2, 1)] = cmd->data & 0xf;
} else {
writechunk[CMD_BYTE(1, 2, 1)] = 0;
}
if (cmd->desc & __VPM150M_WR) {
/* Fill in buffer to size */
writechunk[CMD_BYTE(2, 0, 1)] = 0;
writechunk[CMD_BYTE(2, 1, 1)] = 0;
writechunk[CMD_BYTE(2, 2, 1)] = 0;
} else {
/* Do reads twice b/c of vpmadt032 bug */
writechunk[CMD_BYTE(2, 0, 1)] = ((0x8 | 0x4 | 0x1) << 4);
writechunk[CMD_BYTE(2, 1, 1)] = 0;
writechunk[CMD_BYTE(2, 2, 1)] = 0;
}
/* Clear XADD */
writechunk[CMD_BYTE(3, 0, 1)] = (0x8 << 4);
writechunk[CMD_BYTE(3, 1, 1)] = 0;
writechunk[CMD_BYTE(3, 2, 1)] = 0;
/* Fill in buffer to size */
writechunk[CMD_BYTE(4, 0, 1)] = 0;
writechunk[CMD_BYTE(4, 1, 1)] = 0;
writechunk[CMD_BYTE(4, 2, 1)] = 0;
} else {
/* Set address */
writechunk[CMD_BYTE(0, 0, 1)] = ((0x8 | 0x4) << 4);
writechunk[CMD_BYTE(0, 1, 1)] = (cmd->address >> 8) & 0xff;
writechunk[CMD_BYTE(0, 2, 1)] = cmd->address & 0xff;
/* Send/Get our data */
if (cmd->desc & __VPM150M_WR) {
writechunk[CMD_BYTE(1, 0, 1)] = ((0x8 | (0x3 << 1)) << 4);
} else {
writechunk[CMD_BYTE(1, 0, 1)] = ((0x8 | (0x3 << 1) | 0x1) << 4);
}
writechunk[CMD_BYTE(1, 1, 1)] = (cmd->data >> 8) & 0xff;
writechunk[CMD_BYTE(1, 2, 1)] = cmd->data & 0xff;
if (cmd->desc & __VPM150M_WR) {
/* Fill in */
writechunk[CMD_BYTE(2, 0, 1)] = 0;
writechunk[CMD_BYTE(2, 1, 1)] = 0;
writechunk[CMD_BYTE(2, 2, 1)] = 0;
} else {
/* Do this again for reads b/c of the bug in vpmadt032 */
writechunk[CMD_BYTE(2, 0, 1)] = ((0x8 | (0x3 << 1) | 0x1) << 4);
writechunk[CMD_BYTE(2, 1, 1)] = (cmd->data >> 8) & 0xff;
writechunk[CMD_BYTE(2, 2, 1)] = cmd->data & 0xff;
}
/* Fill in the rest */
writechunk[CMD_BYTE(3, 0, 1)] = 0;
writechunk[CMD_BYTE(3, 1, 1)] = 0;
writechunk[CMD_BYTE(3, 2, 1)] = 0;
/* Fill in the rest */
writechunk[CMD_BYTE(4, 0, 1)] = 0;
writechunk[CMD_BYTE(4, 1, 1)] = 0;
writechunk[CMD_BYTE(4, 2, 1)] = 0;
}
} else if (test_and_clear_bit(VPM150M_SWRESET, &vpm->control)) {
for (x = 0; x < 7; x++) {
if (0 == x) {
writechunk[CMD_BYTE(x, 0, 1)] = (0x8 << 4);
} else {
writechunk[CMD_BYTE(x, 0, 1)] = 0x00;
}
writechunk[CMD_BYTE(x, 1, 1)] = 0;
if (0 == x) {
writechunk[CMD_BYTE(x, 2, 1)] = 0x01;
} else {
writechunk[CMD_BYTE(x, 2, 1)] = 0x00;
}
}
} else {
for (x = 0; x < 7; x++) {
writechunk[CMD_BYTE(x, 0, 1)] = 0x00;
writechunk[CMD_BYTE(x, 1, 1)] = 0x00;
writechunk[CMD_BYTE(x, 2, 1)] = 0x00;
}
}
/* Add our leds in */
for (x = 0; x < 7; x++)
writechunk[CMD_BYTE(x, 0, 1)] |= leds;
#if 0
int y;
for (x = 0; x < 7; x++) {
for (y = 0; y < 3; y++) {
if (writechunk[CMD_BYTE(x, y, 1)] & 0x2) {
t1_info(wc,
"the test bit is high for byte %d\n",
y);
}
}
}
#endif
#if 0
/* This may be needed sometime in the future to troubleshoot ADT related issues. */
if (test_bit(VPM150M_ACTIVE, &vpm->control) && !whichframe && !(atomic_read(&wc->txints) % 10000))
queue_work(vpm->wq, &vpm->work_debug);
#endif
}
static inline int t1_setreg(struct t1 *wc, int addr, int val)
{
struct command *cmd;
cmd = get_free_cmd(wc);
if (!cmd) {
WARN_ON(1);
return -ENOMEM;
}
cmd->address = addr;
cmd->data = val;
cmd->flags |= __CMD_WR;
submit_cmd(wc, cmd);
return 0;
}
static int t1_getreg(struct t1 *wc, int addr)
{
struct command *cmd = NULL;
unsigned long ret;
unsigned long flags;
might_sleep();
cmd = get_free_cmd(wc);
if (!cmd)
return -ENOMEM;
cmd->address = addr;
cmd->data = 0x00;
cmd->flags = __CMD_RD;
submit_cmd(wc, cmd);
ret = wait_for_completion_interruptible_timeout(&cmd->complete, HZ*10);
if (unlikely(!ret)) {
spin_lock_irqsave(&wc->cmd_list_lock, flags);
if (!list_empty(&cmd->node)) {
/* Since we've removed this command from the list, we
* can go ahead and free it right away. */
list_del_init(&cmd->node);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
free_cmd(wc, cmd);
if (-ERESTARTSYS != ret) {
if (printk_ratelimit()) {
dev_warn(&wc->vb.pdev->dev,
"Timeout in %s\n", __func__);
}
ret = -EIO;
}
return ret;
} else {
/* Looks like this command was removed from the list by
* someone else already. Let's wait for them to complete
* it so that we don't free up the memory. */
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
ret = wait_for_completion_timeout(&cmd->complete, HZ*2);
WARN_ON(!ret);
ret = cmd->data;
free_cmd(wc, cmd);
return ret;
}
}
ret = cmd->data;
free_cmd(wc, cmd);
return ret;
}
static void t1_setleds(struct t1 *wc, int leds)
{
struct command *cmd;
leds = (~leds) & 0x0E; /* invert the LED bits (3 downto 1)*/
cmd = get_free_cmd(wc);
if (!cmd)
return;
cmd->flags |= __CMD_LEDS;
cmd->address = leds;
submit_cmd(wc, cmd);
}
static inline int t1_getpins(struct t1 *wc, int inisr)
{
struct command *cmd;
unsigned long flags;
unsigned long ret;
cmd = get_free_cmd(wc);
BUG_ON(!cmd);
cmd->address = 0x00;
cmd->data = 0x00;
cmd->flags = __CMD_PINS;
submit_cmd(wc, cmd);
ret = wait_for_completion_interruptible_timeout(&cmd->complete, HZ*2);
if (unlikely(!ret)) {
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_del_init(&cmd->node);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
free_cmd(wc, cmd);
if (-ERESTARTSYS != ret) {
if (printk_ratelimit()) {
dev_warn(&wc->vb.pdev->dev,
"Timeout in %s\n", __func__);
}
ret = -EIO;
}
return ret;
}
ret = cmd->data;
free_cmd(wc, cmd);
return ret;
}
static void __t1xxp_set_clear(struct t1 *wc)
{
int i, offset;
int ret;
unsigned short reg[3] = {0, 0, 0};
/* Calculate all states on all 24 channels using the channel
flags, then write all 3 clear channel registers at once */
for (i = 0; i < 24; i++) {
offset = i/8;
if (wc->span.chans[i]->flags & DAHDI_FLAG_CLEAR)
reg[offset] |= 1 << (7 - (i % 8));
else
reg[offset] &= ~(1 << (7 - (i % 8)));
}
ret = t1_setreg(wc, CCB1, reg[0]);
if (ret < 0)
t1_info(wc, "Unable to set clear/rbs mode!\n");
ret = t1_setreg(wc, CCB2, reg[1]);
if (ret < 0)
t1_info(wc, "Unable to set clear/rbs mode!\n");
ret = t1_setreg(wc, CCB3, reg[2]);
if (ret < 0)
t1_info(wc, "Unable to set clear/rbs mode!\n");
}
static void free_wc(struct t1 *wc)
{
unsigned int x;
unsigned long flags;
struct command *cmd;
LIST_HEAD(list);
for (x = 0; x < (wc->spantype == TYPE_E1 ? 31 : 24); x++) {
kfree(wc->chans[x]);
kfree(wc->ec[x]);
}
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_splice_init(&wc->active_cmds, &list);
list_splice_init(&wc->pending_cmds, &list);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
while (!list_empty(&list)) {
cmd = list_entry(list.next, struct command, node);
list_del_init(&cmd->node);
free_cmd(wc, cmd);
}
if (wc->wq)
destroy_workqueue(wc->wq);
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (x = 0; x < ARRAY_SIZE(wc->ec_reference); ++x) {
if (wc->ec_reference[x])
dahdi_fifo_free(wc->ec_reference[x]);
}
#endif
kfree(wc);
}
static void t4_serial_setup(struct t1 *wc)
{
t1_info(wc, "Setting up global serial parameters for %s\n",
((wc->spantype == TYPE_E1) ? "E1" : "T1"));
t1_setreg(wc, 0x85, 0xe0); /* GPC1: Multiplex mode enabled, FSC is output, active low, RCLK from channel 0 */
t1_setreg(wc, 0x08, 0x05); /* IPC: Interrupt push/pull active low */
/* Global clocks (8.192 Mhz CLK) */
t1_setreg(wc, 0x92, 0x00);
t1_setreg(wc, 0x93, 0x18);
t1_setreg(wc, 0x94, 0xfb);
t1_setreg(wc, 0x95, 0x0b);
t1_setreg(wc, 0x96, 0x00);
t1_setreg(wc, 0x97, 0x0b);
t1_setreg(wc, 0x98, 0xdb);
t1_setreg(wc, 0x99, 0xdf);
/* Configure interrupts */
t1_setreg(wc, 0x46, 0xc0); /* GCR: Interrupt on Activation/Deactivation of AIX, LOS */
/* Configure system interface */
t1_setreg(wc, 0x3e, 0x0a /* 0x02 */); /* SIC1: 4.096 Mhz clock/bus, double buffer receive / transmit, byte interleaved */
t1_setreg(wc, 0x3f, 0x00); /* SIC2: No FFS, no center receive eliastic buffer, phase 0 */
t1_setreg(wc, 0x40, 0x04); /* SIC3: Edges for capture */
t1_setreg(wc, 0x44, 0x30); /* CMR1: RCLK is at 8.192 Mhz dejittered */
t1_setreg(wc, 0x45, 0x00); /* CMR2: We provide sync and clock for tx and rx. */
t1_setreg(wc, 0x22, 0x00); /* XC0: Normal operation of Sa-bits */
t1_setreg(wc, 0x23, 0x04); /* XC1: 0 offset */
t1_setreg(wc, 0x24, 0x00); /* RC0: Just shy of 255 */
t1_setreg(wc, 0x25, 0x05); /* RC1: The rest of RC0 */
/* Configure ports */
t1_setreg(wc, 0x80, 0x00); /* PC1: SPYR/SPYX input on RPA/XPA */
t1_setreg(wc, 0x81, 0x22); /* PC2: RMFB/XSIG output/input on RPB/XPB */
t1_setreg(wc, 0x82, 0x65); /* PC3: Some unused stuff */
t1_setreg(wc, 0x83, 0x35); /* PC4: Some more unused stuff */
t1_setreg(wc, 0x84, 0x31); /* PC5: XMFS active low, SCLKR is input, RCLK is output */
t1_setreg(wc, 0x86, 0x03); /* PC6: CLK1 is Tx Clock output, CLK2 is 8.192 Mhz from DCO-R */
t1_setreg(wc, 0x3b, 0x00); /* Clear LCR1 */
}
static void t1_configure_t1(struct t1 *wc, int lineconfig, int txlevel)
{
unsigned int fmr4, fmr2, fmr1, fmr0, lim2;
char *framing, *line;
int mytxlevel;
if ((txlevel > 7) || (txlevel < 4))
mytxlevel = 0;
else
mytxlevel = txlevel - 4;
fmr1 = 0x9e; /* FMR1: Mode 0, T1 mode, CRC on for ESF, 2.048 Mhz system data rate, no XAIS */
fmr2 = 0x20; /* FMR2: no payload loopback, don't auto yellow alarm */
if (j1mode)
fmr4 = 0x1c;
else
fmr4 = 0x0c; /* FMR4: Lose sync on 2 out of 5 framing bits, auto resync */
lim2 = 0x21; /* LIM2: 50% peak is a "1", Advanced Loss recovery */
lim2 |= (mytxlevel << 6); /* LIM2: Add line buildout */
t1_setreg(wc, 0x1d, fmr1);
t1_setreg(wc, 0x1e, fmr2);
/* Configure line interface */
if (lineconfig & DAHDI_CONFIG_AMI) {
line = "AMI";
fmr0 = 0xa0;
} else {
line = "B8ZS";
fmr0 = 0xf0;
}
if (lineconfig & DAHDI_CONFIG_D4) {
framing = "D4";
} else {
framing = "ESF";
fmr4 |= 0x2;
fmr2 |= 0xc0;
}
t1_setreg(wc, 0x1c, fmr0);
t1_setreg(wc, 0x20, fmr4);
t1_setreg(wc, 0x21, 0x40); /* FMR5: Enable RBS mode */
t1_setreg(wc, 0x37, 0xf8); /* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */
t1_setreg(wc, 0x36, 0x08); /* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */
t1_setreg(wc, 0x02, 0x50); /* CMDR: Reset the receiver and transmitter line interface */
t1_setreg(wc, 0x02, 0x00); /* CMDR: Reset the receiver and transmitter line interface */
t1_setreg(wc, 0x3a, lim2); /* LIM2: 50% peak amplitude is a "1" */
t1_setreg(wc, 0x38, 0x0a); /* PCD: LOS after 176 consecutive "zeros" */
t1_setreg(wc, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */
if (j1mode)
t1_setreg(wc, 0x24, 0x80); /* J1 overide */
/* Generate pulse mask for T1 */
switch (mytxlevel) {
case 3:
t1_setreg(wc, 0x26, 0x07); /* XPM0 */
t1_setreg(wc, 0x27, 0x01); /* XPM1 */
t1_setreg(wc, 0x28, 0x00); /* XPM2 */
break;
case 2:
t1_setreg(wc, 0x26, 0x8c); /* XPM0 */
t1_setreg(wc, 0x27, 0x11); /* XPM1 */
t1_setreg(wc, 0x28, 0x01); /* XPM2 */
break;
case 1:
t1_setreg(wc, 0x26, 0x8c); /* XPM0 */
t1_setreg(wc, 0x27, 0x01); /* XPM1 */
t1_setreg(wc, 0x28, 0x00); /* XPM2 */
break;
case 0:
default:
t1_setreg(wc, 0x26, 0xd7); /* XPM0 */
t1_setreg(wc, 0x27, 0x22); /* XPM1 */
t1_setreg(wc, 0x28, 0x01); /* XPM2 */
break;
}
t1_info(wc, "Span configured for %s/%s\n", framing, line);
}
static void t1_configure_e1(struct t1 *wc, int lineconfig)
{
unsigned int fmr2, fmr1, fmr0;
unsigned int cas = 0;
char *crc4 = "";
char *framing, *line;
fmr1 = 0x46; /* FMR1: E1 mode, Automatic force resync, PCM30 mode, 8.192 Mhz backplane, no XAIS */
fmr2 = 0x03; /* FMR2: Auto transmit remote alarm, auto loss of multiframe recovery, no payload loopback */
if (lineconfig & DAHDI_CONFIG_CRC4) {
fmr1 |= 0x08; /* CRC4 transmit */
fmr2 |= 0xc0; /* CRC4 receive */
crc4 = "/CRC4";
}
t1_setreg(wc, 0x1d, fmr1);
t1_setreg(wc, 0x1e, fmr2);
/* Configure line interface */
if (lineconfig & DAHDI_CONFIG_AMI) {
line = "AMI";
fmr0 = 0xa0;
} else {
line = "HDB3";
fmr0 = 0xf0;
}
if (lineconfig & DAHDI_CONFIG_CCS) {
framing = "CCS";
} else {
framing = "CAS";
cas = 0x40;
}
t1_setreg(wc, 0x1c, fmr0);
t1_setreg(wc, 0x37, 0xf0 /*| 0x6 */ ); /* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */
t1_setreg(wc, 0x36, 0x08); /* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */
t1_setreg(wc, 0x02, 0x50); /* CMDR: Reset the receiver and transmitter line interface */
t1_setreg(wc, 0x02, 0x00); /* CMDR: Reset the receiver and transmitter line interface */
/* Condition receive line interface for E1 after reset */
t1_setreg(wc, 0xbb, 0x17);
t1_setreg(wc, 0xbc, 0x55);
t1_setreg(wc, 0xbb, 0x97);
t1_setreg(wc, 0xbb, 0x11);
t1_setreg(wc, 0xbc, 0xaa);
t1_setreg(wc, 0xbb, 0x91);
t1_setreg(wc, 0xbb, 0x12);
t1_setreg(wc, 0xbc, 0x55);
t1_setreg(wc, 0xbb, 0x92);
t1_setreg(wc, 0xbb, 0x0c);
t1_setreg(wc, 0xbb, 0x00);
t1_setreg(wc, 0xbb, 0x8c);
t1_setreg(wc, 0x3a, 0x20); /* LIM2: 50% peak amplitude is a "1" */
t1_setreg(wc, 0x38, 0x0a); /* PCD: LOS after 176 consecutive "zeros" */
t1_setreg(wc, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */
t1_setreg(wc, 0x20, 0x9f); /* XSW: Spare bits all to 1 */
t1_setreg(wc, 0x21, 0x1c|cas); /* XSP: E-bit set when async. AXS
auto, XSIF to 1 */
/* Generate pulse mask for E1 */
t1_setreg(wc, 0x26, 0x54); /* XPM0 */
t1_setreg(wc, 0x27, 0x02); /* XPM1 */
t1_setreg(wc, 0x28, 0x00); /* XPM2 */
t1_info(wc, "Span configured for %s/%s%s\n", framing, line, crc4);
}
static void t1xxp_framer_start(struct t1 *wc, struct dahdi_span *span)
{
if (wc->spantype == TYPE_E1) { /* if this is an E1 card */
t1_configure_e1(wc, span->lineconfig);
} else { /* is a T1 card */
t1_configure_t1(wc, span->lineconfig, span->txlevel);
__t1xxp_set_clear(wc);
}
set_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags);
}
static void set_span_devicetype(struct t1 *wc)
{
strncpy(wc->span.devicetype, wc->variety,
sizeof(wc->span.devicetype) - 1);
#if defined(VPM_SUPPORT)
if (wc->vpmadt032)
strncat(wc->span.devicetype, " (VPMADT032)",
sizeof(wc->span.devicetype) - 1);
#endif
}
static int t1xxp_startup(struct dahdi_span *span)
{
struct t1 *wc = container_of(span, struct t1, span);
#ifndef CONFIG_VOICEBUS_ECREFERENCE
unsigned int i;
#endif
check_and_load_vpm(wc);
set_span_devicetype(wc);
#ifndef CONFIG_VOICEBUS_ECREFERENCE
/* initialize the start value for the entire chunk of last ec buffer */
for (i = 0; i < span->channels; i++) {
memset(wc->ec_chunk1[i], DAHDI_LIN2X(0, span->chans[i]), DAHDI_CHUNKSIZE);
memset(wc->ec_chunk2[i], DAHDI_LIN2X(0, span->chans[i]), DAHDI_CHUNKSIZE);
}
#endif
/* Reset framer with proper parameters and start */
t1xxp_framer_start(wc, span);
debug_printk(wc, 1, "Calling startup (flags is %lu)\n", span->flags);
return 0;
}
static int t1xxp_chanconfig(struct dahdi_chan *chan, int sigtype)
{
struct t1 *wc = chan->pvt;
if (test_bit(DAHDI_FLAGBIT_RUNNING, &chan->span->flags) &&
(wc->spantype != TYPE_E1)) {
__t1xxp_set_clear(wc);
}
return 0;
}
static int t1xxp_rbsbits(struct dahdi_chan *chan, int bits)
{
u_char m,c;
int n,b;
struct t1 *wc = chan->pvt;
unsigned long flags;
debug_printk(wc, 2, "Setting bits to %d on channel %s\n",
bits, chan->name);
if (wc->spantype == TYPE_E1) { /* do it E1 way */
if (chan->chanpos == 16)
return 0;
n = chan->chanpos - 1;
if (chan->chanpos > 15) n--;
b = (n % 15);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = (n / 15) << 2; /* nibble selector */
c &= (0xf << m); /* keep the other nibble */
c |= (bits & 0xf) << (4 - m); /* put our new nibble here */
wc->txsigs[b] = c;
spin_unlock_irqrestore(&wc->reglock, flags);
/* output them to the chip */
t1_setreg(wc, 0x71 + b, c);
} else if (wc->span.lineconfig & DAHDI_CONFIG_D4) {
n = chan->chanpos - 1;
b = (n / 4);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = ((3 - (n % 4)) << 1); /* nibble selector */
c &= ~(0x3 << m); /* keep the other nibble */
c |= ((bits >> 2) & 0x3) << m; /* put our new nibble here */
wc->txsigs[b] = c;
spin_unlock_irqrestore(&wc->reglock, flags);
/* output them to the chip */
t1_setreg(wc, 0x70 + b, c);
t1_setreg(wc, 0x70 + b + 6, c);
} else if (wc->span.lineconfig & DAHDI_CONFIG_ESF) {
n = chan->chanpos - 1;
b = (n / 2);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = ((n % 2) << 2); /* nibble selector */
c &= (0xf << m); /* keep the other nibble */
c |= (bits & 0xf) << (4 - m); /* put our new nibble here */
wc->txsigs[b] = c;
spin_unlock_irqrestore(&wc->reglock, flags);
/* output them to the chip */
t1_setreg(wc, 0x70 + b, c);
}
debug_printk(wc, 2, "Finished setting RBS bits\n");
return 0;
}
static inline void t1_check_sigbits(struct t1 *wc)
{
int a,i,rxs;
if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)))
return;
if (wc->spantype == TYPE_E1) {
for (i = 0; i < 15; i++) {
a = t1_getreg(wc, 0x71 + i);
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0xf);
if (!(wc->span.chans[i+16]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+16]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+16], rxs);
}
}
rxs = (a >> 4) & 0xf;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
}
}
} else if (wc->span.lineconfig & DAHDI_CONFIG_D4) {
for (i = 0; i < 24; i+=4) {
a = t1_getreg(wc, 0x70 + (i>>2));
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0x3) << 2;
if (!(wc->span.chans[i+3]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+3]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+3], rxs);
}
}
rxs = (a & 0xc);
if (!(wc->span.chans[i+2]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+2]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+2], rxs);
}
}
rxs = (a >> 2) & 0xc;
if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+1]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+1], rxs);
}
}
rxs = (a >> 4) & 0xc;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
}
}
} else {
for (i = 0; i < 24; i+=2) {
a = t1_getreg(wc, 0x70 + (i>>1));
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0xf);
if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+1]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+1], rxs);
}
}
rxs = (a >> 4) & 0xf;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
}
}
}
}
struct maint_work_struct {
struct work_struct work;
struct t1 *wc;
int cmd;
struct dahdi_span *span;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void t1xxp_maint_work(void *data)
{
struct maint_work_struct *w = data;
#else
static void t1xxp_maint_work(struct work_struct *work)
{
struct maint_work_struct *w = container_of(work,
struct maint_work_struct, work);
#endif
struct t1 *wc = w->wc;
struct dahdi_span *span = w->span;
int reg = 0;
int cmd = w->cmd;
if (wc->spantype == TYPE_E1) {
switch (cmd) {
case DAHDI_MAINT_NONE:
t1_info(wc, "Clearing all maint modes\n");
t1xxp_clear_maint(span);
break;
case DAHDI_MAINT_LOCALLOOP:
t1xxp_clear_maint(span);
reg = t1_getreg(wc, LIM0);
if (reg < 0)
goto cleanup;
t1_setreg(wc, LIM0, reg | LIM0_LL);
break;
case DAHDI_MAINT_REMOTELOOP:
case DAHDI_MAINT_LOOPUP:
case DAHDI_MAINT_LOOPDOWN:
t1_info(wc, "Only local loop supported in E1 mode\n");
goto cleanup;
default:
t1_info(wc, "Unknown E1 maint command: %d\n", cmd);
goto cleanup;
}
} else {
switch (cmd) {
case DAHDI_MAINT_NONE:
t1xxp_clear_maint(span);
break;
case DAHDI_MAINT_LOCALLOOP:
t1xxp_clear_maint(span);
reg = t1_getreg(wc, LIM0);
if (reg < 0)
goto cleanup;
t1_setreg(wc, LIM0, reg | LIM0_LL);
break;
case DAHDI_MAINT_NETWORKLINELOOP:
t1xxp_clear_maint(span);
reg = t1_getreg(wc, LIM1);
if (reg < 0)
goto cleanup;
t1_setreg(wc, LIM1, reg | LIM1_RL);
break;
case DAHDI_MAINT_NETWORKPAYLOADLOOP:
t1xxp_clear_maint(span);
reg = t1_getreg(wc, LIM1);
if (reg < 0)
goto cleanup;
t1_setreg(wc, LIM1, reg | (LIM1_RL | LIM1_JATT));
break;
case DAHDI_MAINT_LOOPUP:
t1xxp_clear_maint(span);
t1_setreg(wc, 0x21, 0x50);
break;
case DAHDI_MAINT_LOOPDOWN:
t1xxp_clear_maint(span);
t1_setreg(wc, 0x21, 0x60);
break;
default:
t1_info(wc, "Unknown T1 maint command: %d\n", cmd);
return;
}
}
cleanup:
kfree(w);
return;
}
static int t1xxp_maint(struct dahdi_span *span, int cmd)
{
struct maint_work_struct *work;
struct t1 *wc = container_of(span, struct t1, span);
if (wc->spantype == TYPE_E1) {
switch (cmd) {
case DAHDI_MAINT_NONE:
case DAHDI_MAINT_LOCALLOOP:
break;
case DAHDI_MAINT_REMOTELOOP:
case DAHDI_MAINT_LOOPUP:
case DAHDI_MAINT_LOOPDOWN:
t1_info(wc, "Only local loop supported in E1 mode\n");
return -ENOSYS;
default:
t1_info(wc, "Unknown E1 maint command: %d\n", cmd);
return -ENOSYS;
}
} else {
switch (cmd) {
case DAHDI_MAINT_NONE:
case DAHDI_MAINT_LOCALLOOP:
case DAHDI_MAINT_NETWORKLINELOOP:
case DAHDI_MAINT_NETWORKPAYLOADLOOP:
case DAHDI_MAINT_LOOPUP:
case DAHDI_MAINT_LOOPDOWN:
break;
default:
t1_info(wc, "Unknown T1 maint command: %d\n", cmd);
return -ENOSYS;
}
}
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (!work) {
t1_info(wc, "Failed to allocate memory for workqueue\n");
return -ENOMEM;
}
work->span = span;
work->wc = wc;
work->cmd = cmd;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&work->work, t1xxp_maint_work, work);
#else
INIT_WORK(&work->work, t1xxp_maint_work);
#endif
queue_work(wc->wq, &work->work);
return 0;
}
static int t1xxp_clear_maint(struct dahdi_span *span)
{
struct t1 *wc = container_of(span, struct t1, span);
int reg = 0;
/* Turn off local loop */
reg = t1_getreg(wc, LIM0);
if (reg < 0)
return -EIO;
t1_setreg(wc, LIM0, reg & ~LIM0_LL);
/* Turn off remote loop & jitter attenuator */
reg = t1_getreg(wc, LIM1);
if (reg < 0)
return -EIO;
t1_setreg(wc, LIM1, reg & ~(LIM1_RL | LIM1_JATT));
/* Clear loopup/loopdown signals on the line */
t1_setreg(wc, 0x21, 0x40);
return 0;
}
static int t1xxp_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
struct t4_regs regs;
unsigned int x;
struct t1 *wc;
switch (cmd) {
case WCT4_GET_REGS:
wc = chan->pvt;
for (x = 0; x < sizeof(regs.regs) / sizeof(regs.regs[0]); x++)
regs.regs[x] = t1_getreg(wc, x);
if (copy_to_user((void __user *) data, &regs, sizeof(regs)))
return -EFAULT;
break;
default:
return -ENOTTY;
}
return 0;
}
static const char *t1xxp_echocan_name(const struct dahdi_chan *chan)
{
struct t1 *wc = chan->pvt;
if (wc->vpmadt032)
return vpmadt032_name;
return noec_name;
}
static int t1xxp_echocan_create(struct dahdi_chan *chan,
struct dahdi_echocanparams *ecp,
struct dahdi_echocanparam *p,
struct dahdi_echocan_state **ec)
{
struct t1 *wc = chan->pvt;
enum adt_companding comp;
if (!vpmsupport || !wc->vpmadt032 ||
!test_bit(VPM150M_ACTIVE, &wc->ctlreg))
return -ENODEV;
*ec = wc->ec[chan->chanpos - 1];
(*ec)->ops = &vpm150m_ec_ops;
(*ec)->features = vpm150m_ec_features;
comp = (DAHDI_LAW_ALAW == chan->span->deflaw) ?
ADT_COMP_ALAW : ADT_COMP_ULAW;
return vpmadt032_echocan_create(wc->vpmadt032, chan->chanpos - 1,
comp, ecp, p);
}
static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec)
{
struct t1 *wc = chan->pvt;
if (!wc->vpmadt032)
return;
vpmadt032_echocan_free(wc->vpmadt032, chan->chanpos - 1, ec);
}
static void
setchanconfig_from_state(struct vpmadt032 *vpm, int channel,
GpakChannelConfig_t *chanconfig)
{
const struct vpmadt032_options *options;
GpakEcanParms_t *p;
BUG_ON(!vpm);
options = &vpm->options;
chanconfig->PcmInPortA = 3;
chanconfig->PcmInSlotA = (channel + 1) * 2;
chanconfig->PcmOutPortA = SerialPortNull;
chanconfig->PcmOutSlotA = (channel + 1) * 2;
chanconfig->PcmInPortB = 2;
chanconfig->PcmInSlotB = (channel + 1) * 2;
chanconfig->PcmOutPortB = 3;
chanconfig->PcmOutSlotB = (channel + 1) * 2;
chanconfig->ToneTypesA = Null_tone;
chanconfig->MuteToneA = Disabled;
chanconfig->FaxCngDetA = Disabled;
chanconfig->ToneTypesB = Null_tone;
chanconfig->EcanEnableA = Enabled;
chanconfig->EcanEnableB = Disabled;
chanconfig->MuteToneB = Disabled;
chanconfig->FaxCngDetB = Disabled;
chanconfig->SoftwareCompand = cmpNone;
chanconfig->FrameRate = rate10ms;
p = &chanconfig->EcanParametersA;
vpmadt032_get_default_parameters(p);
p->EcanNlpType = vpm->curecstate[channel].nlp_type;
p->EcanNlpThreshold = vpm->curecstate[channel].nlp_threshold;
p->EcanNlpMaxSuppress = vpm->curecstate[channel].nlp_max_suppress;
memcpy(&chanconfig->EcanParametersB,
&chanconfig->EcanParametersA,
sizeof(chanconfig->EcanParametersB));
}
#ifdef VPM_SUPPORT
static int check_and_load_vpm(struct t1 *wc)
{
int res;
unsigned long flags;
struct vpmadt032_options options;
if (!vpmsupport) {
t1_info(wc, "VPM Support Disabled\n");
vpmadt032_free(wc->vpmadt032);
wc->vpmadt032 = NULL;
return 0;
}
/* The firmware may already be loaded. */
if (wc->vpmadt032) {
u16 version;
res = gpakPingDsp(wc->vpmadt032->dspid, &version);
if (!res)
return 0;
}
memset(&options, 0, sizeof(options));
options.debug = debug;
options.vpmnlptype = vpmnlptype;
options.vpmnlpthresh = vpmnlpthresh;
options.vpmnlpmaxsupp = vpmnlpmaxsupp;
options.channels = (TYPE_T1 == wc->spantype) ? 24 : 32;
/* We do not want to check that the VPM is alive until after we're
* done setting it up here, an hour should cover it... */
wc->vpm_check = jiffies + HZ*3600;
wc->vpmadt032 = vpmadt032_alloc(&options, wc->name);
if (!wc->vpmadt032)
return -ENOMEM;
wc->vpmadt032->setchanconfig_from_state = setchanconfig_from_state;
res = vpmadt032_init(wc->vpmadt032, &wc->vb);
if (-ENODEV == res) {
struct vpmadt032 *vpm = wc->vpmadt032;
/* There does not appear to be a VPMADT032 installed. */
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpm);
return res;
} else if (res) {
/* There was some problem during initialization, but it passed
* the address test, let's try again in a bit. */
wc->vpm_check = jiffies + HZ/2;
return -EAGAIN;
}
if (config_vpmadt032(wc->vpmadt032, wc)) {
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
wc->vpm_check = jiffies + HZ/2;
return -EAGAIN;
}
/* turn on vpm (RX audio from vpm module) */
set_bit(VPM150M_ACTIVE, &wc->ctlreg);
wc->vpm_check = jiffies + HZ*5;
if (vpmtsisupport) {
debug_printk(wc, 1, "enabling VPM TSI pin\n");
/* turn on vpm timeslot interchange pin */
set_bit(0, &wc->ctlreg);
}
return 0;
}
#else
static inline int check_and_load_vpm(const struct t1 *wc)
{
return 0;
}
#endif
static void t1_chan_set_sigcap(struct dahdi_span *span, int x)
{
struct t1 *wc = container_of(span, struct t1, span);
struct dahdi_chan *chan = wc->chans[x];
chan->sigcap = DAHDI_SIG_CLEAR;
/* E&M variant supported depends on span type */
if (wc->spantype == TYPE_E1) {
/* E1 sigcap setup */
if (span->lineconfig & DAHDI_CONFIG_CCS) {
/* CCS setup */
chan->sigcap |= DAHDI_SIG_MTP2 | DAHDI_SIG_SF;
return;
}
/* clear out sig and sigcap for channel 16 on E1 CAS
* lines, otherwise, set it correctly */
if (x == 15) {
/* CAS signaling channel setup */
wc->chans[15]->sigcap = 0;
wc->chans[15]->sig = 0;
return;
}
/* normal CAS setup */
chan->sigcap |= DAHDI_SIG_EM_E1 | DAHDI_SIG_FXSLS |
DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_SF |
DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_FXOKS |
DAHDI_SIG_CAS | DAHDI_SIG_DACS_RBS;
} else {
/* T1 sigcap setup */
chan->sigcap |= DAHDI_SIG_EM | DAHDI_SIG_FXSLS |
DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_MTP2 |
DAHDI_SIG_SF | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS |
DAHDI_SIG_FXOKS | DAHDI_SIG_CAS | DAHDI_SIG_DACS_RBS;
}
}
static int
t1xxp_spanconfig(struct dahdi_span *span, struct dahdi_lineconfig *lc)
{
struct t1 *wc = container_of(span, struct t1, span);
int i;
/* Do we want to SYNC on receive or not */
if (lc->sync) {
set_bit(7, &wc->ctlreg);
span->syncsrc = span->spanno;
} else {
clear_bit(7, &wc->ctlreg);
span->syncsrc = 0;
}
/* make sure that sigcaps gets updated if necessary */
for (i = 0; i < wc->span.channels; i++)
t1_chan_set_sigcap(span, i);
/* If already running, apply changes immediately */
if (test_bit(DAHDI_FLAGBIT_RUNNING, &span->flags))
return t1xxp_startup(span);
return 0;
}
static const struct dahdi_span_ops t1_span_ops = {
.owner = THIS_MODULE,
.spanconfig = t1xxp_spanconfig,
.chanconfig = t1xxp_chanconfig,
.startup = t1xxp_startup,
.rbsbits = t1xxp_rbsbits,
.maint = t1xxp_maint,
.ioctl = t1xxp_ioctl,
#ifdef VPM_SUPPORT
.echocan_create = t1xxp_echocan_create,
.echocan_name = t1xxp_echocan_name,
#endif
};
static int t1_software_init(struct t1 *wc)
{
int x;
int num;
struct pci_dev *pdev = wc->vb.pdev;
/* Find position */
for (x = 0; x < ARRAY_SIZE(ifaces); ++x) {
if (ifaces[x] == wc) {
debug_printk(wc, 1, "software init for card %d\n", x);
break;
}
}
if (x == ARRAY_SIZE(ifaces))
return -1;
t4_serial_setup(wc);
num = x;
sprintf(wc->span.name, "WCT1/%d", num);
snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Card %d", wc->variety, num);
wc->span.manufacturer = "Digium";
set_span_devicetype(wc);
snprintf(wc->span.location, sizeof(wc->span.location) - 1,
"PCI Bus %02d Slot %02d", pdev->bus->number,
PCI_SLOT(pdev->devfn) + 1);
wc->span.irq = pdev->irq;
if (wc->spantype == TYPE_E1) {
wc->span.channels = 31;
wc->span.spantype = "E1";
wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_HDB3 |
DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4;
wc->span.deflaw = DAHDI_LAW_ALAW;
} else {
wc->span.channels = 24;
wc->span.spantype = "T1";
wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS |
DAHDI_CONFIG_D4 | DAHDI_CONFIG_ESF;
wc->span.deflaw = DAHDI_LAW_MULAW;
}
wc->span.chans = wc->chans;
set_bit(DAHDI_FLAGBIT_RBS, &wc->span.flags);
for (x = 0; x < wc->span.channels; x++) {
sprintf(wc->chans[x]->name, "WCT1/%d/%d", num, x + 1);
t1_chan_set_sigcap(&wc->span, x);
wc->chans[x]->pvt = wc;
wc->chans[x]->chanpos = x + 1;
}
wc->span.ops = &t1_span_ops;
if (dahdi_register(&wc->span, 0)) {
t1_info(wc, "Unable to register span with DAHDI\n");
return -1;
}
set_bit(INITIALIZED, &wc->bit_flags);
return 0;
}
#if 0
#ifdef VPM_SUPPORT
static inline unsigned char t1_vpm_in(struct t1 *wc, int unit, const unsigned int addr)
{
return t1_getreg_full(wc, addr, unit);
}
static inline unsigned char t1_vpm_out(struct t1 *wc, int unit, const unsigned int addr, const unsigned char val)
{
return t1_setreg(wc, addr, val, unit);
}
#endif
#endif
static int t1_hardware_post_init(struct t1 *wc)
{
unsigned int reg;
int x;
/* T1 or E1 */
if (t1e1override > -1) {
if (t1e1override)
wc->spantype = TYPE_E1;
else
wc->spantype = TYPE_T1;
} else {
if (t1_getpins(wc,0) & 0x01) /* returns 1 for T1 mode */
wc->spantype = TYPE_T1;
else
wc->spantype = TYPE_E1;
}
debug_printk(wc, 1, "spantype: %s\n", 1 == wc->spantype ? "T1" : "E1");
/* what version of the FALC are we using? */
reg = t1_setreg(wc, 0x4a, 0xaa);
reg = t1_getreg(wc, 0x4a);
debug_printk(wc, 1, "FALC version: %08x\n", reg);
/* make sure reads and writes work */
for (x = 0; x < 256; x++) {
t1_setreg(wc, 0x14, x);
reg = t1_getreg(wc, 0x14);
if (reg != x)
t1_info(wc, "Wrote '%x' but read '%x'\n", x, reg);
}
t1_setleds(wc, wc->ledstate);
return 0;
}
static inline void t1_check_alarms(struct t1 *wc)
{
unsigned char c,d;
int alarms;
int x,j;
unsigned char fmr4; /* must read this always */
if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)))
return;
c = t1_getreg(wc, 0x4c);
fmr4 = t1_getreg(wc, 0x20); /* must read this even if we don't use it */
d = t1_getreg(wc, 0x4d);
/* Assume no alarms */
alarms = 0;
/* And consider only carrier alarms */
wc->span.alarms &= (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE | DAHDI_ALARM_NOTOPEN);
if (wc->spantype == TYPE_E1) {
if (c & 0x04) {
/* No multiframe found, force RAI high after 400ms only if
we haven't found a multiframe since last loss
of frame */
if (!wc->flags.nmf) {
t1_setreg(wc, 0x20, 0x9f | 0x20); /* LIM0: Force RAI High */
wc->flags.nmf = 1;
t1_info(wc, "NMF workaround on!\n");
}
t1_setreg(wc, 0x1e, 0xc3); /* Reset to CRC4 mode */
t1_setreg(wc, 0x1c, 0xf2); /* Force Resync */
t1_setreg(wc, 0x1c, 0xf0); /* Force Resync */
} else if (!(c & 0x02)) {
if (wc->flags.nmf) {
t1_setreg(wc, 0x20, 0x9f); /* LIM0: Clear forced RAI */
wc->flags.nmf = 0;
t1_info(wc, "NMF workaround off!\n");
}
}
} else {
/* Detect loopup code if we're not sending one */
if ((!wc->span.mainttimer) && (d & 0x08)) {
/* Loop-up code detected */
if ((wc->loopupcnt++ > 80) && (wc->span.maintstat != DAHDI_MAINT_REMOTELOOP)) {
t1_notice(wc, "Loopup detected,"\
" enabling remote loop\n");
t1_setreg(wc, 0x36, 0x08); /* LIM0: Disable any local loop */
t1_setreg(wc, 0x37, 0xf6); /* LIM1: Enable remote loop */
wc->span.maintstat = DAHDI_MAINT_REMOTELOOP;
}
} else
wc->loopupcnt = 0;
/* Same for loopdown code */
if ((!wc->span.mainttimer) && (d & 0x10)) {
/* Loop-down code detected */
if ((wc->loopdowncnt++ > 80) && (wc->span.maintstat == DAHDI_MAINT_REMOTELOOP)) {
t1_notice(wc, "Loopdown detected,"\
" disabling remote loop\n");
t1_setreg(wc, 0x36, 0x08); /* LIM0: Disable any local loop */
t1_setreg(wc, 0x37, 0xf0); /* LIM1: Disable remote loop */
wc->span.maintstat = DAHDI_MAINT_NONE;
}
} else
wc->loopdowncnt = 0;
}
if (wc->span.lineconfig & DAHDI_CONFIG_NOTOPEN) {
for (x=0,j=0;x < wc->span.channels;x++)
if ((wc->span.chans[x]->flags & DAHDI_FLAG_OPEN) ||
dahdi_have_netdev(wc->span.chans[x]))
j++;
if (!j)
alarms |= DAHDI_ALARM_NOTOPEN;
}
if (c & 0x20) { /* LOF/LFA */
if (wc->alarmcount >= (alarmdebounce/100))
alarms |= DAHDI_ALARM_RED;
else {
if (unlikely(debug && !wc->alarmcount)) {
/* starting to debounce LOF/LFA */
t1_info(wc, "LOF/LFA detected but "
"debouncing for %d ms\n",
alarmdebounce);
}
wc->alarmcount++;
}
} else
wc->alarmcount = 0;
if (c & 0x80) { /* LOS */
if (wc->losalarmcount >= (losalarmdebounce/100))
alarms |= DAHDI_ALARM_RED;
else {
if (unlikely(debug && !wc->losalarmcount)) {
/* starting to debounce LOS */
t1_info(wc, "LOS detected but debouncing "
"for %d ms\n", losalarmdebounce);
}
wc->losalarmcount++;
}
} else
wc->losalarmcount = 0;
if (c & 0x40) { /* AIS */
if (wc->aisalarmcount >= (aisalarmdebounce/100))
alarms |= DAHDI_ALARM_BLUE;
else {
if (unlikely(debug && !wc->aisalarmcount)) {
/* starting to debounce AIS */
t1_info(wc, "AIS detected but debouncing "
"for %d ms\n", aisalarmdebounce);
}
wc->aisalarmcount++;
}
} else
wc->aisalarmcount = 0;
/* Keep track of recovering */
if ((!alarms) && wc->span.alarms)
wc->alarmtimer = jiffies + 5*HZ;
if (wc->alarmtimer)
alarms |= DAHDI_ALARM_RECOVER;
/* If receiving alarms, go into Yellow alarm state */
if (alarms && !wc->flags.sendingyellow) {
t1_info(wc, "Setting yellow alarm\n");
/* We manually do yellow alarm to handle RECOVER and NOTOPEN, otherwise it's auto anyway */
t1_setreg(wc, 0x20, fmr4 | 0x20);
wc->flags.sendingyellow = 1;
} else if (!alarms && wc->flags.sendingyellow) {
t1_info(wc, "Clearing yellow alarm\n");
/* We manually do yellow alarm to handle RECOVER */
t1_setreg(wc, 0x20, fmr4 & ~0x20);
wc->flags.sendingyellow = 0;
}
/*
if ((c & 0x10))
alarms |= DAHDI_ALARM_YELLOW;
*/
if (c & 0x10) { /* receiving yellow (RAI) */
if (wc->yelalarmcount >= (yelalarmdebounce/100))
alarms |= DAHDI_ALARM_YELLOW;
else {
if (unlikely(debug && !wc->yelalarmcount)) {
/* starting to debounce AIS */
t1_info(wc, "yelllow (RAI) detected but "
"debouncing for %d ms\n",
yelalarmdebounce);
}
wc->yelalarmcount++;
}
} else
wc->yelalarmcount = 0;
if (wc->span.mainttimer || wc->span.maintstat)
alarms |= DAHDI_ALARM_LOOPBACK;
wc->span.alarms = alarms;
dahdi_alarm_notify(&wc->span);
}
static void handle_leds(struct t1 *wc)
{
unsigned char led;
unsigned long flags;
led = wc->ledstate;
if ((wc->span.alarms & (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE))
|| wc->losalarmcount) {
/* When we're in red alarm, blink the led once a second. */
if (time_after(jiffies, wc->blinktimer)) {
led = (led & __LED_GREEN) ? SET_LED_RED(led) : UNSET_LED_REDGREEN(led);
}
} else if (wc->span.alarms & DAHDI_ALARM_YELLOW) {
led = (led & __LED_RED) ? SET_LED_GREEN(led) : SET_LED_RED(led);
} else {
if (wc->span.maintstat != DAHDI_MAINT_NONE)
led = SET_LED_ORANGE(led);
else
led = UNSET_LED_ORANGE(led);
if (test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags))
led = SET_LED_GREEN(led);
else
led = UNSET_LED_REDGREEN(led);
}
if (led != wc->ledstate) {
struct command *cmd;
cmd = get_free_cmd(wc);
if (cmd) {
wc->blinktimer = jiffies + HZ/2;
cmd->flags |= __CMD_LEDS;
cmd->address = ~led & 0x0E;
submit_cmd(wc, cmd);
spin_lock_irqsave(&wc->reglock, flags);
wc->ledstate = led;
spin_unlock_irqrestore(&wc->reglock, flags);
}
}
}
static void t1_do_counters(struct t1 *wc)
{
if (wc->alarmtimer && time_after(jiffies, wc->alarmtimer)) {
wc->span.alarms &= ~(DAHDI_ALARM_RECOVER);
wc->alarmtimer = 0;
dahdi_alarm_notify(&wc->span);
}
}
static inline void t1_transmitprep(struct t1 *wc, u8 *writechunk)
{
int x;
int y;
int chan;
unsigned long flags;
/* Calculate Transmission */
if (likely(test_bit(INITIALIZED, &wc->bit_flags))) {
dahdi_transmit(&wc->span);
}
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (chan = 0; chan < wc->span.channels; chan++) {
__dahdi_fifo_put(wc->ec_reference[chan],
wc->chans[chan]->writechunk, DAHDI_CHUNKSIZE);
}
#endif
for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
if (likely(test_bit(INITIALIZED, &wc->bit_flags))) {
for (chan = 0; chan < wc->span.channels; chan++)
writechunk[(chan+1)*2] = wc->chans[chan]->writechunk[x];
}
/* process the command queue */
for (y = 0; y < 7; y++)
cmd_dequeue(wc, writechunk, x, y);
#ifdef VPM_SUPPORT
spin_lock_irqsave(&wc->reglock, flags);
if (wc->vpmadt032)
cmd_dequeue_vpmadt032(wc, writechunk);
spin_unlock_irqrestore(&wc->reglock, flags);
#endif
if (x < DAHDI_CHUNKSIZE - 1) {
writechunk[EFRAME_SIZE] = wc->ctlreg;
writechunk[EFRAME_SIZE + 1] = wc->txident++;
}
writechunk += (EFRAME_SIZE + EFRAME_GAP);
}
}
/**
* is_good_frame() - Whether the SFRAME received was one sent.
*
*/
static inline bool is_good_frame(const u8 *sframe)
{
const u8 a = sframe[0*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
const u8 b = sframe[1*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
return a != b;
}
static inline void t1_receiveprep(struct t1 *wc, const u8* readchunk)
{
int x,chan;
unsigned long flags;
unsigned char expected;
if (!is_good_frame(readchunk))
return;
for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
if (likely(test_bit(INITIALIZED, &wc->bit_flags))) {
for (chan = 0; chan < wc->span.channels; chan++) {
wc->chans[chan]->readchunk[x]= readchunk[(chan+1)*2];
}
}
if (x < DAHDI_CHUNKSIZE - 1) {
expected = wc->rxident+1;
wc->rxident = readchunk[EFRAME_SIZE + 1];
wc->statreg = readchunk[EFRAME_SIZE + 2];
if (wc->rxident != expected) {
wc->span.irqmisses++;
resend_cmds(wc);
if (unlikely(debug)) {
t1_info(wc, "oops: rxident=%d "
"expected=%d x=%d\n",
wc->rxident, expected, x);
}
}
}
cmd_decipher(wc, readchunk);
#ifdef VPM_SUPPORT
spin_lock_irqsave(&wc->reglock, flags);
if (wc->vpmadt032)
cmd_decipher_vpmadt032(wc, readchunk);
spin_unlock_irqrestore(&wc->reglock, flags);
#endif
readchunk += (EFRAME_SIZE + EFRAME_GAP);
}
/* echo cancel */
if (likely(test_bit(INITIALIZED, &wc->bit_flags))) {
#ifdef CONFIG_VOICEBUS_ECREFERENCE
unsigned char buffer[DAHDI_CHUNKSIZE];
for (x = 0; x < wc->span.channels; x++) {
__dahdi_fifo_get(wc->ec_reference[x], buffer,
ARRAY_SIZE(buffer));
dahdi_ec_chunk(wc->chans[x], wc->chans[x]->readchunk,
buffer);
}
#else
for (x = 0; x < wc->span.channels; x++) {
dahdi_ec_chunk(wc->chans[x], wc->chans[x]->readchunk, wc->ec_chunk2[x]);
memcpy(wc->ec_chunk2[x], wc->ec_chunk1[x],
DAHDI_CHUNKSIZE);
memcpy(wc->ec_chunk1[x], wc->chans[x]->writechunk,
DAHDI_CHUNKSIZE);
}
#endif
dahdi_receive(&wc->span);
}
}
static void t1_handle_transmit(struct voicebus *vb, struct list_head *buffers)
{
struct t1 *wc = container_of(vb, struct t1, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry) {
memset(vbb->data, 0, sizeof(vbb->data));
atomic_inc(&wc->txints);
t1_transmitprep(wc, vbb->data);
handle_leds(wc);
}
}
static void t1_handle_receive(struct voicebus *vb, struct list_head *buffers)
{
struct t1 *wc = container_of(vb, struct t1, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry)
t1_receiveprep(wc, vbb->data);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void timer_work_func(void *param)
{
struct t1 *wc = param;
#else
static void timer_work_func(struct work_struct *work)
{
struct t1 *wc = container_of(work, struct t1, timer_work);
#endif
t1_do_counters(wc);
t1_check_alarms(wc);
t1_check_sigbits(wc);
if (test_bit(INITIALIZED, &wc->bit_flags))
mod_timer(&wc->timer, jiffies + HZ/10);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpm_check_func(void *data)
{
struct t1 *wc = data;
#else
static void vpm_check_func(struct work_struct *work)
{
struct t1 *wc = container_of(work, struct t1, vpm_check_work);
#endif
int res;
u16 version;
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
if (test_bit(VPM150M_ACTIVE, &wc->ctlreg)) {
res = gpakPingDsp(wc->vpmadt032->dspid, &version);
if (!res) {
set_bit(VPM150M_ACTIVE, &wc->ctlreg);
wc->vpm_check = jiffies + HZ*5;
return;
}
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
t1_info(wc, "VPMADT032 is non-responsive. Resetting.\n");
}
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
res = vpmadt032_reset(wc->vpmadt032);
if (res) {
t1_info(wc, "Failed VPMADT032 reset. VPMADT032 is disabled.\n");
wc->vpm_check = jiffies + HZ*5;
return;
}
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
res = config_vpmadt032(wc->vpmadt032, wc);
if (res) {
/* We failed the configuration, let's try again. */
t1_info(wc, "Failed to configure the ports. Retrying.\n");
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);
return;
}
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
/* Looks like the reset went ok so we can put the VPM module back in
* the TDM path. */
set_bit(VPM150M_ACTIVE, &wc->ctlreg);
t1_info(wc, "VPMADT032 is reenabled.\n");
wc->vpm_check = jiffies + HZ*5;
return;
}
static void te12xp_timer(unsigned long data)
{
unsigned long flags;
struct t1 *wc = (struct t1 *)data;
if (unlikely(!test_bit(INITIALIZED, &wc->bit_flags)))
return;
queue_work(wc->wq, &wc->timer_work);
spin_lock_irqsave(&wc->reglock, flags);
if (!wc->vpmadt032)
goto unlock_exit;
if (time_after(wc->vpm_check, jiffies))
goto unlock_exit;
queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);
unlock_exit:
spin_unlock_irqrestore(&wc->reglock, flags);
return;
}
static void t1_handle_error(struct voicebus *vb)
{
unsigned long flags;
struct t1 *wc = container_of(vb, struct t1, vb);
spin_lock_irqsave(&wc->reglock, flags);
if (!wc->vpmadt032)
goto unlock_exit;
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);
unlock_exit:
spin_unlock_irqrestore(&wc->reglock, flags);
}
static const struct voicebus_operations voicebus_operations = {
.handle_receive = t1_handle_receive,
.handle_transmit = t1_handle_transmit,
.handle_error = t1_handle_error,
};
#ifdef CONFIG_VOICEBUS_SYSFS
static ssize_t voicebus_current_latency_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long flags;
struct t1 *wc = dev_get_drvdata(dev);
unsigned int current_latency;
spin_lock_irqsave(&wc->vb.lock, flags);
current_latency = wc->vb.min_tx_buffer_count;
spin_unlock_irqrestore(&wc->vb.lock, flags);
return sprintf(buf, "%d\n", current_latency);
}
static DEVICE_ATTR(voicebus_current_latency, 0400,
voicebus_current_latency_show, NULL);
static ssize_t vpm_firmware_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int res;
u16 version = 0;
struct t1 *wc = dev_get_drvdata(dev);
if (wc->vpmadt032) {
res = gpakPingDsp(wc->vpmadt032->dspid, &version);
if (res) {
t1_info(wc, "Failed gpakPingDsp %d\n", res);
version = -1;
}
}
return sprintf(buf, "%x.%02x\n", (version & 0xff00) >> 8, (version & 0xff));
}
static DEVICE_ATTR(vpm_firmware_version, 0400,
vpm_firmware_version_show, NULL);
static void create_sysfs_files(struct t1 *wc)
{
int ret;
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_voicebus_current_latency);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_vpm_firmware_version);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
}
static void remove_sysfs_files(struct t1 *wc)
{
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_vpm_firmware_version);
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_voicebus_current_latency);
}
#else
static inline void create_sysfs_files(struct t1 *wc) { return; }
static inline void remove_sysfs_files(struct t1 *wc) { return; }
#endif /* CONFIG_VOICEBUS_SYSFS */
static int __devinit te12xp_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct t1 *wc;
struct t1_desc *d = (struct t1_desc *) ent->driver_data;
unsigned int x;
int res;
unsigned int index = -1;
for (x = 0; x < sizeof(ifaces) / sizeof(ifaces[0]); x++) {
if (!ifaces[x]) {
index = x;
break;
}
}
if (-1 == index) {
printk(KERN_INFO "%s: Too many interfaces\n",
THIS_MODULE->name);
return -EIO;
}
if (!(wc = kmalloc(sizeof(*wc), GFP_KERNEL))) {
return -ENOMEM;
}
ifaces[index] = wc;
memset(wc, 0, sizeof(*wc));
wc->ledstate = -1;
spin_lock_init(&wc->reglock);
spin_lock_init(&wc->cmd_list_lock);
INIT_LIST_HEAD(&wc->active_cmds);
INIT_LIST_HEAD(&wc->pending_cmds);
wc->variety = d->name;
wc->txident = 1;
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18)
wc->timer.function = te12xp_timer;
wc->timer.data = (unsigned long)wc;
init_timer(&wc->timer);
# else
setup_timer(&wc->timer, te12xp_timer, (unsigned long)wc);
# endif
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&wc->timer_work, timer_work_func, wc);
# else
INIT_WORK(&wc->timer_work, timer_work_func);
# endif
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&wc->vpm_check_work, vpm_check_func, wc);
# else
INIT_WORK(&wc->vpm_check_work, vpm_check_func);
# endif
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (x = 0; x < ARRAY_SIZE(wc->ec_reference); ++x) {
/* 256 is used here since it is the largest power of two that
* will contain 8 * VOICBUS_DEFAULT_LATENCY */
wc->ec_reference[x] = dahdi_fifo_alloc(256, GFP_KERNEL);
if (IS_ERR(wc->ec_reference[x])) {
res = PTR_ERR(wc->ec_reference[x]);
wc->ec_reference[x] = NULL;
free_wc(wc);
return res;
}
}
#endif /* CONFIG_VOICEBUS_ECREFERENCE */
snprintf(wc->name, sizeof(wc->name)-1, "wcte12xp%d", index);
pci_set_drvdata(pdev, wc);
wc->vb.ops = &voicebus_operations;
wc->vb.pdev = pdev;
wc->vb.debug = &debug;
res = voicebus_init(&wc->vb, wc->name);
if (res) {
free_wc(wc);
ifaces[index] = NULL;
return res;
}
wc->wq = create_singlethread_workqueue(wc->name);
if (!wc->wq) {
kfree(wc);
return -ENOMEM;
}
voicebus_set_minlatency(&wc->vb, latency);
voicebus_set_maxlatency(&wc->vb, max_latency);
max_latency = wc->vb.max_latency;
create_sysfs_files(wc);
voicebus_lock_latency(&wc->vb);
if (voicebus_start(&wc->vb)) {
voicebus_release(&wc->vb);
free_wc(wc);
return -EIO;
}
t1_hardware_post_init(wc);
for (x = 0; x < (wc->spantype == TYPE_E1 ? 31 : 24); x++) {
if (!(wc->chans[x] = kmalloc(sizeof(*wc->chans[x]), GFP_KERNEL))) {
free_wc(wc);
ifaces[index] = NULL;
return -ENOMEM;
}
memset(wc->chans[x], 0, sizeof(*wc->chans[x]));
if (!(wc->ec[x] = kmalloc(sizeof(*wc->ec[x]), GFP_KERNEL))) {
free_wc(wc);
ifaces[index] = NULL;
return -ENOMEM;
}
memset(wc->ec[x], 0, sizeof(*wc->ec[x]));
}
mod_timer(&wc->timer, jiffies + HZ/5);
t1_software_init(wc);
t1_info(wc, "Found a %s\n", wc->variety);
voicebus_unlock_latency(&wc->vb);
return 0;
}
static void __devexit te12xp_remove_one(struct pci_dev *pdev)
{
struct t1 *wc = pci_get_drvdata(pdev);
#ifdef VPM_SUPPORT
struct vpmadt032 *vpm = wc->vpmadt032;
#endif
if (!wc)
return;
dahdi_unregister(&wc->span);
remove_sysfs_files(wc);
clear_bit(INITIALIZED, &wc->bit_flags);
del_timer_sync(&wc->timer);
flush_workqueue(wc->wq);
#ifdef VPM_SUPPORT
if (vpm)
flush_workqueue(vpm->wq);
#endif
del_timer_sync(&wc->timer);
voicebus_release(&wc->vb);
#ifdef VPM_SUPPORT
if(vpm) {
wc->vpmadt032 = NULL;
clear_bit(VPM150M_DTMFDETECT, &vpm->control);
clear_bit(VPM150M_ACTIVE, &vpm->control);
vpmadt032_free(vpm);
}
#endif
t1_info(wc, "Freed a Wildcard TE12xP.\n");
free_wc(wc);
}
static DEFINE_PCI_DEVICE_TABLE(te12xp_pci_tbl) = {
{ 0xd161, 0x0120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te120p},
{ 0xd161, 0x8000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te121},
{ 0xd161, 0x8001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te122},
{ 0 }
};
#if LINUX_KERNEL_VERSION >= KERNEL_VERSION(2, 6, 12)
static void te12xp_shutdown(struct pci_dev *pdev)
{
struct t1 *wc = pci_get_drvdata(pdev);
voicebus_stop(&wc->vb);
}
#endif
MODULE_DEVICE_TABLE(pci, te12xp_pci_tbl);
static struct pci_driver te12xp_driver = {
.name = "wcte12xp",
.probe = te12xp_init_one,
.remove = __devexit_p(te12xp_remove_one),
#if LINUX_KERNEL_VERSION >= KERNEL_VERSION(2, 6, 12)
.shutdown = te12xp_shutdown,
#endif
.id_table = te12xp_pci_tbl,
};
static int __init te12xp_init(void)
{
int res;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 23)
cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct command), 0,
#if defined(CONFIG_SLUB) && (LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 22))
SLAB_HWCACHE_ALIGN | SLAB_STORE_USER, NULL, NULL);
#else
SLAB_HWCACHE_ALIGN, NULL, NULL);
#endif
#else
cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct command), 0,
SLAB_HWCACHE_ALIGN, NULL);
#endif
if (!cmd_cache)
return -ENOMEM;
res = dahdi_pci_module(&te12xp_driver);
if (res) {
kmem_cache_destroy(cmd_cache);
return -ENODEV;
}
return 0;
}
static void __exit te12xp_cleanup(void)
{
pci_unregister_driver(&te12xp_driver);
kmem_cache_destroy(cmd_cache);
}
module_param(debug, int, S_IRUGO | S_IWUSR);
module_param(t1e1override, int, S_IRUGO | S_IWUSR);
module_param(j1mode, int, S_IRUGO | S_IWUSR);
module_param(alarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(losalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(aisalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(yelalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(latency, int, S_IRUGO);
module_param(max_latency, int, S_IRUGO);
#ifdef VPM_SUPPORT
module_param(vpmsupport, int, S_IRUGO);
module_param(vpmtsisupport, int, S_IRUGO);
module_param(vpmnlptype, int, S_IRUGO);
module_param(vpmnlpthresh, int, S_IRUGO);
module_param(vpmnlpmaxsupp, int, S_IRUGO);
#endif
MODULE_DESCRIPTION("Wildcard VoiceBus Digital Card Driver");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_LICENSE("GPL v2");
module_init(te12xp_init);
module_exit(te12xp_cleanup);